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Chapter 1

INTRODUCTION

To introduce our scientific contributions to the interdisciplinary topic of plant pheno-
typing with imaging and machine learning, we start this thesis by defining what computer
vision-based plant phenotyping is and why we care about it. We continue by discussing
our motivation to focus on reducing the cost of imaging and machine learning by analyz-
ing what is costly in each element of the imaging chain and the current bottleneck to be
addressed. We conclude this short introduction chapter by explaining the organization of
the thesis.

1.1 Computer vision-based plant phenotyping
Plant phenotyping corresponds to the measurement of any meaningful observable re-

sulting from the interaction of environment and genotype, as illustrated in Fig 1.1. The
environment may include the natural income of nutrients for the plant (light, water, at-
mosphere, soil). The environment may also include the impact of surrounding plants and
microorganisms with biotic interactions (adversarial and mutualistic) or plant-plant in-
teractions (in an agro-ecological multi-species strategy). Plant phenotyping can be done
in controlled environments or in more challenging natural conditions. This topic has
attracted much attention since the mid-2000s because of the massive increase in through-
put of the genomic tools. In order to perform genotype-environment analysis at similar
throughput, the bottleneck in plant science was pointed to be phenotyping. Also, plant
phenotyping is useful for users to monitor their installation and have precise information
on the expected yield.

Plant phenotyping, when performed manually, is extremely costly in terms of man-
power. Also, manual assessment, as any tiring and repetitive task, is prone to subjectivity
and can lead to uncertainty on the measurement. In addition, phenotyping based on hu-
man vision inspection limits the observations to the visible spectrum range. This situation
met in the mid-2000s the democratization of the access of imaging systems available for

15
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Figure 1.1 – The interaction between genotype and environment conjointly determine
plant phenotype expressions. Image copyright International Plant Phenotyping Network
(IPPN).

proxy-detection.

At an international level, the initiative of a network of phenotyping centers (FPPN in
France, EPPN in Europe, IPPN at a worldwide scale) was launched. The first round of
investigations consisted of identifying the best imaging systems adapted to plant imaging.
Some centers somehow developed an approach mimicking biomedical imaging with highly
accurate imaging systems and low-throughput of individual plant carried, for instance,
under X-ray or PET-MRI systems. Alternatively, some centers investigated plant imaging
especially useful for plant phenotyping while compatible with higher throughput. Such
imaging systems mostly include RGB, LiDAR, thermal, hyperspectral, and fluorescence
imaging. Despite the diversity of traits to be measured on plants, the type of plants,
their stage of development, or the imaging system used, all computer vision-based plant
phenotyping methods share a common framework, as shown in Fig. 1.2.

Light is sent onto the scene, including the plant, to be phenotyped. The interaction of
the light with the scene is captured by an optic and sent onto an imaging sensor. Image
processing is performed to extract the targeted phenotypic information from the scene. If
the types of phenotypic traits to be measured are well-defined from the acquisition step,
it is possible to optimize the computer vision system’s cost, as indicated by the feedback
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arrow in Fig. 1.2. It is the general approach followed in this thesis.

Figure 1.2 – Plant imaging framework. The feedback arrow indicates that the prior
knowledge of the targeted informational task can be used to optimize each step of the
framework to reduce the global cost of phenotyping.

Several reasons motivate optimization of computer vision-based plant phenotyping in
order to reduce its cost. First, for simplicity reasons inspired by the Occam razor principle,
a physical system should not be oversized. Second, lowering the cost of the system will
enable a better translation of the phenotyping systems to farmers for wide dissemination.
Third, the lower-cost system will be easier to replicate on different phenotyping platforms
or even on a single platform for parallelization. This reason is especially important for the
assessment of plant phenotyping in controlled environments, as considered in this thesis
and illustrated in Fig. 1.3.

Indeed, different scenarios may be applied to plant imaging in controlled conditions
as illustrated in Fig. 1.3 either sensing equipment moves towards the samples (sensor-
to-plant), or the plants are transported towards the cameras (plant-to-sensor), or an
alternative approach consists of using a grid of sensors. The plant-to-sensor scenario
(middle in Fig. 1.3) allows optimized image acquisition conditions in dedicated cabinets
with top-and-side views, with high-resolution sensors and specific illumination conditions.
However, this scenario demands to move the plants. This may be invasive specially when
studying biotic or abiotic stress because movement itself can stresses plant and can result
in cross contaminations. Moreover, this scenario does not allow synchronize acquisitions
on large population of plants. The sensor-to-plant scenario (left in Fig. 1.3) keeps the
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plants at their place, and top-view imaging equipment screens growing areas. A robotic
arm may include the flexibility to acquire images from different point-of-views. However,
similarly to the plant-to-sensor scenario, the sensor-to plant scenario is not a synchronized
and may create shadows on the plant. At last, the grid-of-sensors (right in Fig. 1.3)
scenario solves the problems of speed, synchronization and it remains non invasive. The
drawback of this grid-of-sensors scenario may be the cost of the replication of the sensors,
unless low-cost sensors are used.

Figure 1.3 – Pros and cons of the different plant imaging scenarios in a controlled envi-
ronment. Image copyright PhenoKey.

1.2 Toward low-cost computer vision-based plant phe-
notyping

The cost of a computer vision-based phenotyping can be impacted by each step of the
framework of Fig. 1.2. We shortly discuss and illustrate possible ways to optimize each
of these steps in this section.
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The first step in the plant imaging system comes from selecting the scene’s observation
scale. Some especially interesting choices are the ones which enables the acquisition of
multiple plants in a single image and the extraction of the phenotyping information from
a single snapshot. A well-suited imaging geometry for this consists of observing plants
from the top view, as illustrated in Fig. 1.4 with various observation scales. This will be
the imaging geometry chosen in the thesis. Producing and growing plants cost money and
time. As a consequence, working on small plants (seedling), phenotyped at their early
stages of life, corresponds to a situation where low-cost plant phenotyping is the most
likely to be efficient when including the cost of plant production. In this thesis, we will
mainly focus on small plants observable from a single view (side or top).

Figure 1.4 – Various observation scales from the top view. From left to right, respectively:
foliar disk in vitro, large single leaf held by a metallic grid, short single plant to flat leaves,
canopy.

A second step in the plant imaging comes with the choice of light. While plants have
their own needs in terms of light, computer vision requires contrast in acquired images,
which can be optimized with the selection of the most appropriated wavelengths that are
sent onto the scene. A range of available technological solutions is presented in Fig. 1.5.
Lower cost approach comes when sufficient contrast is accessible with standard lighting
conditions for plants and standard cameras. This will be the situation considered in the
plant phenotyping use-cases addressed in this thesis.

Optics is another step that needs to be considered in plant imaging. Distortion-free
optics are costly. There is often a tradeoff between the field of view and the amount of
distortion since a larger field of view comes with more distortions. It is however, possible
to compensate for these distortions when some objects with prior knowledge of shape are
located in the scene. This enables to reduce the cost of optics without actual impact on
the quality of the extracted information. This will be the situation considered in this
thesis.
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Figure 1.5 – Technological approaches to optimize contrast by wavelength selection in
plant imaging.

The next step in plant imaging is the choice of the sensor. For a given same question,
a variety of imaging technologies can be deployed. The chosen sensor should take into
account contrast, but also the requested resolution and dynamic. Figure 1.6 and Table
1.1 extracted from [1] illustrate such a choice for a task of azimuth leaf orientation mea-
surement. The laser scanner, while providing a leaf segmentation of higher accuracy, does
not improve the quality of the leaf orientation compared to the much lower cost Kinect
sensor.

Figure 1.6 – Azimuth leaf angle measured with different sensors for the same task of leaf
orientation determination. Reproduced from [1].

The development of the image processing step is currently identified as the bottleneck
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Depth Camera Kinect LiDAR
Azimuth 1 46.43◦ 48.04◦

Azimuth 2 125.16◦ 120.65◦

Azimuth 3 19.94◦ 16.36◦

Azimuth 4 154.52◦ 160.73◦

Table 1.1 – Similar result with both sensors for azimuth leaf orientation measurement.

in image based plant phenotyping. It has to be developed in order to extract the targeted
information. One can define three types of informational tasks. A first type is when the
phenotypic trait to be measured is exactly defined. The plant phenotyping questions which
are located in this category can be solved easily by classical handcrafted image processing
approaches. The cost of such informational tasks can be the lowest since we know what
kind of information we are seeking and this can serve to optimize each element of the plant
imaging framework. The second type is when the feature space on which to perform the
task is not known but we have prior knowledge of phenotypic difference. This category
leads to implement supervised machine learning algorithms. The last type is when no
prior knowledge of phenotyping difference can be assumed. In this case, unsupervised
machine learning approach can be a chosen approach in order to identify possible clusters
in the observed populations of plants. In this thesis, we will mostly focus on the second
type, the situation which can be solved with supervised learning and mainly discuss how
to reduce the cost of this machine learning approach for plant imaging.

Supervised learning is the machine learning approach that maps input data to an out-
put based on example input-output pairs. Supervised learning requires annotated dataset
to infer a learning algorithm. This ground-truth dataset is used to predict the output
for other unlabeled dataset through the use of machine learning algorithms. Modern
supervised machine learning applied to image processing is a revolution. In early 2000,
developing an image processing application for plant phenotyping tasks would require al-
most one year of research to define the prototype and implementation and deployment of
the solution. Since 2012, by the breakthrough in supervised deep learning, the required
time to apply research and development to implement a plant phenotyping solution fell
off to couple of days. However, supervised deep learning, has some hidden costs with
the necessity to provide large amount of ground-truth data to train the model and the
huge computational cost for the training of the model. In this thesis, we will discuss, via
specific use cases, ways to reduce these costs of supervised deep learning.
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1.3 Contributions and organisation of the document
Recently in [2], cost-efficient plant phenotyping was investigated in detail for field

experiments, but not in controlled environment. As also underlined in [3], the study iden-
tified the current bottleneck of plant phenotyping as the development of image processing.
In this thesis, we revisit low-cost phenotyping and push forward its analysis by focusing
on imaging in a controlled environment and producing contributions on how to reduce
the cost of image processing itself. As motivated in the previous section, we mainly focus
our effort on supervised machine learning approaches applied to use cases with low-cost
imaging systems gazing at plants with a single view (top or side view).

The document is organized as follows. In Chapter 2, we will first focus on reducing
the cost of plant imaging at the imaging system level. To this purpose, we present the
single-boards computers we used to design networks of sensors. We review the current
state-of-the-art technologies for these mini-computers and present their applications in the
literature of plant phenotyping. Similarly, we then present low-cost cameras operating
in the visible or infrared spectrum to perform reflectance imaging or range imaging at a
low cost. After this state of art, we discuss the specific interest of seedling as a stage of
plant development especially suited to benefit from these low-cost imaging systems. We
present our contributions to this stage of development operating on individual seedling
or on a group of seedling observed as a surface called the canopy. In chapter 3, we then
focus on reducing the cost of machine learning. We identify the main bottleneck as the
time of annotation and the computational cost. After a state-of-the-art of the current
approaches, we present our contribution to speed up annotations with the help of eye-
tracking technologies and to perform deep learning at low computational costs. This
thesis has been performed on the phenotyping platform of Angers. The biological use
cases taken for illustration of the methodological contributions are multiple and represent
the wide variability of computer vision problems encountered in plant phenotyping.
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Chapter 2

LOW-COST IMAGING

Plant imaging systems can extend phenotyping capability, but they require a platform
to handle high-volume data. However, commercial platforms that make consistent image
acquisition easy are often cost-prohibitive to many laboratories and institutions. There is
also no such thing as a “one-size-fits-all” phenotyping system; different biological questions
often require different hardware configurations. Therefore, to make more accessible high-
throughput phenotyping methods, low-cost single-board computers (SBCs) and imaging
sensors can be used to acquire plant image data[4].

This chapter investigates the available low-cost technologies (imaging sensors and
single-board computers) to perform image-based plant phenotyping. First, we review
the state-of-the-art technologies and their applications in image-based phenomics. Then,
we present our contributions with low-cost imaging devices coupled with single-board
computers.

2.1 Low-cost state-of-the-art technologies

This section will describe state-of-the-art plant phenotyping technologies to enable
academic and commercial plant scientists to address complex problems in plant and agri-
cultural science. Initially, we will represent the various kinds of low-cost single-board
computers. We will continue by explaining low-cost visible-light imaging sensors and 3D
imaging systems.

2.1.1 Single-board computers

Single-board computers (SBCs) or mini-computers are small computing devices that
can be used for various purposes. A single-board computer encompasses all the elements
of a computer, such as memory, input/output, and a microprocessor embedded in a single
circuit board. In contrast to conventional computers, single-board computers are indepen-
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Chapter 2 – Low-cost imaging

dent of expansions for functionality and are self-contained. Because of this feature, they
are frequently used in rack systems, which allows for reliable and fast integration into a
system and relatively easy to swap one out for an other if a computer needs to be replaced.
They are lightweight and compact, which allows them to be embedded in places where
space is minimal. Mini-computers are very efficient and low power consumption, which
makes them very cost-effective solutions for research purposes likewise, industries. There
has been much interest recently in designing image-based phenomics platforms powered
by this technology and its relevance sensors, which is discussed in the following.

Single-board computers can be divided into two main categories, open-source and
proprietary. Open source SBCs give access to both hardware design and layout plus the
source code used on the board, and this is ideal for understanding how the software and
hardware operate and adapt them to end-design requirements. Proprietary SBCs, on
the contrary, are generally designed for use in end applications or as a reference to be
evaluated.

SBCs can be used for several purposes, including personal, research, and educational
purposes, as well as rapid prototyping development in the Internet of Things (IoT) or,
automates human tasks with high performance. Choosing the right SBC for an application
requires many considerations. We provide an overview of the available SBCs in the market
by considering some criteria in Table 2.1. Nevertheless, there are other options, such as
power, backward pin compatibility, storage, and more, which must be considered to choose
SBC according to the necessity.

Current SBCs come with a wide diversity of processor types, most with GPUs on-board
and the brand-new generation contains an Edge TPU or NPU coprocessor which is ideal
for prototyping the projects that demand fast on-device inferencing for machine learning
models (NVIDIA Jetson Nano, Coral Dev Board, Rock Pi N10). The most prevalent form
of operating system used on SBCs is Linux-based. The cost might vary in the range of
10€ to 300€, depending on all the options mentioned heretofore.
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Chapter 2 – Low-cost imaging

Figure 2.1 – Raspberry Pi version 3B - mini-computer used in seedling growth monitoring
in our work on individual observation scale.

Figure 2.2 – LattePanda - mini-computer used in seedling growth monitoring in our work
on canopy observation scale.

Figures 2.1 and 2.2 illustrate the type of SBCs used as low-cost imaging systems in
this thesis (section 2.3). In addition to computing devices to develop a low-cost plant
phenotyping imaging system, we should consider the type of sensors used. In the next
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2.1. Low-cost state-of-the-art technologies

section, we will explain different available low-cost imaging sensors in more detail and
identify the one selected in this Ph.D. document.

2.1.2 Low-cost imaging sensors

A variety of imaging technologies are being used to deploy an automated image ac-
quisition platform to collect data for quantitative studies of complex traits. Substantial
low-cost imaging devices are available to measure a phenotype quantitatively through the
interaction between light and plants. These devices can be embedded in connected objects
such as smart-phones, tablets, or mini-computers or be fixed on various devices such as
UAVs, UGVs, or connected sticks.

A key advance in high-throughput phenotyping platforms is the capability to capture
plant traits non-destructively by different imaging modalities [5]. This advance permits
time-series measurements that are necessary to follow the progression of growth and stress
on individual plants. Time-lapse imaging is a valuable tool for recording plant develop-
ment and can reveal differences that would not be apparent from endpoint analysis.

In the following, available low-cost visible-light imaging systems and depth sensors are
described in more detail. We focus on the description of low-cost visible-light (RGB) and
depth (3D) imaging sensors available for collecting data relevant to plant phenotyping in
the field or controlled environments.

Visible light imaging

Visible-band imaging systems are the fundamental apparatuses for measuring mor-
phological traits (color, shape, size, and texture) of plants. As technology advances, RGB
cameras that are suitable for aerial and ground applications have become affordable.
Digital single-lens reflex (DSLR) cameras have played a key role in many phenotyping
applications, especially in controlled but also field environments. Standard off-the-shelf
cameras use silicon-based sensors that are responsive to visible light wavelengths in the
400–1000 nm range. Although, color cameras are further restricted to the 400–700 nm
range visible to humans with the inclusion of an infrared-blocking filter. Mounting Cost-
effective RGB PiCamera modules to mini-computers are a practical choice for developing
time-lapse low-cost phenotyping systems that work effectively in controlled environments
[6]. Table 2.2 summarises different examples of low-cost Visible-band imaging systems.
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2.1. Low-cost state-of-the-art technologies

3D imaging

2D RGB imaging is not robust to various illumination conditions and occlusion of
plant organs. These include overlapping leaves and branches or shadowing when we
are observing them in the canopy and at mid-growth stages. 3D imaging provides a
proper low-cost solution to meet these challenges. Moreover, 3D plant phenotyping allows
researchers to reconstruct plant architecture and measuring complex plant morphologies.
For example, leaf surfaces can be reconstructed in 3D, and the depth information on
the leaf allows its occlusion or shadowing effects to be evaluated, by assisting with the
interpretation of conventional images of the plant [7].

Several techniques can produce 3D plant models. We classify these techniques into two
groups, including active imaging systems such as light detection and ranging (LiDAR; or
laser scanner) sensors, time-of-flight (ToF) cameras, and structured light projection and
passive imaging systems inclusive binocular stereo-vision and multi-view stereo-vision.
The passive 3D imaging systems use computational volumetric reconstruction algorithms
to recover the 3D model. The 3D imaging system’s speed depends on the plant morpho-
logical traits and the challenges the imaging system needs to overcome to generate the
3D model [8]. However, not each 3D imaging technique is sufficiently fast to provide a
high-throughput system. Some information will be extracted from the models, such as
plant height, leaf area, and shapes, which are helpful in plant recognition, stress detection,
plant function, and agricultural traits. Therefore 3D imaging systems are a well-suited
tools as these devices enable exact geometry and growth measurements.

The most affordable conventional method of acquiring 3D data is stereo-vision. Stereo
cameras use the correspondence between images to calculate distances in the form of
disparity maps and provide estimates of depth for objects in the image [9]. Stereo analysis
has been successfully used in controlled environments, essentially to construct 3D models
of individual plants. A multi-view stereo-vision system uses multiple cameras to have
different perspectives from the plant. All the images of the object of interest will be
merged into one full 3D point cloud image. Although it is not a low-cost solution compared
with stereo-vision, it is very accurate to reconstruct the 3D models with high accuracy.

LiDAR (Light Detection And Ranging) is a remote sensing technology that measures
the sensor’s distance to the plant by illuminating pulsed laser dots to the target and
measuring the reflected pulses. LiDAR is a fast image acquisition technology that allows
scanning at high frequency. Using this technology, which is available in low-cost plant
phenotyping, can be performed in the field at night since it is light-independent technology.
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Chapter 2 – Low-cost imaging

LiDAR devices can be used to acquire multi-source phenotypic data during the entire crop
growing period and extract important plant morphological traits, such as plant height,
plant width, leaf area, leaf length, leaf width, and leaf inclination angle for plant biological
and genomic studies [1]. However, It needs calibration before each acquisition, and it is
not accurate for detecting small plant organs or seedling, and unsharpened edges of plants
like leaves, for instance.

The structured light sensors measure the pattern and the shifts in the pattern to
reconstruct the object’s distance in the scene. Often the projectors used for measuring the
pattern are working in the near-infrared spectrum. This sensor is susceptible to sunlight,
and it is only suitable for monitoring plants at night or in light-controlled environments.
The first version of the Microsoft Kinect uses structured light technology to generate depth
information from the scene. This low-cost depth sensor can be used in plant phenotyping
to project an infrared pattern onto the plant to assess the depth information.

Time-of-flight (ToF) camera is a range imaging camera system that employs time-of-
flight techniques to resolve distance between the camera and the object for each point of
the image, by measuring the round trip time of an artificial light signal provided by a laser.
These sensors are generally low resolution compared to RGB cameras but can offer depth
without the computation of stereo camera setups. ToF cameras work well in low-light
but are susceptible to noise in direct sunlight the same as the structured light sensors.
Despite their relatively low resolution and sensitivity to ambient light, ToF is generally
favorable for determining features in outdoor agricultural settings. The technology used
in Microsoft Kinect v.2 to compute the depth is based on the ToF sensor. Figure 2.3
illustrates different types of 3D sensors and cameras explained in this section.

We briefly introduced different types of active depth sensors, as imaging systems that
shine light onto the scene. The light reflected from the scene is used to build the depth
image, whether by measuring the time-of-flight between emission and reception or by
measuring the deformation of the spatially structured lighting pattern. Some devices can
be associated with a conventional RGB imaging system and the depth sensors to produce
after registration, a four components RGB-D image. For instance, in Microsoft Kinect
systems 1 capturing process consists of obtaining a colored image (RGB) and performing
a depth measurement with a structured light technique in the first version or ToF in
the second version. RGB-D cameras give a similar output as stereo cameras but by
less computation, and they have limited range due to the necessary matching between

1. https://developer.microsoft.com/en-us/windows/kinect/
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2.1. Low-cost state-of-the-art technologies

Figure 2.3 – Different types of 3D sensors. Image copyright Phenospex.

depth and RGB cameras. Nevertheless, it is possible to use the output of the depth
sensor separately. Figure 2.4 shows the comparison of the depth map generated by the
structured light sensor (Kinect v.1) and the ToF sensor (Kinect v.2). Table 2.3 illustrates
different low-cost 3D imaging devices and indicates the technology used in this thesis.

Figure 2.4 – Comparison of the depth map generated by the structured light sensor (Kinect
v.1) and the ToF sensor (Kinect v.2).
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2.2 Applications in plant phenotyping

Low-cost technologies (SBCs and cameras) presented in the previous sections have
been applied to affordable image-based phenomics in the following recent literature in
both controlled and field environments [4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26]. In the following, we briefly review these use-cases of low-cost
phenotyping platforms.

Studying plant geometry in fields is significantly essential for plant phenotyping appli-
cation and plant breeding. This use-case was studied for the first time in 2002, by using
a low-cost 3D imaging system in the aerial stereo-vision platform developed in [22]. A
mobile stereo-vision system with different sensors and a personal computer was mounted
to a remote-controlled helicopter for acquiring site-specific stereo-field scenes illustrated
in Fig 2.5. Later in 2005, a 3D crop map based on the stereo-processing of these aerial
images of a maize field was generated [23].

Figure 2.5 – (a) Helicopter-mounted stereo-vision system; (b) acquired crop image; (c)
resulting disparity image. Reproduced from [23].

In recent years, due to technical development and the advent of new generations of
unmanned vehicles in vision-based plant phenotyping, we can easily access UAVs’ aerial
images. In [24], a UAV-based imaging platform with using NVIDIA Jetson 2 and different
sensors, such as a 3D LiDAR, stereo camera, and GPS antenna used to measure plant
height from 3D LiDAR point clouds in real-time. This platform was explicitly focused
on imaging row crop environments and analyzing data by machine learning algorithms
implemented on SBC. Figure 2.6 illustrates the UAV-based platform with selected sensors.

2. https://developer.nvidia.com/embedded/jetson-tx2-developer-kit
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Chapter 2 – Low-cost imaging

Figure 2.6 – UAV platform with selected sensors connected to the NVIDIA Jetson TX2
SBC on-top and beneath. Reproduced from [24].

In the field, RGB imaging systems are also applicable in different scenarios. For ex-
ample, the RGB-derived vegetation indexes are presented as the most suitable traits to
be measured. For this reason, a set of vegetation indexes’ performance was studied by
performing the ground (UGV) and aerial(UAV) measurements acquired by the conven-
tional digital camera in [27]. RGB images provide information on the canopy cover and
canopy color. For example, the leaf area index (LAI), and light interception can be esti-
mated by color thresholding. Other sophisticated insights can also be extracted by image
analysis. For instance, different kinds of biotic and abiotic stresses on plants like water
stress or salinity stress could be studied based on the shape, compactness, and solidity
of the canopy [28, 29, 30, 31, 32]. Flower density and flowering period of almond trees
at the field scale was investigated in [26] by generating colored photogrammetric point
clouds using a low-cost (RGB) camera onboard a UAV captured images regularly during
the growing period. In another study, PYM (raspberry Pi pYthon iMaging) [17] was
designed to measuring the phenotype plant leaf area in a wide diversity of environments
in the fields. The method was based on the plant leaf’s ability to absorb blue light while
reflecting infrared wavelengths.

Phenotyping applications in field environments are a relatively well-covered topic.
The useability and flexibility of low-cost and affordable image acquisition systems by
using UAVs, UGVs, or connected sticks are studied in a wide range of literature, and
different active and passive sensors for agriculture imaging are compared in [25, 33]. In
this document, we focus on plant phenotyping in a growth chamber or greenhouse for
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2.2. Applications in plant phenotyping

experiments under relatively well-controlled conditions. In the following first, some low-
cost plant phenotypic platforms designed to address specific phenotyping questions or
to acquire images for different purposes in controlled environments will be mentioned.
Next, we will cover our contributions to developing an affordable, flexible, and accurate
image acquisition system to address two essential plant phenotyping challenges studied
in controlled environments such as growth chambers and greenhouses.

In controlled environments, we review the image-based plant acquisition platform de-
signed by low-cost systems and RGB sensors by introducing Phenotiki (Fig. 2.7) devel-
oped by [6]. Phenotiki is an affordable top view image-based plant phenotyping system,
consisted of a low-cost Raspberry Pi mini-computer attached to the RaspiCam fixed-
optics imaging sensor and open-access software. It is an easy-to-use, deploy image-based
phenomics platform and freely available to the academic community. Data storage and
processing were decoupled from the acquisition. Image data can be transmitted over
the local network or the Internet to a centralized repository for analysis. Robust image
processing algorithms have been efficiently implemented to enable annotation, detection,
tracking, and segmenting plants from the background [34], and counting leaves automat-
ically [35].

The next impressive chamber-based low-cost platform is an automated high-throughput
phenotyping pipeline introduced by [10]. It is designed based on affordable imaging sys-
tems and image processing algorithms to build 2D mosaicked orthophotos. Off-the-shelf,
low-cost digital cameras measure phenotypic traits such as leaf length area and plant veg-
etation conditions in 2D images. This automated pipeline has cross-platform capabilities
and a degree of device independence, making it suitable for various situations. Figure 2.8
illustrates the low-cost imaging platform and orthophoto processing. This platform was
used in [11] to quantify 2D and 3D leaf areas for mapping the population of Arabidopsis
thaliana and use 2D areas to analyze plant nastic movements and diurnal cycles.

GlyPh [19] is another example of a low-cost RGB platform for high-throughput mea-
surement of plant water-use and growth, to assess the drought tolerance of two soybean
genotypes. Top- and side-view images of soybean plants were taken in canopy scale auto-
matically by several digital cameras to measure traits such as height, width, and projected
leaf area.

The plant acquisition system can be designed to monitor plants on an individual scale
by low-cost sensors. Although the cost of this unique system will be low, it may not
be a low-cost system to replicate on different phenotyping platforms or even on a single
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Chapter 2 – Low-cost imaging

Figure 2.7 – An overview of the Phenotiki system and screen captures showing the graph-
ical user interfaces to operate its hardware and software components. Reproduced from
[6].

platform for parallelization. For example, Internet of Living Things (IoLT) [18], is a
smart pot platform designed by using a low-cost mini-computer-based system attached
to an RGB camera module to monitor plant growth form top view. Environmental pa-
rameters were measured by different sensors, such as light intensity, soil humidity, and air
temperature and humidity. The data was transferred via a Wi-Fi connection to a private
IoT-Cloud gateway to apply further analysis.

3D images can be used in plant phenotyping as well. In the following some literature
refers to the low-cost 3D plant phenotyping in a controlled environment will be explained.
The first example is low-cost RGB phenotyping lab (LCP lab) which was introduced in
[36] that includes automated plant tracking using QR code, imaging setup, and image
analysis stages. Figure 2.9 illustrates the image acquisition platform with its applications.
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2.2. Applications in plant phenotyping

Figure 2.8 – (1) The low-cost indoor imaging platform. (2) Orthophoto processing. (A)
The mosaicked orthophoto for half-shelf; (B) detected pot binary image; (C) generated
4-by-4 grid overlaid on the orthophoto; (D) detected plant binary image. Reproduced
from [10].

Figure 2.9 – (a) Low-cost RGB imaging phenotyping lab system, (b) Side- and top-view
images of cultivar Nelson at three time-points after sowing processed by HTPheno [37],
plantCV [38], or Easy Leaf Area [39]. Reproduced from [36].
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In 2011, Microsoft Kinect for the first time was used as a low-cost RGB-D camera to 3D
measurements on the shoot of entire plants in a controlled environment [1]. LiDARPheno
[15] was presented as a low-cost LiDAR-based platform for phenotyping the plants in-
lab and in-field. It consists of off-the-shelf, low-cost components and modules, including
Arduino Uno, Raspberry Pi, servo motor-based mechanism, and a low-cost commercial 2D
LiDAR scanning system. The depth vision-based plants phenotyping method in controlled
environment,Vertical Farming withArtificial Lighting (VFAL) was proposed in [12]. The
method combines 3D plants modeling and deep segmentation of the higher leaves at the
earlier growth stages, during a period of 25–30 days. Commercial close range RGB-D
sensors are positioned on top of each tray, at the fixed distance. The plant height is
computed by considering the depth map obtained for each tray Fig. 2.10 in different days
after seeding (DAS). However, the plant surface provided both by the point cloud, and
the depth map is complicated to distinguish individual plants, especially at later stages,
at which only a carpet of leaves is visible. In the next step, both leaf area and leaf weight
are computed by the first segmentation of leaves in visible layers from RGB images and
then project them on the depth map.

Figure 2.10 – (a1,a2) RGB images of a layer at DAS7 and DAS28, (a3) raw depth map
from RGB-D sensor, (a4) Single point cloud from row depth map; (b1) Canny edge de-
tection, with threshold 0.65. (b2) Lines fitted on the tray cells, with the Hough transform
voting. (b3) Height surface at DAS24, in mm, (b4) 3D reconstructed leaves with the lines
separating the tray cells visible, with height in mm. Reproduced from [12].

In another work, the diurnal pattern of leaf hyponasty and growth in the Arabidopsis
plant was measured by using laser scanning in [40]. This study’s objective was to mea-
sure the light-mediated growth responses in Arabidopsis and understand the underlying
regulatory processes at cellular and molecular levels. The acquisition system is shown in
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Fig. 2.11.

Figure 2.11 – Laser scanner and charged coupled device (CCD) camera mounted on the
imaging unit in the Scanalyzer HTS phenotyping device and 2.5D height-scaled image
in addition to the 3D point cloud computed from the recorded 2.5D image. Reproduced
from [40].

A new cost-effective 3D imaging system was developed by [20], to collect images of
soybeans plants from different viewpoints to reconstruct 3D models of the plant at the
early growth stage. A low-cost digital camera mounted at a camera-arm controlled by
a stepper motor driver was used to move the camera and take the plants’ images from
different viewpoints.

The importance of flexible and affordable plant phenotyping platforms is emphasized in
[13] by developing an open-source and automated plant imaging system (PhenoBox) Fig.
2.12 and processing (PhenoPipe) solution that can be adapted to various phenotyping
applications in plant biology and beyond for the evaluation of visual traits from plant
shoot images. In the PhenoBox plant imaging system, the camera and turntable are
controlled by a Raspberry Pi located in the electronics compartment in the lower right
area of the system. PhenoBox system has broad applicability to study biotic and abiotic
stresses in mono-cot and dicot species of varied sizes. The correlation achieved by the
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affordable solution (PhenoBox/PhenoPipe system) was similar in strength to published
results by highly cost 3D sensors.

Figure 2.12 – Side-view of the PhenoBox. The camera and turntable are controlled by a
Raspberry Pi 3 mini-computer. Reproduced from [13].

According to [16], the seedling growth reaction to seasonal change in the daytime was
studied by using Raspberry Pi SBC connected to the infrared-sensitive camera. In this
study, the Arabidopsis seedlings were monitored individually by time-lapse imaging in
different light conditions.

An image capturing system introduced by [14], which consists of a near-infrared LED
panel with a NoIR Raspberry Pi camera mounted to a mini-computer. A MatLab-based
software module (iDIEL Plant) was developed to characterize Rosette’s expansion. Plants
were imaged approximately three weeks after germination every 20 min throughout the
24h light-dark growth cycle. The result provided a dynamic and uninterrupted character-
ization of differences in Rosette growth and expansion rates over time for the three lines
tested. The described image acquisition system is shown in Fig.2.13.

All this mentioned literature depicted heretofore emphasizes the strength of single-
board computers and low-cost imaging sensors due to the affordability, reliability, and
flexibility for developing low-cost image-based phenotyping platforms. In this thesis we
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Figure 2.13 – (a) Image capturing system includes a NIR LED frame, and a NoIR RPi
camera mounted to a Raspberry Pi mini-computer. (b) The NIR LED frame consists of
173 NIR LEDs arranged in parallel circuits. (c) plants under visible light (VIS) conditions.
(d) Automated segmentation of plants. (e) Near-infrared (NIR) image of plants shown in
(c) taken in the dark illuminated by NIR LEDs. Reproduced from [14].

used these existing technologies and deployed them in grid of sensors for original use cases.
In the following sections, we describe our contributions to the low-cost imaging of seedling
growth by monitoring seedling growth in both canopy and individual observation scale.

2.3 Contributions to low-cost imaging of seedling growth

As stressed in the introduction section, a favorable scenario for low-cost plant imaging
comes with the use of grid of sensors monitoring from top view plants at their early stages
of development. In this section, we address two plant phenotyping use cases with this
approach while considering two observation scales. First, we investigate the use of low-
cost time-lapse RGB imaging systems in a single pot observation scale for documenting
plant development at the seedling level, where plants have simple architectures and are
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not touching or self-occluding themselves. Next, we push forward and study plant growth
in the presence of plant touching or self-occluding themselves.

2.3.1 Seedling growth monitoring in individual observation scale

A specificity of plants is their continuous capability to metamorphose during their
lifetime. This process is characterized by the kinetics of ontological development stages,
i.e., stages that occur in a definite order. In this scientific study, we focus on some
of these connected steps of a plant’s life at the seedling level. The period from seed
germination in the soil to the development of the first true leaf is crucial for the plant.
During this time, the seedling must determine the appropriate mode of action based on
its environment to best achieve photosynthetic success and enable the plant to complete
its life cycle. Once the seedling emerges out the soil, it initiates photomorphogenes is,
a complex sequence of light-induced developmental and growth events leading to a fully
functional leaf. This sequence includes severe reduction of hypocotyl growth, the opening
of cotyledons, initiation of photosynthesis, and activation of the meristem at the shoot
apex, a reservoir of undifferentiated cells that will lead to the formation of the first leaf
[41]. The molecular mechanisms regulating these time-based events involves profound
reprogramming of the genome that is challenging to study in field situation because the
heterogeneity of the seedling population must be taken into account. It is essential to
understand this seedling development process from an agronomic point of view because
the seedling establishment is critical to crop yield. Uneven emergence timing, for instance,
is associated with lower yields and poor farmer acceptance.

In this context, time-lapse imaging is a valuable tool, accessible at a rather low-cost
[42, 6, 4, 43], for documenting plant development and can reveal differences that would
not be apparent from a sole endpoint analysis. At the seedling level where plants have
simple architectures, such time-lapse imaging can be done from top view to provide an
efficient solution for seedling vigor assessments and monitoring of seedling growth. While
some statistical tools transferred from developmental biology exists to perform time-to-
event analysis [44], a current bottleneck [3] lay in the automation of the image analysis.
A recent revolution occurred in the field of automated image analysis with deep neural
networks [45], which have shown their universal capability to address almost any image
processing challenges with high accuracy. This revolution also benefits plant imaging
[46], and it is currently a timely topic to adapt these tools, which came from the artificial
intelligence community to specific topics of interest in plant sciences. In this study, we
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propose an entire pipeline based on deep learning dedicated to the monitoring of seedling
growth.

Seedling monitoring with computer vision has received considerable attention in the
literature including [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. Several studies
consider germination and seedling growth measurements in vitro, using plastic boxes
or paper towel [47, 48, 49, 50, 51, 52, 53, 56], which enable the monitoring of radicle
emergence (germination) or organ growth (seedling growth). Others, like in this work,
used soil-based sowing systems, where seedling emergence and early developmental events
of the aerial part can be determined under more realistic agronomical conditions [55, 58,
57, 59, 60, 61].

Reported approaches to monitor seedling from the top view in the soil are effective for
a large set of crops, mainly at the emergence level, i.e., seedling counting to determine
stand establishment [55, 58, 59, 60, 61], or estimating early plant vigor by spectral imaging
or measuring the leaf area index of the small plants [61, 55, 57]. Here we propose to push
forward the detection of the early seedling developmental stages to be able to monitor
the kinetics of early seedling development in the soil from cotyledon emergence until
the development of the first real leaf. We propose to tackle this task, for the first time
to the best of our knowledge, with a deep learning-based approach. While, as most
related work, deep learning has been applied to the problem of seedling detection and
segmentation [59] as well as detection of wheat spikes [62], this has been performed at
a fixed stage of development. In another similar work [42], a graph-based method for
detection and tracking of tobacco leaves at the late stage of the plant growth from infrared
image sequences was proposed, where all tobacco plants used in the experiments were of
the same genotype. In the last similar approach [63], a feature-based machine learning
algorithm was developed to detect two stages of heading and flowering of wheat growth.
In our study, we specifically investigate, how the existing methods of deep learning, can
incorporate time-dependency in sequences of images to solve a problem of developmental
biology such as the one of seedling development.

The proposed plant method includes five main items: (a) The imaging system de-
veloped to create (b) the dataset, which needs to benefit from (c) pre-processing before
investigating (d) various approaches for the detection of developmental stages of seedling
growth based on deep learning methods and (e) post-processing.
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Image acquisition platform by Raspberry Pi and RGB camera

We installed 60 Raspberry Pi 3B connected to RGB PiCamera modules with a spatial
resolution of 3280 by 2464 pixels to image seedlings from the top view, as illustrated in
Fig. 2.14. The distance of 50 cm was chosen to allow the observation of 2 trays of 200 pots
per camera. To setup consistent image acquisition platforms, the imaging system must
be configured across long experiments and data compares from multiple Raspberry Pi
camera rigs. To acquire this stable configuration, we used commercial Raspberry Pi cases
to wrap the board of the computer and suspend it to the roof of each shelf. For this top-
down imaging system, an AC multi-socket plugin has considered for each three Raspberry
Pis where all these multi-socket connected to an uninterruptible power source (UPS) in
order to avoid any dis-connectivity of electricity. Time-lapse imaging was scheduled at
15-minute (can be changed based on the purposes) intervals using a python script. Images
were pulled from each Raspberry Pi to a server after capturing each image by server-side
scripts using SSH.

Figure 2.14 – Imaging system installed in a growth chamber.
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Species No. of Trays No. of Pots in
each tray No. of Temporal sequences Total No. of

images
Training dataset Red clover 2 200 400 307,200
Validation dataset Red clover 1 200 200 153.600
Testing dataset alfaalfa 2 200 400 307,200

Table 2.4 – Description of the split of the annotated data set for training models.

Dataset

Seedling establishment was recorded for 3 experiments using seed lots from different
accessions of red clover (Trifolium pratense) (experiment 1) and alfalfa (Medicago sativa)
(experiments 2 and 3). Each experiment consisted of 70 trays with 200 pots in which
50 seeds of four accessions were sown. Soil pots were hydrated to saturation for 24h,
after which excess water was removed. After 24h, seeds were sown at a depth of 2 cm,
and trays were placed in a growth chamber at 20°C/16°C, with 16h for photoperiod at
200µMm−2s−2. The soil was kept humid throughout the experiment.

Each experiment took two weeks with a time-lapse of 15 minutes. In total, the database
consists of 42000 temporal sequences of RGB images of size 89 × 89 × 3 pixels where
each temporal sequence consists of 768 individual images. During day time, images were
captured while images were automatically discarded during night times due to the absence
of illumination. An example of images from the database is shown in Fig. 2.15. Among
all temporal sequences, images of 3 randomly selected trays were annotated from the first
experiment (red clover species) and 2 trays from the second experiment (alfalfa species).
Annotation consisted of four classes: soil, the first appearance of the cotyledon (FA),
the opening of the cotyledon (OC), and the appearance of the first leaf (FL). To avoid
cross sampling, we considered images of the red clover trays for training (two trays) and
validation (one tray) datasets. The testing dataset consisted of images of the remaining
two trays from the alfalfa. Table 2.4 provides a synthetic view of the data set used for
training and testing of the models.

Pre-processing

Raw images were then sent to pre-processing before being applied to the deep learning
method investigated in this study. A filtered variant of the raw images was also created
where the soil background was removed from images. This filter was produced by applying
a color filter on images in the HSV color domain to keep the green range of images in the
Hue channel. This strategy was found robust because the soil used during the experiment
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Figure 2.15 – An overview of the time-lapse collected for this work. Upper row, view of
a full tray with 200 pots from the top view. Lower row, a zoom on a single pot at each
stage of development to be detected from left to right: soil, the first appearance of the
cotyledon (FA), opening the cotyledons (OC) and appearance of the first leaf (FL).

was the same, and that lighting was kept constant. Figure 2.16 shows an example of
images with and without background. To being low-cost, we configured the time-lapse

Figure 2.16 – Two different types of data used in training and testing. Up: Original
images, Down: Images without background

imaging system with two different sensors in the canopy observation scale. However, as
described in the previous section, since we need to study specific seedlings’ specific traits,
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Figure 2.17 – Pot extraction workflow.

the pre-processing applied to provide an efficient solution for seedling vigor assessments
and monitoring of seedling growth individually.

Since deep learning methods have to predict the seedling developmental stage on an
individual basis, the raw images of Fig. 2.15 could not be directly applied to the neural
networks. Thus, the first step of pre-processing was to extract produced crops of each
pot. To extract them, we needed first to detect, extract, and adjust trays; then, pots
were extracted from trays. Figure 2.17 shows a workflow of the pot extraction from trays,
which includes three steps described below.

Landmark detection: In this experiment, trays used included five white landmarks
located at the center and four corners of the trays. Because of the constant control of
lighting conditions, these five landmarks were detected with a fixed threshold. Then, the
five most prominent objects were kept, and the possible remaining small objects were
removed. Among the five significant landmarks, the most central object in the images
was considered as the central landmark. At the next steps, the four other landmarks
were detected based on their minimum angle corresponding to the central landmark with
horizontal and vertical axes.

Tray detection and extraction: In this step, coordinates of the trays were detected
using the landmarks. Then, based on the coordinates of these landmarks, trays could be
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extracted from the image. Since trays may not be positioned precisely along the axis of
the vertical and horizontal axis sensor of the camera, the trays need to be rotated. The
orientation of the trays was found after the computation of the first eigenvector’s angle
in the principal component analysis of the Fourier transform modulus [64]. Finally, a
geometric transformation algorithm [65] was implemented to project the rotated trays to
make them straight.

Pot extraction: In the last step, all 200 pots of each tray were extracted as an
independent temporal sequence of images by using a sliding window with a stride of one
pot. The size of these sliding windows was made adjustable by the user to fit with the
size of the pot.

This pre-processing pipeline of Fig. 2.17 has some generic value. Since we did not find
something equivalent in the literature for our purpose, we decided to make it available as
supplementary material under the form of a free executable 3. We believe that this can
be used as a useful tool for any imaging of traits despite the simplicity of principle.

Deep learning methods

The three plant events plus soil (Soil, FA, OC, and FL) were expected to occur in a
definite order. Different strategies to take benefit from this ontological prior-knowledge
on the development were tested and described in the following subsection.

Baseline 4-class CNN

As a naive baseline approach, we designed a convolutional neural network (CNN)
architecture to predict the classes of each event of Soil, FA, OC, and FL from each frame
of the time-lapses independently and without any additional information regarding the
temporal order in which they should occur. Given a training set including K pairs of
images xi and labels ŷi, we trained the parameters θ of the network f using stochastic
gradient descent to minimize empirical risk

θ∗ = arg min
θ

K∑
i=1
L(ŷi, f(xi, θ)) (2.1)

where L denotes the loss function, which was chosen as cross-entropy in our case. The
minimization was carried out using the ADAM optimizer [66] with a learning rate of 0.001.

3. https://uabox.univ-angers.fr/index.php/s/HJAHp0bhZv1zy1j
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Our proposed architecture f(·, ·), shown in Fig. 2.18, consisted of two main blocks, the
feature extraction block, followed by a classification block. In a CNN model, the feature
extraction block takes care of extracting features from input images by convolutional
layers, and the classification block decides classes. The proposed CNN architecture has
been optimized on a hold-out set. It is given as follows: four convolutional layers with
filters of size 3×3 and respective numbers of filters 64, 128, 256, and 256 each followed
by rectified linear unit (RelU) activations and 2×2 max-pooling; a fully connected layer
with 512 units, ReLU activation and dropout (p=0.5) and a fully connected output layer
for four classes corresponding to each event with a softmax activation.

Figure 2.18 – CNN architecture designed to serve as baseline method for the independent
classification of each frame of the time-lapses into one of the three stages of plant growth
plus soil (Soil, FA, OC, and FL) without any prior temporal order information.

2-class CNN’s

The baseline 4-class CNN architecture illustrated in Fig. 2.18 is naive because it does
not incorporate the prior knowledge of the ontology of plant growth to decide between
different growth steps of plants plus soil (Soil, FA, OC, and FL). As a first improvement
of the previous naive baseline, we implemented a variant of the CNN model of Fig. 2.18
dedicated to the binary classification of two consecutive stages of development. We thus
trained 3 models detecting between M1(Soil, FA), M2(FA,OC) and M3(OC,FL). At the
beginning of the analysis of an entire time-lapse sequence M1 is used. When a first FA
is detected M2 is applied, and so on until the first FL detection is reached.
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CNN followed by Long short-term memory

The 2-class CNN includes the prior knowledge of the ordered development of the
seedling along with a given ontology. However, this prior knowledge is added on top of
the CNN. In order to bring a memory directly inside the CNN model, the Long-Short
Term Memory (LSTM) [67, 68] architecture was embedded between the feature extraction
block and the classification block of the proposed CNN model. LSTM as a special RNN
structure has proven stable and powerful for long-range modeling dependencies in various
previous studies [68, 69, 70]. The major innovation of LSTM is its memory cell ct, which
essentially acts as an accumulator of the state information. The cell is accessed, written,
and cleared by several self-parameterized controlling gates. Whenever a new input comes,
its information will be accumulated to the cell if the input gate it is activated. Also,
the prior cell status ct−1 could be « forgotten » in this process if the forget gate f t is
on. Whether the latest cell output ct will be propagated to the final state ht is further
controlled by the output gate ot. One advantage of using the memory cell and gates
to control information flow is that the gradient will be trapped in the cell [68] and be
prevented from vanishing too quickly. In a multivariate LSTM structure, the input, cell
output, and states are all 1D vectors features from the feature extraction block of the
proposed CNN model. The activations of the memory cell and three gates are given as

it = σ(Wxix
t +Whih

t−1 +Wcic
t−1 + bi)

f t = σ(Wxfx
t +Whfh

t−1 +Wcfc
t−1 + bf )

ct = f tct−1 + ittanh(Wxcx
t +Whch

t−1 + bc)
ot = σ(Wxox

t +Whoh
t−1 +Wcoc

t−1 + bo)
ht = ottanh(ct)

(2.2)

where σ() is the sigmoid function, all the matrices W are the connection weights between
two units, and x = (x0, ..., xT−1) represents the given input.

The CNN-LSTM architecture is an integration of a CNN (Convolutional layers) with
an LSTM. First, the CNN part of the model process the data and extract features then the
one-dimensional feature vectors feed to an LSTM model to support sequence prediction.
CNN-LSTMs are a class of models that is both spatially and temporally deep and has
the flexibility to be applied to a variety of vision tasks involving sequential inputs and
outputs. Fig. 2.19 shows a schematic of a CNN-LSTM model. The proposed CNN-LSTM
model consisted of the same convolutional layers as the 4-class CNN model of Fig.2.18
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Figure 2.19 – CNN-LSTM block.

and an LSTM layer with 128 units.

Convolutional LSTM (ConvLSTM)

As an alternative to CNN-LSTM, we use ConvLSTM [71] which has convolutional
structures in both the input-to-state and state-to-state transitions. In ConvLSTM all the
inputs X1; · · ·;X t, cell outputs C1; · · ·;Ct, hidden states H1; · · ·;H t, and gates it; f t;
ot of the ConvLSTM are 3D tensors whose last two dimensions are spatial dimensions
(rows and columns). The ConvLSTM determines the future state of a certain cell in the
grid by the inputs and past states of its local neighbors. This can easily be achieved by
using a convolution operator in the state-to-state and input-to-state transitions. The key
equations of ConvLSTM are shown in Eq. (2.3) below, where ‘~’ denotes the convolution
operator. Figure 2.20 shows a schematic of the ConvLSTM method adopted for our
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purposes.
it = σ(Wxi ~ xt +Whi ~ ht−1 +Wcic

t−1 + bi)
f t = σ(Wxf ~ xt +Whf ~ ht−1 +Wcfc

t−1 + bf )
ct = f tct−1 + ittanh(Wxc ~ xt +Whc ~ ht−1 + bc)
ot = σ(Wxo ~ xt +Who ~ ht−1 +Wcoc

t−1 + bo)
ht = ottanh(ct)

(2.3)

Figure 2.20 – ConvLSTM block with one cell [71]

Post-processing

The passing from one developmental stage to another can consist of very tiny details.
This was, for instance, the case for FA and FL in our case. Filtering was applied to the
classified data to denoise them. This filter illustrated in Fig. 2.21, was based on a sliding
window computing a majority voting by finding the median of classes(2.4)

c =
⌊{(

n+ 1
2

)}th⌋
(2.4)

52



2.3. Contributions to low-cost imaging of seedling growth

where c and n represent predicted class and window size, respectively.

Figure 2.21 – An example of the post-processing step on predicted classes where the sliding
window size is four images.

Additionally, this window replaced all neighbors’ current stage to all labels that were
detected as the previous stage. The size of the sliding window was optimized on the CNN-
LSTM and 4-class CNN architecture. As shown in Fig. 2.22, performances were found
optimal for both architectures on the training data set for a size of 4 frames, corresponding
to an observation of 1 hour in our case.

Figure 2.22 – Classification accuracy as a function of denoising windows size.
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Results and discussion

The proposed deep learning methods 4-class CNN, 2-class CNN’s, CNN-LSTM, and
ConvLSTM were applied to the dataset produced by our imaging system after pre-
processing and post-processing as described in the previous section. We now present and
discuss the associated results. The performances of the different deep learning methods
tested on our dataset were assessed with classical metrics such as accuracy, error, sensi-
tivity, specificity, precision, and false alarm positive rate. They are provided in Tables 2.5
and 2.6, respectively, for images with and without soil background.

Tables 2.5 and 2.6 show that all methods performed better than the naive 4-class
CNN architecture, which was processing the temporal frames independently of any prior
knowledge on the order of the ontological development of seedling. The best strategy
to incorporate this knowledge among the one tested was found to be the CNN-LSTM
architecture, which outperforms all other models for all tested metrics. Removing the soil
numerically, clearly improves all methods while keeping the CNN-LSTM architecture as
the best approach.

Model Accuracy Error Sensitivity Specificity Precision FalsePositiveRate
4-class CNN 0.63±0.20 0.37±0.20 0.63±0.2 0.94±0.05 0.88±0.1 0.06±0.05
2-class CNN’s 0.72±0.25 0.28±0.26 0.72±0.24 0.95±0.06 0.90±0.11 0.08±0.05
CNN-LSTM 0.83±0.10 0.15±0.10 0.82±0.10 0.93±0.06 0.85±0.10 0.06±0.06
ConvLSTM 0.62±0.2 0.33±0.2 0.68±0.2 0.93±0.07 0.84±0.1 0.06±0.06

Table 2.5 – The average performance of models with different evaluation metrics on images
with soil background.

Model Accuracy Error Sensitivity Specificity Precision FalsePositiveRate
4-class CNN 0.80±0.19 0.20±0.19 0.85±0.13 0.93±0.07 0.85±0.14 0.07±0.07
2-class CNN’s 0.88±0.18 0.12±0.18 0.86±0.10 0.95±0.05 0.86±0.11 0.05±0.05
CNN-LSTM 0.90±0.08 0.10±0.0.07 0.87±0.11 0.96±0.03 0.88±0.15 0.04±0.04
ConvLSTM 0.81±0.11 0.21±0.09 0.85±0.03 0.92±0.09 0.85±0.12 0.07±0.10

Table 2.6 – Average performance of models on images without soil background.

Our experimental results show that a reasonable recognition rate of plant growth
stages detection (approximately 90%) can be achievable by the CNN-LSTM model. It
is possible to have a more in-depth analysis of the remaining errors by looking at the
confusion matrix of this CNN-LSTM model, as given in Table 2.7. This confusion matrix
shows that most of the errors, almost 98%, happen between the most complicated classes
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of OC and FL while the remaining 2% of errors appear on borders of the first two classes
of soil and FA.

Predicted
Soil FA OC FL

Tr
ue

C
la
ss
es Soil 97531 0 0 0

FA 2591 26855 2915 0
OC 0 0 58668 19556
FL 0 0 8219 90610

Table 2.7 – Confusion matrix of cross-subject performance where the best deep learning
method, the CNN-LSTM architecture is used.

One may wonder where the classification errors in this experiment can come from. In
our error analyses, we found four different sources of errors in the experiment. The first
source of errors can come from the different cotyledons and leaf sizes of the two species,
as the cotyledons and leaf size of a species can be much bigger or smaller compared with
other species. Usually, this type of error happens in the borders of two classes of OC and
FL. Figure 2.23 shows an example of these differences in the size of two plant species.
Data augmentation with a variation on the zoom could be a solution to help with these
errors. The second source of errors can be due to the circadian cycle of plants during the

Figure 2.23 – A sample of images from two plant species used for training (left) and testing
(right) dataset

growth. The circadian cycle of plants makes some movements on cotyledon and leaves
during day and nights [72]. This type of error can happen at the border of FA and OC,
where these movements make a delay for the detection of fully opening cotyledon. Also,
this type of error can happen at the border of two classes of OC and FL, where the
circadian cycle does not allow the system to recognize the appearance of the first leaf
from the middle of the cotyledon.
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The third source of errors happens due to the overlapping of plants in a tray. Plants
grow at different speeds and directions in a tray, and it makes overlapping on plants of
neighbor pots at some points. This type of error usually happens in the last two classes
of OC and FL.

The last source of the errors can come from annotation errors. In general, the an-
notation of plant growth stages is challenging since plants grow continuously; it means
there are no striking events of growth. In this case, a class represents a period of growth.
For instance, the FA class is assigned to images which are capture in the period of the
first appearance of the cotyledon till the time of the fully opening of the cotyledon. In
this case of annotation, different annotators may define the ending of a stage period with
an approximate delay of 15 images. Also, there is a period of formation of the first leaf
before its unfolding during plant growth. This period is considered to be a part of the FL
class in this experiment. This consideration may bring an additional error for annotation
of stages as different annotators may recognize the beginning of the leaf formation with
a delay.

Conclusion and perspectives

In this section, we have presented a complete imaging,image processing and machine
learning pipeline to classify three stages of plantlet growth plus soil on the different
accessions of two species of red clover and alfalfa.

Different strategies were compared in order to incorporate the prior information of the
order in which the different stages of the development occur. The best classification per-
formance on these types of images was found with our proposed CNN-LSTM model, which
achieved 90% accuracy of detection with the help of a denoising algorithm incorporating
the ontological order in the development stages.

These results can now be extended in various directions. It will be interesting to
extend the approach to a range of species of agricultural interest in order to provide a
library of trained networks. From this perspective, it could be interesting to investigate
quantitatively how, by their similarity in shape, the knowledge learned on some species
could be transferred to others via transfer learning, domain adaptation, or hierarchical
multi-label classification [73].

More events of the development of plants could also be added to extend the investi-
gation of seedling kinetics. This includes for instance the instant where cotyledons are
out of soil fully or rise of the first leaf before unfolding. These extensions could be tested
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easily following the global methodology presented in this section to assess the deep learn-
ing models. As another direction in this section, since we used classical standard RGB
images, plants were not measured during nights, and some missed events could shift the
estimation of the developmental stages of the seedlings. LiDAR cameras, accessible at
low-cost [1], could be used to access to night events. This is what will be investigated in
the following section.

Last, for even more advanced stages of development and yet still accessible from top
view, the issue of plants overlapping each other would arise and become a limitation.
Solving this would require to switch to tracking algorithms in order follow and label the
trajectory of each plant despite ambiguity created by partial occlusion and overlapping.
Other deep learning architectures would have to be tested in this perspective [74]. Another
approach to solve such issue is to consider the surface constituted by the groups of touching
plants (canopy) as a texture from which information can be extracted.

In this section we have monitored the development of individual plantlets not touching
nor overlapping themselves during day time only. In the following section we investigate
populations of plantlets touching and overlapping monitored during day and night.

2.3.2 Seedling growth monitoring in canopy observation scale

In this section, we consider the complex situation in which a population of plants
possibly touching each others is to be monitored for quantifying their growth. Instead
of developing an algorithm to segment each plant as in the previous study, we consider
the 2.5D surface formed by the canopy of the plant as a whole. Under the assumption
of stationarity of the growth pattern from one plant to another, we consider the average
distance of this canopy to the camera as a signal characterizing the average population’s
global growth. This work proposes a signal processing analysis of the plant growth process.

In comparison with the closest related work [75], we use very low-cost imaging sys-
tems (hundred euros versus keuros) while observing larger populations (hundred of plants
versus ten plants), over a longer time scale including the appearance of new leaves (two
weeks versus one week). We demonstrate that this growth signal analysis can be used
to recognize growth anomalies (while only controlled plants were exhibited in [75]). This
is obtained with simple Fourier series, while more advanced wavelet analysis was used in
[75].

In the following, we demonstrate that the situation can be understood as a signal
processing problem. In addition to the instantaneous growth rate, other traits linked with
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growth appear under the form of periodic patterns that we analyze in the Fourier domain.
We identify the cause of these periodic patterns and show their value for agronomic
applications.

Database

As shown in Fig. 2.24, we positioned 13 Kinects v.2 connected to LattePanda mini-
computers gazing from the top view on populations of tomato’s seedlings automatically
irrigated. Per each sensor, 100 plants are captured, which means that this imaging system
is high throughput. Using Kinect allows us to capture depth images during night times
despite the absence of illumination. The plants were observed during two weeks with
the time-lapse of 15 minutes, similarly to the previous research, after which they tend to
bend, and the distance to the camera no longer precisely corresponds to their actual height.
However, monitoring over these two weeks is of high relevance since they correspond to the
first two weeks of the plant life after emergence from the seed. This is a stage of interest
for biologists since photosynthesis is activated and a stage of interest for breeders since
this is where they sell their products. This early stage is often crucial to the prognostic
of the full plant development and its yield. The plants monitored here were seedlings of
tomato. However, the approach can equally be applied to any species of interest.

So far the material produced here can already be used for educational purposes to
provide the students with new application fields of the Fourier analysis. To this purpose
we give access to raw data of our experiment 4.

Pre-processing

The produced depth map is converted after sphericity correction into a distance map
of the population of plants to the camera. The depth imaging system used is an active
imaging system based on infrared lighting; it, therefore, enables to monitor plant growth
during the night. The depth map is thresholded to remove the soil. The average value of
this distance map is computed and plotted as a function of time with a time-lapse of one
image every 15 minutes.

4. https://uabox.univ-angers.fr/index.php/s/hf2csYRguVKNtWy
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2.3. Contributions to low-cost imaging of seedling growth

Figure 2.24 – Panel A, view of the image acquisition system. Panel B, colorized depth
map with look-up Table « fire ». The levels are indicated in cm.

Qualitative signal analysis

Typical growth signals recorded with the imaging setup of the previous section are
shown in Fig. 2.25. Different components are visible. First, a global linear trend shows
the global growth of the plant, which gets closer and closer to the camera. Second, some
oscillations are visible at the exact day period. These oscillations correspond to the so-
called circadian rhythm that allows plants (like most living organisms) to synchronize their
physiology with the daily period of light, maximizing their ability to benefit from sunlight
and minimizing energy loss when the light is not available [76]. A third component
is visible and corresponds to a higher frequency pattern that occurs when leaves are
replicated and produce some mechanical movements. For illustration, we propose in Fig.
2.25, an example of the growth curve for control plants and plants under stress (hydric
or salt stress).

Design of a Fourier feature space

Before the introduction of low-cost depth imaging operating in the infrared domain,
the monitoring of plant growth was somehow limited to the average growth rate. The
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Figure 2.25 – Spatial average of the distance map x(t) to the camera in cm as a function
of time in various conditions. The values indicated in the inset correspond to average
growth rates in centimeter per minute.

monitoring of growth, as shown in Fig. 2.25, allows quantifying this process in more
detail. Following the qualitative description of the previous section, we propose to design
a feature space based on a small set of numbers to encode the growth signal. The spatial
average distance map to the camera x(t) is first detrended with a daily linear trend which
for the plants and growing duration selected in this study stands as a reasonable model.
This produces the daily signal

y(t, n) = x(t)− (Gr(n)× t+K) (2.5)

with

t ∈ [nT, (n+ 1)T )]

and

(Gr(n), K) = argminG̃r,b̃
t=(n+1)T∑
t=nT

(x(t)− (G̃r × t+ K̃))2 (2.6)

where Gr(n) simply measures the daily growth rate on day n = {0, 1, 2, ..., 12} of the
canopy and T is the daily period. Then, since the cellular processes can, from a theoretical
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biologic point of view [76], be assumed to be synchronized with the daily period of the sun,
we decompose y(t, n) as a Fourier series[77] and compute the modulus of its fundamental

c1(n) =
√
a1(n)2 + b1(n)2 (2.7)

with
a1(n) = 2

T
×
∫ (n+1)T

nT
y(t) cos

(2π
T
t
)
dt , (2.8)

b1(n) = 2
T
×
∫ (n+1)T

nT
y(t) sin

(2π
T
t
)
dt . (2.9)

The daily period T is assumed constant over the two weeks of observation. Energy in
the daily sinus of amplitude c1(n) is found to represent more than 95% of y(t, n) over
the two weeks of observation. Therefore c1(n) constitutes a good approximation of the
amplitude of the circadian cycles [75, 76]. However, to also capture the presence of the
high-frequency movements, we also consider the harmonic distortion rate

HDR(n) = 100×

√√√√E(n)− 1
2 × c1(n)2

1
2 × c1(n)2 , (2.10)

where E(n) is the energy of the detrended signal y(t)

E(n) = 1
T
×
∫ (n+1)T

nT
y(t)2dt , (2.11)

which captures the relative energy in the replication phenomenon of the leaves, which
causes the high-frequency patterns. The instantaneous growth rate Gr obviously enables
in Fig. 2.25 to differentiate between the control plant and a stressed plant. However,
when representing growth in a (HDR, c1) graph, as in Figs. 2.26 and 2.27, with time
as a parameter, it appears that these trajectories clearly differ also between control and
stressed plants. Also, all recorded trajectories start with a low amplitude of the funda-
mental, then approximately after 6 days, an increase of the harmonic distortion rate with
diminution of the amplitude of fundamental follows, and after 10 days a decrease of the
harmonic distortion rate and an increase of the fundamental. Trajectory learning could be
undertaken in this feature space once we have more of these experiments. Here, we rather
focus on the assessment of the added value of this extended feature space Gr, c1, HDR

when compared to the usual single scalar feature space based on the individual growth
rate Gr. We propose a feature space which sums up the global shape of the temporal
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trajectories of Figs. 2.26 and 2.27 and consider the following 5-dimensional feature vectors

feat = (Gr,max(c1),min(c1),max(HDR),min(HDR)) . (2.12)

We propose to compare the added value of this feature space when compared to the
classical single growth rate of Gr alone for two applications.

Figure 2.26 – Temporal trajectories of growth represented in a HDR, c1 graph for control
in blue and hydric stress in red. The arrows indicate the flow of time.

Applications and discussion

Best observation time: One of the biological questions that we can address with
our feature space is how to discriminate the plants which are in control condition from
plants under stress. When is the best time to observe the differences between the plants
in different situations? To this purpose, we computed the Mean Square Error (MSE) of
the feature vectors between control and stressed plants as a way of feature space contrast

MSE = 1
5

5∑
i=1

(featc(i)− feats(i))2, (2.13)
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Figure 2.27 – Same as in Fig. 2.26 but with red for salt stress.

where featc is the feature vector for the control and feats for the stressed plant. As
shown in Figs. 2.28 and 2.29, the extended feature space based on feat of Eq. (2.12) can
be above the basic reference of the growth rate at early stages, but it is difficult to have
a definite point on this since only two records were done. However, it seems obvious from
Figs. 2.28 and 2.29 and Fig. 2.25 that the contrast (MSE) between stressed plant and
control plant is much higher after ten days with the extended feature space proposed here
and the usual single growth rate. This is the best observation time if one wants to take
benefit from the extended feature space based on Fourier analysis proposed here.

Stress detection: To further assess the interest of the proposed extended feature
space of Eq. (2.12) we go beyond contrast metrics and implement a supervised detection
scheme to classify stressed plants from control plants. The feature extracted from Eq.
(2.12) are fed to a support vector machine (SVM) with linear kernel. The effectiveness of
SVM classifier is evaluated by the K -fold cross-validation K=10. [78]. For comparison,
the individual growth rate is computed and applied to the same SVM classifier. Small
images of size 15 by 15 pixels are created in-depth maps, as shown in Fig. 2.24. This
corresponds to the size of a single pot. The performance of the classification is given in
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Figure 2.28 – Contrast between control and salt stress for the sole growth rate (Daily GR)
and for the extended feature space of Eq. (2.12) computed by the MSE of Eq. (2.13).

terms of accuracy based on the following formula

accuracy = TP + TN

Total
, (2.14)

where TP stands for the true positive and TN for the true negative. The accuracies
for classifications based on the extended feature space of Eq. (2.12) Moreover, the sole
growth rates are given in Table 2.8. This clearly demonstrates proceeds between 4% and
9% of accuracy when the feature space is extended to the Fourier-based features of Eq.
(2.12). Measuring the amplitude of the circadian cycle and the distortion rate of these
circadian cycles improve efficiency to discriminate control from stressed plants.

Conclusion and perspective

We have applied, for the first time to the best of our knowledge, low-cost depth imaging
to the monitoring of plants growth in canopy observation scale. This imaging solution
enables to monitor plant during day and night at stages where they start to touch and
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Figure 2.29 – Same as in Fig. 2.28 but with hydric stress.

Accuracy K-fold
K=10

GR FS
Control, Hydric Stress 83.1%

GR FS
Control, Salt Stress 94.8%

Extended FS
Control, Hydric Stress 92.2%

Extended FS
Control, Salt Stress 99%

Table 2.8 – Accuracy for the SVM K -fold (K=10) cross-validation classification between
stressed plants from control plants with a feature space only based on growth rate (GR
FS) or based on our extended feature space of Eq. (2.12) (Extended FS).

overlap each other. This approach constitutes an interesting alternative to the imaging
system developed in the previous section which was limited to day observations and non
touching plants. The novelty of this system also comes from the fact that we modify here
the usual practice of biologists. Usually when population of plants have to be monitored,
biologists randomize their positions in order to avoid bias due to spatial inhomogeneity
in the trial. Here, we deal with much smaller populations (100 plants under each camera)
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and can ensure homogeneous environmental conditions to these plants. This enable to
avoid randomization and allow to group plants of the same kind under a unique camera.

From a methodological point of view we have demonstrated that the situation can be
understood as a signal processing problem. We designed a feature space based on Fourier
analysis and illustrated its interest on agronomical applications. Accumulated data will
enable in the future more applications in the direction of deeper understanding of the
temporal trajectory of growth in this feature space.

Nonetheless, the imaging system and associated signal processing procedure is ready
for large scale and has been used in the framework of the ANR Labcom Match in
partnership with our institute and the AREXHOR compagny https://www.astredhor.
fr/arexhor-pays-de-la-loire-45764.html. This compagny is testing bio-stimulating
products developed by the domain of agro-chemical industry. In the process of testing
such products it is important to have fast screening on small population of plants. A
replication of our system has been installed in the compagny and a training has been or-
ganized on how to acquire the data. An online version of the code replicating our method
has been developed by a master student from our group https://sithamfr.shinyapps.
io/GrowthData/ and is now used as a demonstrator to establish new industrial contacts.
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Chapter 3

LOW-COST MACHINE LEARNING

We have focused on developing low-cost imaging techniques in the previous chapter.
We now pay out effort on reducing the cost of machine learning algorithms. As stressed
in the introduction chapter, machine learning algorithms when used in supervised ways
require considerable amount of annotated data. This is especially true with deep learning
algorithms which need even more data to be efficient. Also, these deep learning algorithms
reach their high performance to the price of the use of high-speed computational devices
operated in GPU. In this section we first review the different ways to reduce the price of
image annotation. We then present our contributions to this field when applied to plant
imaging. We finally investigate low computational resources to perform deep learning
analysis.

3.1 Approaches for fast image annotation

Manual annotation of images is necessary to establish ground-truth in supervised
machine learning. A typical order of magnitude of the number of instances (pixel, object,
image) is between 1000 and 10000 for a supervised deep learning algorithm to converge.
When operated by experts such a task requires much effort, making it a labor-intensive,
time-consuming, and error-prone task. There are different strategies to accelerate the
creation of such ground-truth which can be organized in human-assisted annotation and
computer-assisted annotation. We propose a detailed panorama of these strategies in this
section.

3.1.1 Human-assisted image annotation

One way to speed up image annotation is to parallelize the work with several anno-
tators. Numerous tools exist and different criteria can serve for the choice of the best
platforms for speeding up human-based image annotation. We have made an extensive
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review of them presented in Table 3.1 structured along the following questions:
— Who annotate?
— What level of annotation?
— What level of confidentiality?
— How much is the cost/quality of the annotation?

Who annotate?

Annotation can be split and done online through platforms by assigning micro-tasks to
the crowd or micro-games to volunteers. Depending on the complexity of the annotation
task, sometimes, it should be done with the collaboration of a team of experts in the field.
David G.Stork in 1999, introduced the concept of e-citizens in Open Mind Initiative as
a worldwide effort to develop intelligent software [79]. Crowdsourcing coined in 2006 by
Jeff Howe[80], as using human collective-intelligence on the Internet to collect ideas, solves
complex cognitive problems, and builds high-quality repositories. Thus, crowdsourcing is
a recent phenomenon which can developed under various forms.

Citizen science games are one form of Games with a Purpose (GWAPs) [81, 82, 83]
applications. The purpose behind GWAPs is to conduct scientific research with volun-
teers instead of scientific experts. Volunteering in this context is an altruistic activity in
the form of playing games where members of a community contribute in terms of time,
resources, and services to annotate specific data without being paid financially [84]. The
ESP game [85] was the first citizen science game to label images with crowdsourcing. It
can be used to determine what objects are in the image, but cannot be used to deter-
mine the location of each object. It was the reason that the Peekaboom [86], a web-based
game that can segment objects in images, was introduced. FoldIt [87] is another exam-
ple of GWAPs with the form of puzzles in order to advance knowledge about protein
structures. The goal of Eyewire [88] is “map the brain” through users and discover neu-
ral connections. Last but not least, Zooniverse [89] is a crowdsourcing platform for the
deployment of citizen science projects with the versatility of crowdsourcing throughout
various domains.

Other available commonly used citizen science game platforms for image and video
annotation tasks include, Image Parsing [90], M-OntoMat-Annotator [91], Photostuff
[92], Spatial Annotation [93], Flicker [94], IBM EVA [95], Name-It-Game [96], Galexy
Zoo [97], Valleywatch [98], Ask’nSeek [99], Tag around [100], SeaFish [101], KissKiss-
Ban [102], Tag4Fun [103], EteRNA [104], Planet Hunters [105], Malaria Diagnosis Game
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[106], BioGames [107], MalariaSpot [108], Verbosity [109], ASAA [110], Manhattan Story
Mashup [111], Phetch [112], Matchin [113], Waisda [114].

Micro-task based crowdsourcing platform was appeared in 2005 by introducing La-
belMe [115, 116] a web-based annotation tool which provides a way of building large
annotated datasets by relying on the collaborative effort of a large population of users.
Later, in 2007 dedicated annotation services [90] were developed to create high volume
quality annotated images and video frames but at a high price. Finally, in 2008, Alexan-
der Sorokin and David Forsyth presented Amazon Mechanical Turk [117], which efficiently
outsourced image annotation task. The micro-task based crowdsourcing platforms [118]
break down a large project into Human Intelligence Task (HIT). These micro-tasks are
then distributed among the workers who get paid a monetary reward for each completed
task [119]. Micro-task platforms are well suited to perform research, as they grant on-
demand access to large crowds for various types of problems. There are several survey
studies which are related to efficient, and effective crowdsourcing frameworks for creat-
ing large-scale well-annotated datasets on different application domains, for example, in
computer vision[120, 121, 122, 123, 124], health-care [125, 126, 121, 127], bioinformatics
[128, 129, 130] and agriculture [131, 132, 133].

Many traditional crowdsourcing frameworks could not provide a comprehensive plat-
form for sophisticated data. It yields inconsistent quality, and confidentiality is a signifi-
cant concern in crowdsourcing [134]. On the other hand, end-to-end annotation platforms
have multiple advantages. For example, outsourcing companies can handle a large volume
of data. They can complete such tasks with higher productivity with in-house trained an-
notators while ensuring the quality of the annotation services and annotate images based
on the customized needs [134, 135].

The other option for collaboration annotation is using in-house annotation platforms
[136]. The purpose of the in-house annotation platform is to provide a framework in which
experts in the field can collaborate to do annotation in a team, in a private and secure
environment. Some platforms provide specific features like project management. There is
a feature to split the project into micro-tasks. In contrast, the generic ones are the online
platforms that speed up the annotation process in terms of accessibility and provide the
annotation layers in the format adopted for training machines.
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What level of annotation?

There are three different levels of image annotation in computer vision. Figure 3.1,
illustrates these different levels such as the image level, object level, and pixel-level [90].
Image level and object level annotations consist of information meant to describe an entire
image. The general category of an image, whether or not it contains a particular feature
of interest, or represents a specific type of scene are examples of image-level annotations.
Pixel-level annotations are used to mark-up particular regions of interest (ROI) within
an image. These annotations are used to localize individual objects within an image
and to segment out ROIs from the background. Most of the image annotation tools
offer the possibility to make region-based annotations [96]. There are various methods
to execute region-based annotations, such as drawing a bounding box around an object.
The advantage of the bounding-box selection is that it is swift; however, the disadvantage
is that the selection is inaccurate and often selects much more image data than necessary.
The polygonal method offers the possibility to make a more detailed selection by drawing
a polygon around the object. This method is fast and more precise than the bounding
box. Nevertheless, since it uses straight lines, it is still challenging to make a very accurate
selection. By freehand drawing tool, one can draw a free line around an object, which
enables exact selections. The distinct disadvantage is the time consumed in this approach.
Object tracking on videos, semantic segmentation, and instance segmentation is possible
by the region-based annotations.

What level of confidentiality?

Data privacy is another critical criteria which should be considered. Some platforms
present a dedicated on-premise cloud for providing the privacy of data. Some platform
providers pledge that the data will be removed from their servers after the annotations.
Some platforms operate locally and do not need to put data on the remote server. For
some, the data are available publicly on cloud services.

How much is the cost of the annotation?

The human-assisted platforms are at a different cost. Some are free and open-source,
some are image-based pricing or hour-based, some are volunteer-based, and for some,
the cost is based on the annotation task, single or multiple objects. There are many
available online/offline, standalone, or crowdsource platforms used to annotate data. In
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Figure 3.1 – Panel of computer vision tasks and associated type of annotation requested
for supervised machine learning.

Table 3.1, we mentioned some of the well-known platforms widely used for image and
video annotation tasks.
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3.1. Approaches for fast image annotation

A last point to be discussed is the assessment of the quality of annotation when
performed from crowdsourced annotation. The quality of crowdsourced annotations has
been studied in different domains. The most common method for obtaining ground-
truth annotations from crowdsourced labels is by applying a majority consensus heuristic.
[117, 116]. Modeling annotation quality by applying confusion matrix [205] showed how
repeated, and selective labeling increased the overall labeling quality on synthetic data
[206]. Smyth et al. [207] integrated the opinions of many experts to determine a gold
standard and later in[208] a method for combining prioritized lists obtained from different
annotators were developed. Using annotator consistency to obtain ground-truth has also
been used in the context of paired games and CAPTCHAs [85, 209]. Whitehill et al. [210]
considered the complexity of the annotation task and the ability of the annotators. In
[211], annotator models have been used to train classifiers with noisy labels. A system
was proposed in [212] which actively asked for image labels that are the most informative
and cost-effective. The reliabilities of online estimation of annotator is studied in [213].

3.1.2 Computer-assisted image annotation

We now review image annotation approaches where part of the work is done with
assistance of the computer.

Machine learning guided platforms: To have an accurate computer vision system
based on supervised machine learning, a lot of high-quality labeled data [214] is needed.
Labelers must be extremely attentive as each mistake or inaccuracy negatively affects a
dataset’s quality and the overall performance of a predictive model. Thus, some platforms
are assisted with image-processing and machine-learning algorithms to speed up the image
annotation process. For instance, watershed marked [215], Deep Extreme Cut (DEXTR)
[216], magic wand, and superpixel[217], are used in interactive learning platforms such as
[167, 166] to provide fast, clean and accurate ground-truth data. Some others are using a
pre-trained classifier or utilized active learning [218], MaskRCNN [219], for speeding up
the human-assisted annotation.

Transfer learning: Transfer Learning [220, 221] is another interesting paradigm to
bootstrap the learning phase of supervised machine learning where the network undergoes
weight modification, which can be very time-consuming and may need an extensive set
of images. Also, it prevents overfitting. Transfer learning starts with a network pre-
trained on large datasets, such as ImageNet [222] or other specific available annotated
datasets. Then, it uses those weights as the initial weights and fine-tuning the network
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Chapter 3 – Low-cost machine learning

to the new task of interest. Typically, just the weights in convolutional layers are copied,
rather than the entire network, including fully connected layers. This is very effective
since many image datasets share low-level spatial characteristics that are better learned
with big data. This strategy is widely used in machine learning-based plant phenotyping
for accelerating the learning process. It has proven successful in many plant phenotyping
applications such as disease diagnosis [223, 224], plant species classification [225] and root
segmentation [226]. For the first time, we get the advantage of this strategy to transfer
the weights learned in the RGB color domain to a different imaging modality such as
chlorophyll fluorescence imaging for leaf segmentation application, explained in section
3.3.

Data augmentation: Another solution for providing adequate data with ground-
truth for training supervised machine learning algorithms is the data augmentation strat-
egy. Data augmentation encompasses a suite of techniques that obviates the need for
manual image annotation and data limitation by enhancing the size and quality of train-
ing datasets [227]. The generated synthetic or simulated data by these techniques can
help to probe data and add desire invariance, equivariance, and symmetry to the dataset.
It can also reduce overfitting and regularize the solution space and improve the general-
ization of models since it increases the training set’s diversity. Data augmentation can
be performed by either image manipulation techniques or machine learning-based tech-
niques. Image manipulation techniques transform existing annotated images available
in the dataset by algorithms such as geometric (horizontal and vertical flipping, ran-
dom scaling, random cropping, translation, rotation, shearing, stretching,...), photomet-
ric transformations (color and contrast jittering, sharpening, white balancing,...) mixing
imaging and noise adding. Machine learning augmentations techniques such as feature
space transformation, Gan-based data augmentation, and meta-learning create synthetic
instances and add them to the training set.

Thre are two ways to add augmented data to the machine learning pipeline; the first
one is the offline augmentation. This method is preferred for relatively smaller datasets
and will increase the dataset’s size by a factor equal to the number of transformations
performed. The second option is known as online augmentation or augmentation on the
fly. This method is preferred for larger datasets, that we cannot afford the explosive in-
crease in size. Instead, we perform transformations on the mini-batches that will feed to
the model. To have a robust invariant machine learning model to a variety of conditions
such as translation, rotation, viewpoint, illumination, size, or a combination of them,
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3.1. Approaches for fast image annotation

we need to study the dataset carefully. We can add diversity to or dataset by adding
synthetically modified relevant data. This popular technique is widely used in plant phe-
notying applications [228, 229, 230, 228, 231]. We apply data augmentation by mapping
Gaussian white noise by a model learn from small Arabidopsis fluorescence dataset to the
same species RGB dataset to simulate the leave’s texture structure and the thermal noise
on the camera. In this way we increase the size of our fluorescence dataset by adding
synthetic data in the study mentioned in section 3.3. Another approach to generate this
diverse synthetic data can be from scratch programmatically by using simulators or game
engines which is described in follow.

Simulation: The cost of data acquisition and annotation is high; using synthetic data
can help to change this situation, and it is an important approach to overcome the problem
of insufficient data and associated ground-truth in machine learning applications. This
approach solves the data problem by either producing simulated data programmatically
or using advanced data manipulation techniques to produce novel and diverse training
examples. Synthetically generated datasets provide a reliable and cost-effective anno-
tated data and guarantee a well-balanced dataset. Open source philosophy and access
to reliable synthetic data generators and simulators can substantially boost simulated
data development. Simulated data can be generated either when there is no equivalent
available annotated data or meet specific needs or conditions that are not available in
existing real data. For example, segmentation of roots in soil is an expensive and chal-
lenging problem and usually done in X-ray tomography. However, using purely synthetic
soil and roots dataset and transfer learning approach, make it feasible with good results
on simulated roots and on real roots even when the soil–root contrast is very low [226].
It is also possible to provide artificial images of plants using generative neural networks
when large annotated plant image datasets for the purpose of training deep learning al-
gorithms are lacking [232]. ElonSim as a simulator of seedling growth which incorporates
parameters of the plant and parameters of the experimental imaging system acquiring
the images are developed in [233]. This simulator opens the possibility to assess root
segmentation algorithms. In this thesis, we generate synthetic data explained in section
3.2.1, to mimicking the existence of different kinds of weeds on the dense of plant mesh
by developing a simulator.
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Chapter 3 – Low-cost machine learning

3.2 Contributions to human-assisted image annota-
tion

Vision reaction time to the visual stimulus was measured for various tasks [234], and
it was demonstrated that the visual reaction time to visual stimulus is significantly faster
compared to the auditory reaction time, especially when the goal is to discriminate the
outliers. Eye-tracking devices can be used to record both field-of-view and gaze direction
simultaneously, and it measures vital visual information such as fixations, gaze points,
and saccades [235]. Therefore, one way to assist human in image annotation can consist
in capturing the position of the eye a human expert while he analyze an image in order
to offer a direct link between his eye and the computer. Such a strategy is accessible via
the use of eye-tracking systems. There are two main types of eye-tracking devices such as
screen-based, and glasses. We propose a contribution on each of these devices to speed-up
image annotation.

3.2.1 Screen-based eye-tracking

Our first contribution to demonstrate the possibility to speed up image with screen-
based eye-tracking is dedicated to the detection of weeds in dense plants from top-view.

We consider the situation of a culture crops of a high density of plants (mache salad)
with the undesired presence of some weeds. Images were acquired with the imaging system
fixed on a robot as displayed in Fig. 3.2. This plant science problem is important for field
robotics where the mechanical extraction of weed is a current challenge to be addressed
to avoid the use of phytochemical products. Acquisition trials, as visible in Fig. 3.2, were
done under plastic tunnels without additional light. Some sample images are given in
Fig. 3.3. Examples of weed detected in such images are shown in Fig. 3.4 to illustrate
the variability of shapes among these wild types of weeds. The computer vision task
considered in this study consists in detecting the weeds from the top view as shown in
the ten real-world images of Fig. 3.3. This is challenging indeed since the intensity or
color contrast between weed and crop is very weak. Also, due to the lighting conditions
during acquisition, the global intensity may vary from one image to another. The contrast
between weeds and plants rather stands in terms of texture since the shape of the plant
considered is rather round while the weeds included in the dataset of Fig. 3.4 are much
more indented.
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3.2. Contributions to human-assisted image annotation

Camera

High density crop

Figure 3.2 – Global view of the imaging system fixed on a robot moving above mache salads
of high density. RGB images are captured by a JAI manufactured camera of 20Mpixels
with a spatial resolution of 5120x3840 pixels, mounted with a 35 mm objective. The
typical distance of plants to camera is of 1 meter.

A ground-truth of the position of the weed in the ten images of Fig. 3.3 was produced
under the form of finely segmented weed and bounding box patches including these weeds.
The total number of weeds being relatively low (21), we decided to generate a larger
dataset with synthetic images. To simulate images similar to the real images acquired,
we created a simulator which places weeds (among the 21 found in real images) from
the annotated weed dataset in images of plants originally free from any weed along the
pipeline shown in Fig. 3.5. We generated a dataset of 150 synthetic images in which
weeds were randomly positioned on high-dense plants.

Eye-tracker sampled eye positions of two observers during the execution of this task
[236, 235]. The area of interest was recorded as rectangular patches. A patch is considered
as including weeds if the average fixation time in this patch exceeds 1.04 seconds. The
quality of visual annotation by eye-tracking is assessed in two ways. First, the visual
annotation is directly compared with ground-truth, which shows an average 94.7% of all
fixations on an image that fell within ground-truth bounding-boxes. Second, as shown in
Fig. 3.6 eye-tracked annotated data is used as a training dataset in three machine learning
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Chapter 3 – Low-cost machine learning

Figure 3.3 – Set of 10 RGB images from top-view for the detection of weed out of plant
used as testing dataset in this study.

approaches and compare the recognition rate with the ground-truth. Handcrafted features
adapted to texture characterization by three different approaches, including local binary
pattern (LBP) [237], Haralick texture features [238], and Gabor filters[239], are extracted
from the images. They are followed by a linear SVM [240] binary classifier. We assess the
quality of the visual annotation by testing the trained classifiers by these three approaches
that we shortly recall here.

Local binary pattern: Under the original form of [237] and as used in this study,
for a pixel positioned at (x, y), local binary pattern (LBP) indicates a sequential set of
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3.2. Contributions to human-assisted image annotation

Figure 3.4 – Illustration of different types of weeds used for the experiment.

Figure 3.5 – Simulation pipeline for the creation of images of plant with weed of Fig. 3.4
similar to the one presented in Fig. 3.3.

the binary comparison of its value with the eight neighbors. In other words, the LBP
value assigned to each neighbor is either 0 or 1, if its value is smaller or greater than the
pixel placed at the center of the mask, respectively. The decimal form of the resulting

79



Chapter 3 – Low-cost machine learning

8-bit word representing the LBP code can be expressed as follows

LBP (x, y) =
7∑

n=0
2ns (in − ix,y ) (3.1)

where ix,y corresponds to the grey value of the center pixel, and in denotes that of the nth

neighboring one. Besides, the function ξ(x) is defined as follows

ξ (x) =
1 x ≥ 0

0 x < 0 .
(3.2)

The LBP operator remains unaffected by any monotonic grey scale transformation which
preserves the pixel intensity order in a local neighborhood. It is worth noticing that all
the bits of the LBP code hold the same significance level, where two successive bits value
may have different implications. The process of equation (3.1) is produced at the scale of
the patch defined in the previous section. The LBP (x, y) of each pixel inside this patch
are concatenated to create a fingerprint of the local texture around the pixel at the center
of the patch. Equations (3.1) and (3.2) are applied on all patches of an image.

Gray level co-occurrence matrix: A statistical approach that can well describe
second-order statistics of a texture image is provided by the so-called gray level co-
occurrence matrix (GLCM). GLCM was firstly introduced by Haralick et al. [241]. A
GLCM is essentially a two-dimensional histogram in which the (i, j)th element is the fre-
quency of event i co-occurring with event j. A co-occurrence matrix is specified by the
relative frequencies C(i, j, d, θ) in which two pixels, separated by a distance d, occurs in a
direction specified by the angle θ, one with gray level i and the other with gray level j. A
co-occurrence matrix is therefore a function of distance d, angle θ and greyscales i and j.
In our study, as perceptible in images of Fig. 3.3, the weed-plant structures are isotropic
meaning that they show no specific predominant orientations. As a logical consequence,
and as already stated in similar weed classification problem using GLCM [242, 243, 244],
choosing multiple orientations θ would not improve the classification performance. We
therefore arbitrarily chose a fixed θ = 0 which enables to probe on average leaves posi-
tioned in all directions. For distance, d, it is taken at d = 2 pixels which correspond to a
displacement capable of probing the presence of edges, veins, and structures in the limb.

Gabor filter: It is a linear filter for texture analysis. Gabor Filters which are tuned
to different frequencies and orientations are designed to localize different, roughly orthog-
onal, subsets of frequency and orientation information in the input image [239]. This
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3.2. Contributions to human-assisted image annotation

filters have been shown to possess localization properties in both spatial and frequency
domain and thus are well suited for texture classification problems. In practice to an-
alyze texture or obtain feature from an image, a bank of Gabor filter with number of
different orientation are used. In this work, A bank of 4 Gabor filter oriented at an angle
of θ = {0, π/L, . . . , π(L − 1)/L}, where L = 8 were applied to the images to produce a
feature space.

The feature space generated from each approach is used to train SVM binary classifier.
Table 3.2 gives the average accuracy and standard deviation of the weed detector trained
on perfect ground-truth and ground-truth computed from the eye-tracking records. Ex-
perimental results prove that visual eye-tracked annotated data are almost similar to
in-silico ground-truth, and performances of supervised machine learning on eye-tracked
annotated data are very close to the one obtained with ground-truth. Also, providing the
annotated data by this approach is at least 30 times faster by comparison with manual
annotation by the human on the same dataset.

Figure 3.6 – General pipeline of comparison of eye-tracked annotated data with ground-
truth.

Although the screen-based image annotation strategy accelerates the annotation time,
it is a separate process after image acquisition to provide ground-truth. In the following
section, we assess the value of various egocentric vision approaches to perform joint acqui-
sition and automatic image annotation rather than the conventional two-step process of
acquisition followed by manual annotation or using the screen-based eye-tracking device.
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Chapter 3 – Low-cost machine learning

Methods
Recognition
Eye-tracking
First observer

Recognition
Eye-tracking

Second observer

Recognition
Ground-truth

Local binary pattern 70.1
std: 0.69

71.33
std:0.27

73.1
std: 0.11

Haralick coefficients 65.7
std: 0.75

66.19
std:0.59

67.41
std: 0.22

Gabor wavelet filters 64.7
std: 0.41

62.37
std:0.77

67.2
std: 0.54

Table 3.2 – Classification performance for different annotated dataset of in-silico ground-
truth and eye-tracked annotated data.

3.2.2 Egocentric head-mounted eye-tracking

We have demonstrated the possible interest of eye-tracking systems to speed up image
annotation in the previous section with a screen-based device. We now investigate the
value of an egocentric head-mounted device to speed up annotation. The term wearable
”egocentric vision device” is used to designate all wearable imaging systems that record
images from the first-person perspective. Images captured from egocentric devices are
possible of high value since their field of view benefits from the attention of the person
who wears the device and who is in charge of the targeted task to be done on the images.
Reducing the field of view to a part of specific interest may reduce the inspected scene’s
complexity and help the automatic processing of the acquired images. This is expected
to be especially useful in complex scenes, such as those found outdoor in agriculture
and phenotyping in the fields. Also, some egocentric devices, namely head-mounted eye-
trackers, can include capturing the ocular position of the annotator during the recording
of the videos. This would, in theory, open the possibility to annotate images directly
while acquisition and annotation are usually two separate steps. Such use of egocentric
devices opens the possibility to conduct these steps jointly and hence reduce annotation
time. However, eye-trackers can never be perfectly calibrated, and their practical value
in terms of performance and time is still to be assessed to speed up annotation which is
what we propose here.

For the first application of egocentric devices to accelerate annotation, we consider, as a
proof of concept, a standard problem in computer vision for plant phenotyping. We choose
the detection, i.e., segmentation, counting, and localization of apples in color images.

82



3.2. Contributions to human-assisted image annotation

This task has been addressed in many ways, including recently, with deep learning. This
canonical problem is challenging for computer vision since it includes self-occlusion of
multiple instances, occlusion by the shoot of the apple trees, the variation of illumination,
clutter from the self-similar background, variety in sizes and colors of fruits, and many
more. Also, this computer vision problem is significant to be solved for various agricultural
applications such as the design of automatic harvesting, automatic estimation of the fruit
pack out, variety testing, and many more. A visual abstract of the proposed joint image
acquisition-annotation process is illustrated with apple detection in Fig. 3.7.

Egocentric (first-person) vision is a relatively new research topic in the field of com-
puter vision which is increasingly attracting the interest of understanding human activities
[245, 246, 247, 248], object detection [249, 250], creation of models of the environment
with different levels of precision [251, 252], perception of social activity [253], user-machine
interactions [254], driving assistance [255], or medical applications [256, 257, 258], etc.
There are different types of egocentric systems, such as smart glasses, action cameras,
and eye-trackers. Based on the processing capabilities, embedded sensors, like the one
used in this study, are now more and more used in conjunction with egocentric video
analysis [254]. Features such as hand appearance, head motion give essential cues about
the attention, behavior, and goals of the viewer [259, 260, 261, 262]. In our case, we also
used the fact that usually in egocentric vision, salient objects of interest tend to occur at
the center of the image since they attract the viewer’s attention [263, 249].

In this work, we primarily used an eye-tracking system to perform an egocentric vision
to speed up image annotation. The use of eye-tracker to speed up image annotation has
been proven useful for annotation with a screen-based system in [264, 265, 266]. These
researchers demonstrated a possible gain of time for annotating 30 (approximately) by
comparison with manual annotation. Here, we use, for the first time to the best of our
knowledge, an embedded eye-tracking system under the form of glasses (see Fig. 3.7) to
jointly conduct image acquisition and annotation and thus extend the result of [264, 265,
266].

Object detection in agricultural conditions has been investigated with a large panel
of computer vision approaches [267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278,
279]. In the early works, like in [267], methods were handcrafted both from the hardware
side and the software side. Nowadays, it is more common practice to use standard RGB
cameras, and base the detection of apples on supervised machine learning methods learned
end-to-end via deep learning like in [278, 279]. Such modern methods, neural network-
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Figure 3.7 – Visual abstract of the egocentric head-mounted eye-tracking study. Red
dotted-line is the conventional two steps of the acquisition and annotation process. We
jointly perform image acquisition and image annotation by the use of a head-mounted
egocentric device, which simultaneously captures images and the gaze of the person who
wears the device and takes benefit of these to annotate images automatically. It is to be
noted that the post-processing step to separate touching annotated objects is not included
here. It remains a step necessary in the conventional two-steps approach and our proposed
single-step approach.

based, show high performances but require a large amount of annotated images. Manual
pixel-wise annotation is, in general, a time-consuming operation, taking approximately
1.5 hours per 100 images (308×202 pixels). In practice, apple detection is also challenging
because of illumination conditions [280, 281, 282]. In this study, we will not provide a
novel method to detect apples automatically. Instead, we will investigate the possibility to
perform acquisition and annotation of apples in an orchard environment simultaneously
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by using head-mounted egocentric devices. Indeed, while there has been significant recent
interest in fruit detection, segmentation, and counting in orchard environments, the cost
of providing a unified annotated dataset of the fruit on trees makes it the bottleneck in
the state-of-the-art literature [283].

Egocentric vision device

The egocentric imaging system used was a VPS-16 head-mounted eye-tracking glasses
equipped with stereoscopic cameras in the nose bridge, a front camera with a diagonal
coverage of 88 degrees, and an audio microphone sampling at 10 kHz. The front camera
was calibrated with the eye-tracker before the acquisition. The visual task defined to
the wearer was to find apples on the targeted trees. The acquisition time was nearly 90
seconds for the whole dataset (calibration time included). This acquisition time is quite
similar to the time required with a digital camera fixed on a tripod or handheld. It would
need to be located in different positions to cover all apples located on a tree. The distance
of the viewer and the tree was set approximately to one and a half meters. The viewer
counted the number of apples as evidence of the ground-truth, which was recorded via
the audio microphone. Fixation points were recorded by the eye-tracker to investigate
how they can serve to annotate apples on the trees automatically.

Dataset

With the sensor described in the previous subsection, we generated a new dataset of
10 videos (25fps) from 10 various apple trees in the orchard environment captured by
egocentric head-mounted glasses eye-tracker. The total number of extracted images from
the entire dataset was 24618 frames.

A fundamental parameter of eye-tracking analysis depends on the definition of the
fixation and the algorithm used to separate fixation from saccades [284]. Fixation refers to
a person’s point-of-gaze as they look at a stationary target in a visual field. Although the
mean duration of a single fixation may depend on the nature of the task [285], numerous
studies have been done to measure the average duration for a single fixation [286, 287,
288, 285, 289, 290, 291, 292, 293, 294]. The mean fixation duration for visual search is
275 msec, and for tasks that require hand-eye coordination, such as typing, the mean
fixation can be 400 msec [285]. Among our dataset, the number of frames received at
least 275 msec was 419 frames. On two days at midday, the acquisition was made on
different weather conditions at the orchard of INRAE Angers, France. No difference was
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found in the results of the data coming from the two days. This dataset includes a variety
of apple colors together with apple and foliage density, which are representative of the
dataset found in the literature for apple detection [295, 296, 297]. Due to the complexity
of each orchard tree, the illumination and environment itself, different natural colors were
found in the images, including various shades of green, red, yellow, brown, or gray for
foliage grass, apples, and tree trunk.

A ground-truth was created by manual annotation of the raw color images in approxi-
mately 54 seconds per image by using the Image Segmenter application in MatLab 2017a.
A sample of raw color images from different apple trees and their corresponding manual
ground-truth is illustrated in Fig. 3.8. For the whole dataset, which consists of 419 im-
ages, it roughly took 6 hours to annotate all images manually. These manual annotations
were generated for evaluation of the accuracy of the egocentric vision methods presented
in the next section.

Figure 3.8 – Example of RGB images of apple trees from our dataset and corresponding
ground-truth manually annotated.
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Image processing pipeline

In this section, we present the image processing pipeline developed to automatically
annotate apples from the attention areas captured with egocentric vision. A global view of
this pipeline is depicted in Fig. 3.9 and includes three main steps: Image pre-processing,
segmentation, and performance evaluation.

Figure 3.9 – Three steps image processing pipeline proposed to automatically segment
apples from attention area captured with egocentric devices.
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The pre-processing started with the extraction of the frames with a resolution of 960×
544 pixels from recorded videos. Next, an attention area was extracted from each frame
based on egocentric priors. The extraction of this attention area constitutes the main
contribution of scientific research. Several strategies have been tested and are presented
in the next section.

The pre-processed images were then segmented with a standard approach for apple
detection similar to the one presented in [283, 298, 299, 300, 301]. A classical superpixel
technique (SLIC) [217] was applied, followed by a simple non-supervised clustering tech-
nique chosen as K-means [302] to select superpixels corresponding to apples. To keep the
size of superpixel independent of the size of the attention area we defined the number of
superpixels as the ratio of

N = A

S
, (3.3)

where A represents the size of the attention area, and S the size of an average apple,
which is equal to 900 pixels in our dataset.

To simplify the images, the tree-labels (blue in our case) and sky parts were removed
by applying color thresholding (optimized on a small dataset) in the RGB color domain
on the superpixel segmented attention areas, as shown in Fig. 3.10. The number of
cluster K was found optimal for K = 2 and was applied to feature space composed of
(R,G,B,H, S) respectively for Red, Green, Brightness, Hue, and Saturation from each
superpixel. The cluster with the smaller size was considered as the apple cluster based
on the assumption that the background occupied the largest area in the attention area.
Because the blue part was withdrawn and that no green apple was present, this optimal
value of K = 2 is reasonable for our use-case of apple detection in the orchard. Indeed,
the local complexity in attention areas extracted from the egocentric devices is limited
to objects on a background with a contrast of color. For other use cases, where local
contrast between object and background could depend on other features (size, texture,
shape, etc.), it would be necessary to adapt this segmentation.

Finally, the segmented apples were superimposed over the original image for qualitative
assessment, localization and compared with the manual binary ground-truth to compute
the segmentation accuracy via the Dice Dc(X, Y ) and Jaccard index J(X, Y ) given by

Dc(X, Y ) = 2 ∗ |X ∩ Y |
|X|+ |Y | , (3.4)
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Figure 3.10 – Color thresholding to remove blueish color belonging to the sky or blue
tree-labels on superpixel segmented attention areas. Each row represents from left to
right: the attention area, superpixel segmented attention area, and the thresholded one,
respectively.

J(X, Y ) = |X ∩ Y |
|X ∪ Y |

, (3.5)

where X and Y represent the segmented image and the ground-truth respectively.
In addition to the segmentation of apples, counting and localization were also com-

puted in the following way. For object counting, we counted the number of connected
components among detected objects which shared sufficient overlap with ground-truth.
An empirical threshold of 75 percent was chosen for the overlap. The probability of good
detection was computed as

PD = TP

TP + FN
, (3.6)

with TP number of true-positive objects and FN number of false-negative objects. We
also computed the probability of true-negative rate as

TNR = TN

TN + FP
, (3.7)

with TN number of true-negative objects and FP number of false-positive objects. In
localization, the Euclidean distance between the centroïd xi of detected objects Xi and the
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centroïd yj of objects Yi with a maximum intersection with ground-truth was computed
as

d(xi, yj) =
√

(uxi
− vyj

)2 + (uxi
− vyj

)2 , (3.8)

with u and v which stands for Cartesian coordinates in the images and

j = arg max
j0
|Xi ∩ Yj0 | . (3.9)

The average distance

d = 1
N

N∑
i=1

d(xi, yj), (3.10)

was computed over all detected objects sharing sufficient overlap with ground-truth. Here
again, a threshold of 75 percent of overlap was chosen. Distance d represents the average
shift error of localization of apples with an egocentric device from manual ground-truth.

Attention area from eye-tracking

In this section, we present strategies that we developed to extract attention areas from
the eye-tracking devices to perform joint acquisition-annotation after passing these areas
to the image processing pipeline of the previous section.

Selection by eye-tracking glasses

The first approach extracted attention areas via the viewer fixation computed from
the egocentric eye-tracking glasses. In order to fix a threshold, a gazing position was
recorded when the same fixation position was observed during an interval of 6 frames, as
calculated by

fi = Fps ∗ fd , (3.11)

where fi is the frames interval, Fps = 25 is the number of frames per second, and fd is
the average fixation duration, which was set as 275 msec.

Despite careful calibration before the acquisition, small shift errors of alignment be-
tween the front camera of the device, and the gazing point of the viewer can occur.
Therefore, we extended the attention area around each gazing position with a given ra-
dius to compensate for the remaining small shift error of calibration of the eye-tracker.
An illustration of the creation of an attention area around a fixation point is provided in
Fig. 3.11. A systematic analysis of the evolution of the average segmentation accuracy as
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a function of the radius of the attention area around each gazing position was undertaken.
It is shown in Fig. 3.12 and demonstrates a non-monotonic evolution culminating at a

value corresponding to triple the size of an average apple size in our dataset. Consistently
this optimal value was found to be very close to the maximum shift error of calibration
of the eye-tracker found in the whole dataset. For too small attention areas, due to the
shift error, apples can be missed. For too large attention areas, the segmentation process
fails to detect all apples correctly in the area due to the complexity of the scene.

Figure 3.11 – Construction of attention areas. (a) The average diameter of an average
apple is 30 pixels in our dataset; (b) Cross indicates the center of the gaze of the annotator.
There is a shift error from the apple of (a). The maximum distance of the gazing point
with the center of the closest object is found at 169 pixels ; (c) Chosen attention area
with a size of 180× 180 (pixels).

Selection by screen-based eye-tracking

For comparison with the attention area created with the egocentric eye-tracker di-
rectly acquired in the orchard, we also generated an attention map from the gazing point
recorded with a screen-based eye-tracker. Of course, this approach is less interesting for
the gain of time than the previous one with the head-mounted eye-tracker since it does
not allow a joint acquisition annotation. However, screen-based eye-tracker is more ac-
curate than head-mounted ones and thus are expected to constitute a reference serving
as an upper bound in terms of quality of annotation with egocentric vision. The experi-
ment was performed on a screen with a resolution of 1920 × 1080 (pixels) while the eye
movements of the viewer were recorded with an SMI binocular remote eye-tracker [303].
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Figure 3.12 – Apple segmentation accuracy as a function of the radius of attention area
expressed in the size of apples taken as 30 pixels. Maximum accuracy achieved when the
radius size of the attention map is equal to 80 (160× 160 pixels) corresponding to the red
dotted line. The purple dotted line corresponds to the maximum gaze shift error of (169
pixels) between eye-tracker and ground-truth when computed on the whole dataset.

In this approach, for each apple tree, we peaked out one frame, which included all the
apples.

The annotation protocol was the same as the previous method. Each image was
displayed to the viewer, who was asked to find the apples on the trees. The locations of
the fixations of the viewer were recorded at 60 Hz. For a fair comparison, the attention
area diameter around each recorded fixation was taken at the optimal value found for the
eye-tracking systems embedded in glasses.

A comparison of the accuracy of the screen-based eye-tracking recording and the
recording with eye-tracking embedded in glasses was conducted. Figure 3.13 shows under
the form of heatmap visualization of the attention of the viewer. The precision and accu-
racy of the produced gaze points with the screen-based eye-tracker were found higher than
when using the head-mounted eye-tracker. The average shift error of Eq. (3.10) was found
125 pixels less with the screen-based eye-tracker than with head-mounted eye-tracker.
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Figure 3.13 – Heatmap visualization of the attention of the viewer captured by head-
mounted (glasses) eye-tracker (a) versus the screen-based eye-tracker (c). (b) Comparison
of heatmap generated by the glasses eye-tracker (left) vs. heatmap generated by screen-
based eye-tracker (right).

Attention area without eye-tracking

Other strategies were developed to extract attention areas for comparison with per-
formances obtained with eye-tracking systems.

Full-frame

In this approach, the attention map was considered as the full-frame recorded by the
camera. Thus, in Fig. 3.9, instead of a small patch of the entire original image, the full
original image was directly transmitted to the superpixel segmentation. Such a choice
assumes that the camera field of view is already a focus of the overall field of interest for
the human annotator in charge of detecting apples.
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Egocentric Prior

In this approach, we assumed, as often done in egocentric vision [249], that the viewer’s
attention is focused at the center of the frame. Therefore, we selected the attention area,
as a disk at the center of the image with the size of 180×180 (pixels), for a fair comparison,
with the other developed approaches eye-trackers.

Saliency Map

As the last method to compute an attention area, we turned toward a computational
approach in charge of numerically identifying areas of interest. Such a concept has been
developed in the computer vision literature under the name of the saliency map. Saliency
acts as a local filter that enhances regions of the image which are standing out relative
to their adjacent parts either in terms of orientation, grey level, and color contrast [304].
Introduced in [305], saliency is inspired by the mechanisms of human visual attention and
the fixation behavior of the observer.

There are numerous computational models for salient object detection. In this study,
for illustration and without any claim of optimality, we used the algorithm proposed by
[306], which computes saliency map in images using low-level features and is proposed with
codes included for reproducible science. Saliency maps were thresholded to binary masks
following the fixed threshold procedure described in [306]. Each connected component of
the binary saliency map served to produce an attention area. For a fair comparison with
the other approaches, attention areas with a size of 180× 180 (pixels) were chosen.

Results and discussion

We are now ready to compare the result of the different approaches proposed for apple
detection by extracting attention areas through an egocentric vision from the perspective
of a joint acquisition-annotation process.

As shown in Table 3.3, the best average performances (highlighted in bold) in terms of
segmentation accuracy of apples are obtained with the eye-tracking-based methods. Chal-
lenging images and resulting annotation with eye-tracking-based methods are provided in
Fig. 3.14 for qualitative assessment. Overall, the screen-based eye-tracker provides the
best result but only slightly above the one obtained from the glasses eye-tracker. This
embedded glasses eye-tracker, despite its substantial shift errors, is highly valued since it
enables a joint image acquisition and annotation. The saliency approach provides a result
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close to the one obtained with the baseline method (Full Frame). This could certainly
be improved with a systematic benchmark of other saliency methods of the literature.
However, a fundamental reason for the failure of the saliency approach, which would be
common to all generic saliency maps, is that saliency is, so to say, attracted by contrasted
objects which may not be apples (for example stems, leaves, items in the background, data
matrix positioned in the field to identify trees). As a consequence, saliency creates much
true-negative in attention areas since the task of detecting apples does not specifically
drive it. In contrast, human attention focuses on the apple as captured by eye-tracking
systems.

Interestingly these results are consistent for the three tasks, segmentation, counting,
and localization assessed. This demonstrates the robustness of the interest of eye-tracker
devices for annotation. Eye-tracking systems, such as the two different types used in
this study, can be considered as expensive devices (typically between 10 to 20k euros
currently). It is interesting to see that the egocentric prior approach gave the third-best
performance, and this could be accessible with any camera embedded on glasses (for 10
to 100 euros).

Method Dice Jaccard Good detection True-negative rate Shift error Time
(second) Time Gain

Full Frame 0.24 ±0.22 0.21 ±0.16 0.31 ±0.20 0.17 ±0.72 174.11 ±34 880 24

Glasses
eye-tracker 0.78 ±0.08 0.64 ±0.08 0.84 ±0.16 0.09 ±0.07 15.97 ±11 1960 11

Screen-based
eye-tracker 0.85 ±0.09 0.77 ±0.13 0.88 ±0.12 0.09 ±0.13 2.37 ±1.86 3240 6

Egocentric
Prior 0.46 ±0.36 0.38 ±0.31 0.54 ±0.39 0.28 ±0.23 84.82 ±7.25 1960 11

Saliency 0.27 ±0.13 0.16 ±0.08 0.42 ±0.45 0.51 ±0.17 7.21 ±8.28 2358 9

Table 3.3 – Performance of apple detection with the five approaches developed for extrac-
tion of attention area in the pipeline of Fig. 3.9. Each column corresponds to an average
over the 10 trees of the dataset. Dice and Jaccard assess in percentage the quality of
segmentation via Eq. (3.4) and (3.5) , good prediction and true-negative rate assess in
percentage the quality of object detection via Eq. (3.6) and (3.7) and shift error of Eq.
(3.10) assesses in pixels the quality of good localization. The time corresponds to the
approximate annotation time for the whole dataset in seconds. Time Gain indicates the
ratio of manual annotation time over automatic annotation time obtained with the ego-
centric devices. Time was measured on a windows machine with an Intel Xeon CPU and
32.0 GB RAM by MatLab 2017a.
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Figure 3.14 – Qualitative assessment of results. From left to right, an example of the
attention area captured by eye-tracking, automatic annotation obtained from the proposed
image processing pipeline of Fig. 3.9, ground-truth manually recorded, and comparison
of manual ground-truth and automatic segmentation. (a) provides examples of good
performance; (b) shows some challenging conditions where more errors are found (missed
detection, false detection).

The value of the obtained results concerning segmentation, counting, and localization
is to be assessed in terms of timing. As expressed in section (3.1), acquisition time with an
egocentric device is comparable with acquisition time with any standard camera. There-
fore gain of time is to be compared on the annotation time only. This timing is provided
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in the last column of Table 3.3 for automatic annotation based on the image process-
ing pipeline applied to extracted attention areas. Without any surprise, the Full Frame
approach, which requires no computation of attention map, is the fastest method. The
second most rapid methods are the egocentric prior and glasses eye-tracker. The screen-
based eye-tracker method, which gave the best performance in terms of apple detection,
comes with the slowest timing. However, these timings for automated annotation are to
be compared with the timing requested to a human annotator to annotate all apples in the
dataset manually. The estimated timing is 6 hours for the 419 frames. The gain of time
for all methods is presented in Table 3.3. Saliency, as presented here, could be criticized
since many other variants of the saliency map could be tested and possibly provide better
results. In terms of timing, however, we believe the performances are realistic, and it was
worth mentioning them here.

All in all, the glasses eye-tracker method appears as a good trade-off between speed
and annotation performance. For this head-mounted device, the gain in performance
is about 11, which is smaller than what was found in the literature with desktop eye-
trackers for object detection [264, 265, 266]. This difference may come from the fact that
in this literature, the task targeted were relatively more straightforward and required less
post-processing. Optimization of the code could thus increase the gain in time. We are
currently investigating all these perspectives.

Conclusion

We have assessed the value of egocentric imaging devices to perform acquisition and
automatic image annotation jointly. This was illustrated with apple detection in orchards,
which is a challenging task for computer vision applied to phenotype or agriculture. De-
spite shift errors in the calibration of egocentric imaging devices, the performance of the
detection of apples from the gazed recorded areas was found to be very close to the one ob-
tained from the manual annotation. The compensation for these shift errors was obtained
by applying a standard non-supervised segmentation algorithm only in attention areas
centered on the gazing positions captured by the egocentric devices. Specific interest was
shown for head-mounted eye-tracking systems with an estimated gain of time compared
to manual annotation found 11 times faster with a non-GPU-accelerated software.

This first use of egocentric vision to speed up image annotation opens interesting per-
spectives, especially in plant phenotyping. The task here was focused on apple, but the
approach is indeed generic. Thus, it would be interesting to extend the applicability to
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other phenotyping items of interest. To remain on apple, this could include the determi-
nation of flowering stages or the detection of diseases. Additional technological services
from egocentric vision could be tested to speed up annotation. For instance, this includes
a sound recording, which could be coupled to automatic speech recognition for later fusion
with information extracted from the captured images.

The pilot study presented here is promising. For a tool to be used by technicians
and engineers in the field, it would be necessary to implement an ergonomic version of
the software to experiment on an extensive network of users. The method was developed
to accelerate image annotation with egocentric devices. Validation of the quality of the
annotation was performed at various levels, including location, object detection, and
pixel-wise segmentation. Another stage of validation of the quality of the annotation
would be to train a machine learning algorithm on the annotated images and compare
the performance with the manually annotated data.

3.3 Contribution to computer-assisted image anno-
tation

In this section, we present our contribution to the computer-assisted image annotation.
We investigate the possibility of data augmentation and transfer learning via synthetic
images for the segmentation of leaves of seedlings from top view.

Due to heavy occlusion, variability in terms of size and shape, leaf segmentation is a
challenging task from the computer vision perspective. One strategy to simplify the seg-
mentation is to reduce the biological variability and focus on a limited amount of specific
interest plant species. This has been undertaken in the CVPPP challenge since 2014 with
a focus on few species, including Arabidopsis Thaliana, which serves as a reference for sev-
eral fundamental biological questions. The effort to provide annotated data has enabled
the significant improvement of state-of-the-art on segmentation performance. An open
question is now how to transfer this knowledge obtained from RGB images on annotated
plants either to other species or other modality of imaging. In this work, we focus on
the translation of the knowledge gained from annotated leaves of Arabidopsis Thaliana in
RGB to images of the same plant in chlorophyll fluorescence imaging.

Segmentation of Arabidopsis leaves in RGB images has been highly studied since the
introduction of the CVPPP challenge. In 2014 and 2015, the contribution to this challenge
proposed segmentation methods based on models [307, 308, 309], most of the following
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participants have tackled the challenge with deep neural network [310, 311] . In the
following, we will not propose any innovation on this side. However, instead of working
on a standard architecture, we apply it for the first time on another imaging modality.

Chlorophyll fluorescence analysis is a non-destructive technique that has been devel-
oped to probe plant physiology [312]. Among all the chlorophyll fluorescence parameters
that can be estimated, the maximum quantum yield of photosystem II (PSII) photo-
chemistry (Fv/Fm = (Fm−F0)/Fm) is an indicator of plant stress [313]. Fluorescence
chlorophyll by image analysis on the whole plant has been widely studied [314, 315, 316].
So far, to the best of our knowledge, analysis on individual leaves has yet not be tackled
in top view images of Arabidopsis Thaliana.

Image simulation to boost machine learning received increasing interest in plant imag-
ing [228, 232, 317, 318]. This can include standard data augmentation, sophisticated
infography, or generative models from the convolutional network. In this communication,
we generate the images from one imaging modality to learn on another imaging modality.
This topic has been demonstrated possible, for instance, for life science applications in the
medical domain [319] in cross-modal image synthesis and microscopy in a super-resolution
problem [320]. We consider for the first time data augmentation from the synthesis of
images from RGB imaging modality to chlorophyll fluorescence imaging in plant sciences.

Datasets

Three datasets coined CVPPP, CSIRO and Real Fluo are considered in this study.
They are described in the following.
CVPPP : We use the dataset provided in the leaf segmentation challenge held as part of
the Computer Vision Problems in Plant Phenotyping CVPPP workshop [321]. CVPPP
dataset consists in 27 RGB images of tobacco plants and 783 RGB images of Arabidopsis
wild and mutant plants. We considered only the Arabidopsis dataset in this study. All
images were hand-labeled to obtain ground-truth masks for each leaf in the scene. These
masks are image files encoded in PNG, where each segmented leaf is identified with a
unique integer value, starting from 1, where 0 is the background.
CSIRO: To extend CVPPP dataset we use also generated synthetic images of top down
view renders of Arabidopsis [322, 311]. The CSIRO dataset contains 10000 synthetic im-
ages (width x height: 550 x 550 pixels). Similar to CVPPP dataset, each RGB image has
a corresponding leaf instance segmentation annotation: each leaf in an image is uniquely
identified by a single color value, starting from 1, where 0 is background. All images are
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stored in PNG format.
Real Fluo: For model testing, we use 38 real gray-scale fluorescent images of Arabidopsis.
The PSI Open FluorCam FC 800-O (PSI, Brno, Czech Republic) was used to capture
chlorophyll fluorescence images and to estimate the maximum quantum yield of PSII
(Fv/Fm) on wild type control of Arabidopsis Thaliana. The system sensor is a CCD
camera with a pixel resolution of 512 by 512 and a 12-bit dynamic. The system includes
4 LED panels divided into two pairs. One pair provides an orange actinic light with a
wavelength of around 618 nm, with an intensity varying from 200 to 400 mol/m2/s. It
provides a 2s pulse that allows the measurement of the initial fluorescent state (F0). The
other pair provides a saturating pulse during 1s in blue wavelength, typically 455 nm,
with an intensity of up to 3000 mol/m2/s. The saturating pulse allows the collecting of
the maximum fluorescence (Fm). Fluorescence chlorophyll imaging was used in a dark-
adapted mode after a dark period of 45 min [28] to produce maps with the fluorescent
quantum efficiency Fv/Fm = (Fm − F0)/Fm. All these 38 images were manually
annotated using the Phenotiki image analysis software [6, 139].

Segmentation by U-Net architecture

The segmentation of the leaves is considered to be a pixel-wise classification where the
pixel of the contour of the leaves should be extracted from the rest of the images. Leaf
contours allow separating leaves and thereby perform leaf segmentation with the help of
a watershed transform. Each pixel is classified among three mutually exclusive classes:
mask without contours, leaf contours, and background, which means, a three-component
one-hot vector label every pixel.

We use U-Net model [323] for the pixel-wise classification. As shown in Figure 3.15,
U-Net architecture is separated into three parts: the contracting/downsampling path,
bottleneck, the expanding/upsampling path. The encoder-decoder type architecture with
skipped connections allows combining low-level feature maps with higher-level ones, and
enable precise pixel classification. A large number of feature channels in the upsampling
part allows propagating context information to higher resolution layers. The output of the
model is a three-channel label that indicates every pixel class, as shown in Figure 3.16.
All activation functions in the convolutional layers are Rectified Linear Units (ReLU)
[324]. The last layer before the prediction is a softmax activation with three classes.
Images and labels from all datasets were resized to width x height: 128 x 128 pixels.
Using ground-truth, we created labels for the three classes, as shown in Figure 3.16. To
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reinforce the contour class’s learning, which is highly unbalanced, we replaced the encoder
with a ResNet152 backbone pre-trained on ImageNet [325]. The decoder was not changed
[323]. The resulting network has a total of 1,942,275 trainable parameters.

Figure 3.15 – U-Net architecture. Each blue box corresponds to a multi-channel feature
map. The input image has 128x128 pixels, the output of the model is a three-channel
binary image: mask without contours, leaf contours, and background.

Data augmentation

In order to produce some data augmentation, we consider binary images such as the
ones in Figure 3.19 column (b) and map a noisy texture learned from the real fluorescence
images shown in Figure 3.19 column (a). A copy of the original binary image for each
plant is also kept to produce the associated ground-truth.

As the first trial of transfer from RGB images to fluorescence images, we propose to
test a straightforward model for the noisy texture, estimated as an additional Gaussian
white noise process that is independent and identically distributed for a given leaf. This
choice is driven both by an Occam razor simplicity spirit. Indeed with such a model, the
simulated leaves have no spatial structures such as vascular veins. Leaves are therefore
expected to be differentiable in real images only from there first-order statistics. Also, as
an additional motivation to test this simple fluorescence chlorophyll simulator, the noise
in real fluorescence images is expected to be mostly thermal noise on the camera which
will control the standard deviation of the noise and the leaves themselves if considered
has homogeneous tissue may have a variety of reflectance depending on their physiological
state.
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Figure 3.16 – Production of the three-channel binary labels from ground-truth (GT) label:
the first channel contains mask without leaf contours, the second - leaf contours, and the
third one - background.

We analyzed the distribution of the gray levels among a small set of images of real
plants to estimate the parameters of these Gaussian processes. In order to ensure that this
small set of chlorophyll fluorescence images is representative from the rest of the images,
we considered one image of the plant at each developmental stage represented in the test
dataset. The estimated average value and standard deviation of the gray levels inside
the plant for both considered chlorophyll fluorescence parameters are given in Table 3.4.
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The order of magnitude of the average value and standard deviation of the chlorophyll
fluorescence parameters F0 and Fm remains in the same order of magnitude.

Synthetic chlorophyll fluorescent images are then simply produced by adding Gaussian
noise with distinct seven parameter sets (µF0 , σ

2
F0), (µFm , σ

2
Fm

) to every label from CVPPP
and CSIRO datasets:

xF = 1−
yg + n(µF0 , σ

2
F0)

yg + n(µFm , σ
2
Fm

) , (3.12)

where xF is a synthetic fluorescent image, yg is a gray scale label and n(µF0 , σ
2
F0) is a

Gaussian noise function. Values for µF0 , σF0 and µFm , σFm are randomly chosen among
the values of Table 3.4. The pipeline of data augmentation is shown in Figure 3.17. As
a result, we obtained new datasets, CVPPP Fluo and CSIRO Fluo, containing 5670 and
70000 synthetic fluorescent images (width x height: 128 x 128 pixels), respectively. Our
objective is now to compare the added value of these datasets for leaf segmentation with
the U-Net model presented in the previous section.

Time µF0 σF0 µFm σFm

Day 1 167.83 34.88 180.77 24.68
Day 5 165.81 33.1 180.00 22.36
Day 6 164.48 30.87 177.9 20.8
Day 7 158.16 31.45 174.73 21.1
Day 8 165.24 32.31 181.14 21.36
Day 9 168.3 28.03 184.36 17.86
Day 12 173.06 28.01 189.96 17.15

Table 3.4 – Mean, µ, and standard deviation, σ, for measurements of chlorophyll fluores-
cence: F0 - minimal fluorescence, Fm - maximal fluorescence. Each line corresponds to an
Arabidopsis after the indicated day following deployment of cotyledons.

Watershed post-processing

To segment leaves with the use of estimated 3D labels, we applied the marker-controlled
watershed segmentation [326, 327]. The watershed concept is one of the standard tools
in the field of topography. It is the line that determines where a drop of water will fall
into a particular region. In mathematical morphology, gray-scale images are considered
as topographic surface. If we flood this surface from its minima and prevent merging of
the waters coming from different sources, we effectively partition the image into different
segments, thereby revealing ridges. Flooded basins correspond to homogeneous regions
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Figure 3.17 – Getting synthetic fluorescent training data. For each gray-scale label from
the original dataset we produce seven fluorescent images and seven 3D labels.

in the image. If they are marked such that each marker is placed inside a basin under
a one-to-one relationship, the watershed transform can segment regions with closed con-
tours. To generate the markers, we used a contourless mask from output three-channel
label, and then, to segment leaves, we flooded marked basins within the mask’s bounds.
Figure 3.18 illustrates the resulting leaf segmentation for different training strategies.

Figure 3.18 – Leaf segmentation results for different training strategies.
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Training process

A standard data augmentation strategy was used on the input images from the different
datasets shown in Figure 3.19 in order to reduce overfitting and improve generalization.
For data augmentation, we used the Albumentations library [231]. Horizontal flip, vertical
flip, random brightness, random contrast, random rotate at 90 degree; the random half-
sized crop was applied to 0.7 shuffled training dataset.

It was shown that for the high level of imbalance, loss functions based on overlap
measures appeared to be more robust [328]. Through all of our experiments, we minimized
weighted combination of multi-class cross-entropy and dice losses:

L(y, y∗) = w0C(y, y∗) + w0(1−D(y[..., 0], y∗[..., 0]))
+w1(1−D(y[..., 1], y∗[..., 1])). (3.13)

C(y, y∗) is the categorical cross entropy defined as:

C(y, y∗) = −
∑
ij

yij log y∗
ij (3.14)

and D(y, y∗) is the Dice coefficient:

D(y, y∗) =
2∑ij yijy

∗
ij + ε∑

ij yij +∑
ij y

∗
ij + ε

, (3.15)

where y is a model prediction with values yij, y∗ is a ground-truth label with values y∗
ij

and ε is used here to ensure the coefficient stability by avoiding the numerical issue of
dividing by 0. The weights ratios used to correct the class imbalance were, respectively,
at 0.4, 0.1, and 0.5 for cross-entropy, contourless masks, and contours. Adam optimizer
was used with default parameters lr = 0.001, beta1 = 0.9, beta2 = 0.999. Our training
procedure consisted of splitting the data into 80% and 20% training and cross-validation,
respectively. We shuffled the dataset examples at the beginning of each epoch and used
a batch size of 16 examples. We have also implemented batch normalization before each
activation.

Different training strategies to predict the fluorescence images with different datasets
were tested for comparison. A baseline consists of training directly on the CVPPP RGB
images. The learning from the simulated fluorescence dataset either generated from
CVPPP labels and/or CSIRO labels is also tested. The previous strategies are tested
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Figure 3.19 – datasets used for model training and its evaluation. (a) Plant image exam-
ples. (b) Three class labels for pixel-wise classification. (c) Ground-truth labels with leaf
segmentation.
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even a small number of real fluorescence images are added in training. The eight different
tested training strategies are summarized in Table 3.5.

Results

To assess the quality of segmentation, we used the soft Dice coefficient Eq. (3.15).
Table 3.5 displays the model performance on the Real Fluo dataset for the eight model
training experiments of Table 3.4.

Training dataset Losstrain DiceCoefftrain Losstest DiceCoefftest
CVPPP 0.03 0.98 0.19 0.945
CVPPP Fluo 0.01 0.99 0.29 0.94
CSIRO Fluo 0.018 0.99 0.27 0.92
CVPPP Fluo + CSIRO Fluo 0.011 0.99 0.297 0.924
CVPPP + Real Fluo 10ex 0.036 0.975 0.049 0.973
CVPPP Fluo + Real Fluo 10ex 0.015 0.99 0.05 0.97
CSIRO Fluo + Real Fluo 10ex 0.026 0.98 0.062 0.96
CVPPP Fluo + CSIRO Fluo + Real Fluo 10ex 0.037 0.97 0.054 0.962

Table 3.5 – Performance in terms of the loss function and Dice of our leaf segmentation
system on testing datasets with the various data augmentation technique tested.

As visible in Table 3.5, predicting Fluorescence from RGB images already provides a
good segmentation baseline, which overpasses the simulation from fluorescence images.

The best model Dice score is 97% obtained for extended CVPPP Fluo dataset with 10
examples from Real Fluo dataset. The use of a small quantity of real fluorescent images
among images with modeled fluorescence resulted in a score gain of 3% compared with
CVPPP Fluo dataset. We observed the same positive effect of the injection of 10 real
fluorescent images on the Dice score for the other datasets. The comparison of scores from
CVPPP and CVPPP Fluo showed that the imitation of fluorescence by modeling did not
have any impact on the quality of leaf contour segmentation for real plant fluorescent
images.

Conclusion and discussion

In this work, we study the performance of the transfer of leaf segmentation learned from
RGB imaging modality to fluorescence modality. We have shown that simple modeling
of the noise in fluorescence imaging as a Gaussian noise is valuable enough to simulate
data that can improve the segmentation of leaves on real data. This is shown efficient
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both with RGB images from real plants or simulated plants. The gain found is, of course,
higher when some real images are also introduced in the training process.

3.4 Computationally light deep architectures

Deep learning is currently tested world-widely in almost all application domains of
computer vision as an alternative to purely handcrafted image analysis [329]. When
inspecting the convolutional coefficients in first layers of deep neural networks, these are
very similar to Gabor wavelets. While promoting a universal framework, deep neural
networks seem to systematically converge toward tools that humans have been studying
for decades. This empirical fact is used by computer scientists in the so-called transfer
learning where the first layers of an already trained network are re-used [330]. This
has also triggered interest by mathematicians to revisit the use of wavelets to produce
universal machine learning architectures. This interdisciplinary cross-talk resulted in the
proposal of the so-called scatter transform [331], which is roughly a cascade of wavelet de-
composition followed by non-linear and pooling operators. If this deep architecture bares
some similarity with the standard deep learning it does not include the time consuming
feed-forward propagation algorithm. However, it proved its comparable efficiency to deep
learning while offering a very rational way of choosing the parameters of the network
compared to the rather empirical current art of tuning neural networks.

Despite its intrinsic interest to address multiple scales problems compared to deep
learning, scatter transform since its introduction in 2013 has been applied only on a rela-
tively small variety of pattern recognition computer vision problems notably including iris
recognition, [332] rainfall classification in radar images, [333] cell-scale characterization,
[334, 335] or face recognition, [336]. Also, in these applications scatter transform has
shown its efficiency but it was not systematically compared with other techniques in a
comprehensible way. We propose to extend the scope of investigation of the applicability
of scatter transform algorithm to plant science with the problem of weed detection in
a background of culture crops of high density used for the contribution on speeding up
image annotation with desktop eyetracking. From a methodological point of view, this
classification problem here will also serve as a use case to assess the potential of the scatter
transform when compared with other single scale and multiple scales techniques.

A large variety of platforms, sensors and data process already exist to monitor weeds
at various temporal and spatial scales. From remote sensing supported by satellites to
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cameras located on unmanned aerial vehicles (UAVs) or on ground-based platforms, many
systems have been described and compared for the weed monitoring in arable culture crops
[337, 338, 339]. Related to the observation scale of our use case, by focusing on the imag-
ing scales of UAVs and ground-based platforms, some studies exploiting RGB data have
addressed crop weed classification with a large variety of machine learning approaches.
The problem of segmentation of crop fields from typical weeds, performing vegetation
detection, plant-tailored feature extraction, and classification to estimate the distribution
of crops and weeds has recently been solved with convolutional neural networks in the
field [340, 341] and in real-time [342]. Earlier, Aitkenhead, M. et al. [343] evaluated weed
detection in fields of crop seedlings using simple morphological shape characteristic ex-
traction and self-organizing neural network. Bayesian classifier was used in [344] for plant
and weed discrimination. Shape, texture features [345, 346, 340, 347] or wavelet trans-
form [348, 349] coupled with various classifiers including support vector machine (SVM),
relevance vector machine (RVM), fuzzy classifier or random forests were also shown to
provide successful pipelines to discriminate between plant and weeds.

The above list of reference is of course not exhaustive and new pipelines will continue to
appear because of the large variety of crops shape and imaging platform. In this context,
scatter transform constitutes a candidate of possible interest worth to be assessed on a
plant–weed classification problem. Also, by comparison with the existing work on weed
detection, the computer vision community has focused on the relatively low density of
crops and weed where the soil constitutes a background to be classified in addition to
crop and weed. In this section, we consider the case of culture crops of high density, i.e.
where the soil is not visible from the top view. In this case, the culture is the background
and the object to be detected are weeds of wild type. The contrast in color between the
background and the weed, in this case, is obviously here very low by comparison with
lower density culture

Since the data set and the computer vision problem has been presented earlier in the
human-assisted annotation section, we directly present the expected scales included in the
images and the algorithms tested for comparison with the multiscale scatter transform
algorithm.

Scales

With a spatial resolution of 5120 by 3840 pixels included in the images of our dataset,
and as illustrated in Fig. 3.20, multiple anatomical structures of the dense weed/plant
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culture are accessible in our images. From tiny to coarse sizes, i.e. scales, this includes tex-
ture in the limb, the veins, and the leaf. There are possibly discriminant features between
the two classes (weed/plant) to be found in these three scales either taken individually or
combined with each other. To offer the possibility of a multiple scale analysis, together
with a reasonably small computation time, classification is done at the scale of patches
chosen as double size of the typical size of leaves, 2×max{Sw, Sp}, with rectangles of 250
by 325 pixels where Sw = 163 pixels and Sw = 157 in average. With this constraint, we
also keep for the patch the same ratio between height and width as in the original image
for a periodic patch grid.

dataset

With the simulator of Fig. 3.5, we produced a total amount of 3292 patches containing
weed and 3292 patches only with plants. The binary classification (weed/plant) is realized
on these patches. This balanced dataset serves both for the training and the testing stages
to assess the performance of different machine learning tools. The datasets together with
the simulator are proposed as supplementary material under the form of a free executable
and a set of images 1.

Classifiers

In this section, we describe how we apply the scatter transform [331] on the weed de-
tection problem introduced in the previous section. For comparison, we then propose a set
of alternative techniques.This study uses independent k-fold cross-validation to measure
the performance of the scatter transform coupled to the classifier depicted in Fig. 3.21
and compare other feature extractors coupled to the same classifier. The performances of
these classifiers are measured by the metric of the accuracy of correct classification by

accuracy = TP + TN

TP + TN + FN + FP
(3.16)

where TP indicates that the prediction is positive and the actual value is positive. FP
indicates that the prediction value is positive but the actual value is negative. TN indi-
cates that the prediction value is negative and the actual value is negative. FN indicates
that the prediction value is negative but the actual value is positive.

1. https://uabox.univ-angers.fr/index.php/s/iuj0knyzOUgsUV9
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Figure 3.20 – Anatomical scales where (Wi,Pi) presents the scales of weeds and plants
respectively; (W1, P1) points toward the texture of the limb, (W2, P2) indicates the typical
size of leaflet and (W3, P3) stands for the width of the veins. Sw and Sp show the size of
a leaf of weed and plant respectively. The classification of weed and plant is done at the
scale of a patch taken as 2×max(Sp, Sw) in agreement with a Shannon-like criteria.

Scatter transform

A scattering transform defines a signal representation which is invariant to translations
and potentially to other groups of transformations such as rotations or scaling. It is also
stable to deformations and is thus well adapted to image and audio signal classification. A
scattering transform is implemented with a convolutional network architecture, iterating
over wavelet decompositions and complex modulus. Figure 3.21 shows a schematic view
of a scatter transform network working as a feature extractor and coupled to a classifier
after dimension reduction.

The scatter vectors Zm at the output of the first three layers m = 1, 2, 3 for an input
image f are defined by

Z1f = {|f | ? φ}
Z2f = {. . . , |f ? ψj,θ| ? φ, . . . }

Z3f = {. . . , ||f ? ψj,θ|ψk,ϕ| ? φ, . . . } ,
(3.17)

where the symbol ? denotes the spatial convolution, |.| stands for the L1 norm, φ is an
averaging operator, ψj,θ is a wavelet dilated by 2j and rotated by θ. The range of scales
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Figure 3.21 – Schematic layout of the weed/plant classifier based on the scattering trans-
form with three layers. The feature vector transmitted to the principal component anal-
ysis (PCA) step consists in the scatter vector Zmf of the last layer of Eq. (3.17) after
transposition.

j = {0, 1, . . . , J} and the number of orientations θ = {0, π/L, . . . , π(L − 1)/L} are fixed
by integers J and L. The number of layers is between m = 1 to m = M . In our case,
we considered as mother wavelet the Gabor filter with implementation provided under
MatLab in (https://www.di.ens.fr/data/scattering/) for scatter transform.

Scatter transform differs from a pure wavelet decomposition because of the nonlinear
modulus operator. With this nonlinearity, decomposition of the image is not done on a
pure orthogonal basis (whether wavelet basis is orthogonal or not) and this opens the
way of a possible benefit in the concatenation of several layers with a combination of
wavelet decompositions at different scales. Interestingly, these specific properties of the
scatter transform match the intrinsic multiscale textural nature of our weed detection
problem which therefore constitutes an appropriate use case to assess the potential of the
scatter transform in practice. A visualization of output images for various filter scale j
at m = 2 for a given orientation is shown in Fig. 3.22. It clearly appears in Fig. 3.22
that the various scales (texture of the limb and veins at j=3, border shape at j=4 and
global leaf shape at j=8- not shown) presented in section 2.2 can be captured with the
different scaling factor applied on the wavelet. In our study, we empirically picked L = 8
orientations and investigated up to J = 8 scales since there are no other anatomical items
larger than the leaf itself. The number of layers tested was up to M = 4 as proposed in
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[331] since the energy after some layers although none zero is logically vanishing.

Figure 3.22 – Output images for each class (weed on left and plant on right) and for each
layer m of the scatter transform.

In the application of scatter transform to classification found in the literature so far,
the optimization of the architecture was done a posteriori after supervised learning. This
is rather time-consuming. We investigated the possibility to select a priori the best ar-
chitecture by analyzing the distribution of relative energy Em at the output of each layer
as given by

Em = ||Zmf | |2/ ||f | |2 . (3.18)

We computed these energies for the whole dataset as given in Table 3.6. As noticed in
[331], the relative energy is progressively vanishing when the number of layers increases.
This observation advocates for the use of a limited number of layers. However, these
energies are computed on the whole population of patches including both plants and
weeds and therefore it tells nothing about where to find the discriminant energy between
each class throughout the feature space produced by the scatter transform. Tables 3.7
and 3.8 show the average relative energy for the weeds’ patches data-set, Ewm , and plants’
patches data-set,Epm , for different layers m and various maximum scale J .

In order to show this discriminant energy between each class, various criterion could
be proposed. We tested the percentage of energy similarity, Qm, between the two classes

113



Chapter 3 – Low-cost machine learning

defined by

Qm = argmin(Ewm , Epm)
argmax(Ewm , Epm)

× 100. (3.19)

According to this criterion, the best architecture of the scatter transform can be chosen at
the point of η where the minimum Qm between each classes is found as a function of J by
η = argminJ(Qm(J)). The energy similarity Qm(J) are represented in Fig. 3.23 and this
clearly demonstrates that the contrast between classes is more pronounced on coefficient
with small relative energy. This observation, not stressed in the original work of [331],
indicates that it should be possible to draw benefit from the contribution of these small
discriminative coefficients and thus this demonstrates the interest of the combinatory step
of the scatter transform.

m=0 m=1 m=2 m=3 m=4
J=1 96.18 2.35 - - -
J=2 91.81 4.61 0.28 - -
J=3 85.81 8.46 0.89 0.03 -
J=4 85.81 13.15 1.97 0.17 0.006
J=5 81.46 15.36 3 0.36 0.024
J=6 79.04 16.81 3.44 0.53 0.048
J=7 80.74 17.05 3.49 0.63 0.071

Table 3.6 – Average percentage of energy of scattering coefficients Em on frequency-
decreasing paths of length m (scatter layers), with L = 8 orientations and various filter
scale range, J, for the whole database of plants and weeds patches.

m=0 m=1 m=2 m=3 m=4
J=1 99.90 0.0985 - - -
J=2 99.71 0.2798 0.0098 - -
J=3 99.07 0.8832 0.0443 0.0016 -
J=4 97.55 2.2669 0.1663 0.0080 0.0003
J=5 95.10 4.3892 0.4667 0.0343 0.0020
J=6 92.07 6.8696 0.9522 0.0983 0.0076
J=7 89.26 9.0102 1.5049 0.1979 0.0196

Table 3.7 – Average percentage of energy of scattering coefficients Em on frequency-
decreasing paths of length m (scatter layers), depending upon the maximum scale J and
L = 8 filter orientations for the weed class patches.

Also, from the observation of Fig. 3.23, our approach indicates that a priori the
best discriminant energy between each class is to be expected with a scatter architecture
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m=0 m=1 m=2 m=3 m=4
J=1 99.92 0.0711 - - -
J=2 99.76 0.2339 0.0040 - -
J=3 99.17 0.7984 0.0281 0.0003 -
J=4 97.75 2.0899 0.1380 0.0041 0.00003
J=5 95.41 4.1411 0.4215 0.0254 0.0006
J=6 92.34 6.6553 0.9078 0.0892 0.005
J=7 89.37 8.9341 1.4817 0.1944 0.0171

Table 3.8 – Average percentage of energy of scattering coefficients on frequency-decreasing
paths of length m (scatter layers), depending upon the maximum scale J and L = 8 filter
orientations for the plant class patches.

Figure 3.23 – Energy similarity, Qm(J), between energy of weeds and plants datasets
based on Tables 3.8 and 3.7.

corresponding to M = 4 and J = 4 which provides the minimum energy similarity, η,
between the energy of images of the weeds’ class and the plants’ class.

115



Chapter 3 – Low-cost machine learning

Other methods

To assess the possible interest of the scatter transform in our weed detection prob-
lem, we consider several alternative feature extractor algorithms. First, since the scatter
transform by construction works on a feature space which includes multiple scales, it is
expected to perform better than any state-of-the-art mono-scale method, i.e. working on
a feature space tuned on a single size, when applied on a multiple scales problem (such as
the one we have here with veins, limb, leaf). Second, since the scatter transform works on
a combination of wavelet decomposition between scales it should perform slightly better
than a pure wavelet decomposition chosen on the same wavelet basis but without the use
of the non-linear operator nor the scales combination. Last but not least, because scatter
transform shares some similarities with convolutional neural networks it should also be
compared with the performance obtained with a deep learning algorithm. Based on this
rationale, we propose LBP, GLCM, and Gabor filter as feature extractor for comparison
with the feature extractor of the scatter transform where the same PCA followed by a
linear SVM is used for the classification. In addition to these shallow learning methods
we add several deep learning methods of various computational costs.

Deep learning

Representation learning, or deep learning, aims at jointly learning feature represen-
tations with the required prediction models. We chose the predominant approach in
computer vision, namely deep convolutional neural networks (ConvNets) [350]. The base-
line approach resorts to standard supervised training of the prediction model (the neural
network) on the target training data. No additional data sources are used. In partic-
ular, given a training set comprised of K pairs of images fi and labels ŷi, we train the
parameters θ of the network r using stochastic gradient descent to minimize empirical
risk:

θ∗ = arg min
θ

K∑
i=1
L(ŷi, r(fi, θ)) (3.20)

L denotes the loss function, which is cross-entropy in our case. The minimization is carried
out using the ADAM optimizer [66] with a learning rate of 0.001. The architecture of
network r(·, ·), shown in Fig. 3.24, has been optimized on a hold-out set and is given as
follows: five convolutional layers with filters of size 3×3 and respective numbers of filters
64, 64, 128, 128, 256 each followed by ReLU activations and 2×2 max pooling; a fully
connected layer with 1024 units, ReLU activation and dropout (0.5) and a fully connected
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output layer for 2 classes (weeds, plants) and softmax activation. Given the current huge
interest on deep learning many other architectures could be tested and possibly provide
better results. As a disclaimer, we stress that the architecture proposed in Fig. 3.24 is of
course not expected to provide the best performance achievable with any neural network
architecture. Here the tested CNN serves as a simple reference with a level of complexity
of the architecture adapted to the size of the input image and training datasets.

Figure 3.24 – Architecture of the deep network optimized for the task on classification.

Light deep architecture - TensorFlow Lite

As machine learning tasks are computationally expensive, model optimization is used
to reduce the computation cost and improve performance. Lightweight solutions allow us
to convert the model trained on a higher-powered machine, to a light version to use on
mobile and embedded devices. Google developed TensorFlow [351] as a machine learning
system that operates on a large scale and in heterogeneous environments, 2 including low-
power edge technologies. However, because of latency due to the problem of sending data
back and forth between devices and data centers, Google designed TensorFlow Lite (TFL),
a framework for machine learning inference on embedded devices, which computations
could be executed on the device without the need for network round-trip delays. TFL
is considered as an optimized solution to the deep neural network’s bottleneck, which is

2. https://www.tensorflow.org/
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the calculation speed of the computations, as the desired latency for mobile applications
is low. Furthermore, in TFL, the minimum hardware requirements in terms of Random
Access Memory (RAM) size and CPU speed are low [352].

There is a possibility of using available pre-trained models or, like what is done in this
study, using the trained model on the dataset associate with the task. We take benefit
of TFL potential to design a network with lower computationally-demanding. For this
reason, the trained models on different numbers of sample data explained beforehand
are used. Then, in consideration of optimizing, these trained models are converted to the
”.tflite” models automatically by TensorFlow and tested on a new dataset. The recognition
accuracy on this approach is approximately similar to the baseline convolution neural
network, as it is shown in Fig. 3.26.

Light deep architecture - MobileNet

Finally, we tested another practical model called MobileNet [353], which is an efficient
convolutional network for low-power embedded systems. The first version of MobileNet
uses depthwise separable convolutions to build light weight deep neural networks. Depth-
wise separable convolution is a form of factorized convolutions that factor a standard
convolution into a depthwise convolution that applies a single filter to each input channel,
and a 1×1 convolution called a pointwise that applies a 1×1 convolution to combine the
outputs of the depthwise convolution by keeping the number of channels the same or
doubled them. This factorization has the effect of remarkably reducing computation and
model size. The full architecture of MobileNet V1 consists of a regular 3×3 convolution
as the very first layer, followed by 13 times the above building block.

The second version of MobileNet architecture [354] also uses depthwise separable con-
volutions. However, three convolutional layers include a 1×1 convolution to expand
the number of data channels before it goes into the depthwise convolution, which is
called the expansion layer—followed by a depthwise convolution that filters the inputs
and—continued by a 1×1 pointwise convolution layer, which makes the number of chan-
nels smaller by reducing the amount of data that flows through the network. This is
why this layer is known as the projection layer, which is the opposite of the expansion
layer. MobileNet version 2 also consists of a residual connection which helps with the
flow of gradients through the network. Figure 3.25 shows the structure of the standard
convolutional network and both versions of MobileNet architectures.

We use the MobileNet version 2 and re-train the classifier to detect the weeds on
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the dense plants on our dataset to build a smaller and faster network by trading off a
reasonable amount of accuracy to reduce size and latency, as shown in Fig. 3.26.

Figure 3.25 – Left: Standard convolutional network architecture with batch normalization
and non-linearity. Middle: Depthwise Separable convolutions with Depthwise and Point-
wise layers followed by batch normalization and non-linearity. Right: Expansion block
consists of expansion layer with batch normalization and non-linearity followed by the
depthwise block and the pointwie block including the projection layer and normalization
and the residual connection.

Result

In this section, we provide experimental results using the experimental protocol for
the assessment of scatter transform (section 3.4) as well as the different alternative feature
extraction techniques chosen for comparison in section 3.4.

The scatter transform produces a data vector containing the Zmf of Eq. (3.17) whose
dimension is reduced by a standard PCA and then applied to a linear kernel SVM. In order
to compare the performance of different structures of scatter transform on the database,
we used a different combination of filter scales, j, and the number of layers, m, to realize
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which structure is the best fit for our data. Table 3.9 shows the classification accuracy
of these structures where 10-fold cross-validation approach is used for classification. The
best weed/plant classification results with scatter transform are obtained for J = 4 and
m = 4. This a posteriori exactly corresponds to the prediction done a priori from the
energy-based approach presented in the method section.

J=1 J=2 J=3 J=4 J=5 J=6 J=7 J=8
m=1 70.37% 77.89% 82.74% 86.17% 88.96% 91.94% 94.14% 95.05%
m=2 —- 91.95% 95.26% 95.54% 95.86% 95.82% 95.73% 95.55%
m=3 —- —- 95.41% 95.44% 95.21% 95.07% 95.03% 96.00%
m=4 —- —- —- 96.31% 96.02% 96.05% 96.16% 96.11%

Table 3.9 – Percentage of correct classification for 10 fold cross-validation classification
on simulation data with scatter transform for various values of m and J .

We considered this optimal scatter transform structure with J = 4 and m = 4 and
compared it with all alternative methods described in section 3.4. Table 3.10 shows the
recognition rates of weed detection on the data where a k-fold cross-validation approach of
SVM classification with the different number of folds is used. Scatter transform appears
to outperform all compared handcrafted methods. This demonstrates the interest of the
multiscale and combinatory feature space produced by scatter transform. It is important
to notice that in order to have a fair comparison of these alternative methods, we adapted
the feature spaces of all algorithms to the same size. The minimum size of the whole
feature space is selected and feature space of other algorithms are reduced to that specific
size. In our techniques, the minimum feature space belongs to the GLCM method which
has a size of N × 19 where N represents the number of samples. The PCA algorithm is
adapted to our models to reduce the dimensions of the feature space generated by other
techniques to the size of N × 19.

As shown in Fig.3.26, when compared with deep learning approaches, like most hand-
crafted methods, scatter transform performs better for small datasets. The limit where
deep learning and scatter transform are found to perform equally is found to be in a range
of 3000 to 4500 based on deep learning approaches on the weed detection problem as given
in Fig. 3.26. This demonstrates the interest of the scatter transform in case of rather small
datasets. It is, however, to be noticed that an intrinsic limitation of scatter transform
is that it works only with patches to perform a classification while some architectures of
convolutional neural network would also be capable of performing segmentation directly
in the whole image (see for instance U-Net) [323].
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5 Folds 6 Folds 7 Folds 8 Folds 9 Folds 10 Folds Average std
Scatter Transform 94.9% 95.2% 95.3% 95.7% 95.8% 95.8% ± 1.1
LBP 85.5% 86.1% 86.3% 85.8% 86.9% 86.7% ± 0.4
GLCM 87.4% 91.6% 90.9% 92.1% 92.4% 92.3% ± 0.7
Gabor Filter 88.0% 88.2% 88.7% 88.6% 89.4% 89.3% ± 1.3
Deep Learning 89.4% 89.9% 91.1% 91.5% 91.9% 92.1% ± 1.4

Table 3.10 – Percentage of correct classification by using k-fold Cross-validation on 1200
simulated samples.

Figure 3.26 – Comparison of the recognition accuracy between scatter transform and
baseline CNN plus CNNLite and MobileNet architecture when the number of samples
increases.

Discussion

So far, we focused in this scientific research on detection of weeds in fields by the scatter
transform algorithm with a comparison of other machine learning techniques which have
been trained and tested on synthetic images produced by the simulator of Fig. 3.5. Our
experimental results show that a good recognition rate of weeds detection (approximately
95%) can be achievable by the scatter transform algorithm. On the other hand, other
alternative methods also work well for this problem with a minimum recognition rate
around 85%. These experiments prove that texture based algorithms can be useful for
weed detection in culture crops of high density.

One may wonder how these classification results compare toward the literature on
weed detection in less dense culture cited in the introduction section [341, 342, 343, 344,
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345, 346, 340, 347, 348, 349]. The performance in this literature varies from 75% to 99%
of good detection of weed. It is, however, difficult to provide a fair comparison since in
addition to the main difference with the absence of soil, the observation scales together
with the acquisition conditions vary from one study to another.

One may wonder how these algorithms trained on synthetic data behave when they are
applied to real images including plant background and weed not included in the synthetic
datasets. We also tested our scatter transform classifier which was trained on synthetic
data when applied on the real images of Fig. 3.3. On average for all 10 real images,
the accuracy found is 85.64%. Although this constitutes already interesting results, this
indicates a bias between simulated data and real data. One direction could be to improve
the realism of the simulator. In the version proposed here weeds were not necessarily
acquired in the same lighting conditions as the plant. A simple upgrade could be to
adapt the average intensity on the weed and the plant to compensate for this artifact or,
since in plant and weed can indeed be of various intensity, to generate data augmentation
with various contrast. However, simulators never exactly reproduce reality. Another
approach to improve the performance of the training based on simulated data would be
to add a step of domain adaptation after the scatter transform [355]. So far, the best
and worst results obtained with scatter transform are given in Fig. 3.27. A possible
interpretation for the rather low performance in 3.27b is the following. The density of
weed in Fig. 3.27b is very high compared to the other images in the training dataset. As
a consequence, the local texture in the patch may be very different from the one obtained
when weeds appear as outliers. This demonstrates that the proposed algorithm, trained
on synthetic data, is appropriate in the low density of weeds at an observation scale like
the one chosen for the patch where plant serves as a systematic background.

These performances could be improved in several ways. First, a large variety of weeds
can be found in Nature and it would be important to include more of this variability in the
training datasets. Also, weeds are fast growing plants capable of winning the competition
for light. Therefore high percentages of weed is expected to come with higher weeds than
in very low percentage of the surface of weeds. This fact illustrated in Fig. 3.27 is not
included in the simulator where weeds of a fixed size are randomly picked. Such example
of enrichment of the training dataset and simulator could be tested easily following the
global methodology presented in this study to assess the scatter transform. Finally, we
did not pay much effort on denoising the data. The proposed data have been acquired
with a camera fixed on an unmanned vehicle. Compensation for variation of illumina-
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tion in the dataset, or inside the images, themselves or compensation for the possible
optical aberration of the camera used could also constitute directions of investigation to
improve the weed/plant detection. All the methods presented in this study (including
scatter transform) have the capability to be robust to global variation of light intensity
however the variation of light direction during the day may impact the captured textures.
Increasing the dataset to acquire images at all hour of a working day or adding a lighting
cabinet on the robot used would make the results even more robust [342, 356, 357, 358].

The problem of weed detection in culture crops of high density is an open problem in
agriculture which we believe deserves the organization of a challenge similar to the one
organized on Arabidopsis in controlled conditions [359] for a biology community. Such
challenges contribute to improving the state-of-the-art as recently illustrated with the
use of simulated Arabidopsis data to boost and speed up the training [360] in machine
learning. This challenge is now open on the codalab platform 3 together with the effort
of proposing real data and the simulator 4 developed for this study. These additional
materials, therefore, contributes to the opening of the problem of weed detection in culture
crops of high density to a wider computer vision community.

(a) Image 2 (97.27%) (b) Image 9(69.45%)

Figure 3.27 – Visual comparison of the best and the worst recognition of weeds and plants
by scatter transform.

Conclusions and perspectives

In this study, we proposed the first application of the scatter transform algorithm to
plant sciences with the problem of weed detection in a background of culture crops of

3. https://competitions.codalab.org/competitions/20075
4. https://uabox.univ-angers.fr/index.php/s/iuj0knyzOUgsUV9
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high density. This open plant science problem is important for field robotics where the
mechanical extraction of weed is a current challenge to be addressed to avoid the use of
phytochemical products.

We assessed the potential of the scatter transform algorithm in comparison with single
scale and multiscale techniques such as local binary pattern, gray level co-occurrence
matrix, Gabor filter, convolutional neural network and lightweight architectures such
as tensorFlow Lite and MobileNet. Experimental results showed the superiority of the
scatter transform algorithm with a weed detection accuracy of approximately 95% over
the other single scale and multiscale techniques on this application. Scatter transformed
also appeared as an interesting alternative to deep learning for training data set smaller
than 104 instances. Though the comparison was not intended to be exhaustive among
the huge literature on texture analysis, the variety of tested techniques contributes to
confirm the effectiveness of using the scatter transform algorithm as a valuable multiscale
technique for a problem of weed detection and opened an interesting approach for similar
problems in plant sciences. Finally, an optimization method based on energy at the output
of the scatter transform has been successfully proposed to select a priory the best scatter
transform architecture for a classification problem.

Concerning the weed-plant detection, our optimal solution with scatter transform can
serve as a first reference of performance and other machine learning techniques could
now be tested in the framework of the data challenge that we launched for this scientific
research 5. As a possible perspective of the investigation, one could further optimize the
scatter transform classifier proposed in this study. For instance, the size of the grid could
be fine-tuned or some hyper-parameters could be added with nonlinear kernels in the
SVM step. Also, weed/plant detection was focused here on a binary classification since
no distinction between the different weeds were included. In another direction, one could
also envision to extend this work to a multiple types of weeds classification problem if
more data were included.

5. https://competitions.codalab.org/competitions/20075
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Chapter 4

CONCLUSION AND PERSPECTIVES

4.1 Synthetic view of contributions

In this thesis, we investigated the possibilities of performing high-throughput
imaging for plant phenotyping at low-cost on a set of biological questions. Our contribu-
tions [361, 362, 363, 265, 72, 364, 365, 366, 367] can be organized into two parts. The
first part focused on how to reduce the cost of plant phenotyping at the sensor level.
In this part, we have shown innovative use of mini-computers originally developed for
educational purposes, associated with RGB and/or LiDAR cameras, originally developed
for video game purposes, to monitor plants from the top view as individuals [367], or
at a canopy level [72]. For this part, we have created an imaging platform from scratch
with a network of 60 cameras capable of monitoring 50000 seedlings in parallel. With
more convenient access to imaging systems (possibly at low-cost as stressed in the first
part), the current bottleneck in plant phenotyping now corresponds to the development
of image processing algorithms. Given the large variety of biological questions and vari-
ability of plant shapes, plant imaging seems to produce an overwhelming need for the
design of algorithms which overpasses any human capability to design specific algorithms
for each question. The second part addressed this issue and focused on reducing the
cost of the image processing algorithm’s design. In the era of machine learning-driven
computer vision, unequaled performances are accessible with advanced algorithms such
as deep learning, which stands as universal algorithms for solving image processing prob-
lems. The bottleneck in the development of image processing solutions is no more the
design of the algorithms itself but in the cost of the computation devices and the time
required for the creation of ground truth associated with the images to be processed.
In this context, we have investigated the value of the scattering transform [362, 367],
a recently introduced deep architecture that bears some similarities with deep learning
without the need for massive computational resources nor large annotated data sets. We
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have also investigated the possibility of performing automated image annotation with
unsupervised machine learning in sequences of images [361]. We have demonstrated, for
the first time to the best of our knowledge, the possibility to speed up annotation with
ergonomic tools based on the capture of the gaze of the eye of the annotator [265, 364].
We have quantified gain of time up to 70 with such tools illustrated in various use cases.
Last, we have demonstrated the possibility to speed up annotation by the use of synthetic
data automatically annotated [363, 368, 365].

This thesis proposed an analysis on how to reduce the cost of plant phenotyping
with a set of practical use cases. In the meanwhile, the ensemble of work covered a
large spectrum of methods as recalled in Fig. 4.1. This thesis was conducted in the
ImHorPhen research team in LARIS "Laboratoire Angevin de Recherche en Ingénierie
des Systèmes" Université d’Angers, in tight collaboration with the Phenotic platform of
UMR IRHS INRAe, in Angers, France, 2017 - 2020. The use cases chosen for illustration
in this thesis. reflects the various collaborations developed on the platform. This included
seedling growth [72], weed/crop classification [362, 265], leaf segmentation [363] and apple
detection [364]. The list of our publications are listed in the following.

Figure 4.1 – A synthetic view of the spectrum of methods. These methods have been
developed/used in this thesis for different plant phenotyping questions, including, moni-
toring seedling growth in individual and canopy scale, diagnosing plant biotic and abiotic
stress, detection of leaf area, fruits and weeds, and more.
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4.2 Perspectives
This work opens new perspectives. Some of them have been highlighted at the end

of each contribution detailed in the manuscript. Others could also be pointed here as a
further extension of the work presented in the core of this document.

In this thesis, we focused on plant phenotyping in a growth chamber or greenhouse for
experiments under relatively well-controlled conditions. While phenotyping in the field
is a relatively well-covered topic, a new topic for plant phenotyping is the observation
of plants in the urban environment. Understanding the response of plants to stress in
such an environment is still to be discovered. Also, plants offers human services in urban
ecosystems and imaging may help the study of cities as ecosystems to investigate how to
organize vegetation. Annex 1 proposes a first attempt in this direction.

During this thesis we had an opportunity to participate to a study dedicated to biomed-
ical imaging. This included the development of fast image annotation tool for videos. The
annotation was speed up with the help of non supervised learning as detailed in Annex
2. This approach could also be tested on the seedling growth imaging of Chapter 2. We
currently investigate this perspective.

.
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Abstract: Rapid urbanization is a worldwide critical environmental challenge. With this urban1

migration soaring, we need to live far more efficiently than we currently do by incorporating the2

natural world in new and innovative ways. There are a lot of researches on ecological, architectural3

or aesthetic points of view to address this issue. We present a novel approach to assess the visual4

impact of vegetation in urban street pedestrian view with the assistance of computer vision metrics.5

We statistically evaluate the correlations of the amount of vegetation with objective computer vision6

traits such as Fourier domain, color histogram, and estimated depth from monocular view. We show7

that increasing vegetation in urban street views breaks the orthogonal symmetries of urban blocks,8

enriches the color space with fractal-like symmetries and decreases the cues of projective geometry in9

depth. These uncovered statistical facts are applied to predict the requested amount of vegetation10

to make urban street views appear like natural images. Interestingly, these amounts are found in11

accordance with the ecosystemic approach for urban planning. Also, the study opens new questions12

for the understanding of the link between geometry and depth perception.13

Keywords: Natural image statistics, Urban views, Fourier, RGB, fractals, Depth map, Symmetry,14

urban greenery, projective geometry15

1. Introduction16

At present, more than half of the world’s population is estimated to live in the cities. Urban green17

spaces (UGS) [1,2] are an important factor of urban streetscape which provides aesthetic, economic,18

environmental, social, and health benefits to urban residents. Accordingly, societal benefits supplied19

by UGS to city dwellers are vital to maintain and increase urban citizen’s quality of life. The study20

of the impact of UGS on public health [3–7], to manage the urban ecosystem [8,9] or to assess the21

aesthetic quality of UGS [10] can benefit from various computer vision based approaches. This includes22

computer vision to acquire the semantic information of every single pixel of an urban space [11–15]23

or analyzing the visual impact of vegetation in urban environments [16–18] from top view images in24

birds or satellite viewpoint.25

In this article, we apply computer vision techniques in the urban landscape from the viewpoint of a26

pedestrian in an urban street. Urban street views are highly geometrical and symmetrical environments27

with orthogonal and parallel lines radically different from what is found in a natural environment28

where structures following any orientations are more likely to occur. Also, from a color perspective,29

urban street views often offer few hue values due to their limited mineral content. This is very different30
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from the richness of color found in nature. Characterizing the quantitative impact of vegetation on31

these visual symmetries would enable to assess the question of how much vegetation should be32

included in an urban street view to make it look more natural than man-made. We provide a computer33

vision quantification of the impact of vegetation in urban street views by determining their statistical34

properties.35

Obviously, a very large set of potential descriptors could be used for this application. Instead of an36

exhaustive benchmark of existing computer vision tools of the literature, or an automatic selection of37

such tools with machine learning approaches, we proceed with an analytical approach where we select38

simple descriptors which have been successfully applied in the literature to identify statistical invariant39

features in pure man-made or purely natural scenes. We explore, for the first time to our knowledge,40

how this small set of historical descriptors behave in presence of various amount of vegetation. We41

also provide new experiments and dataset specially designed for this work.42

As related works, one can recall that understanding the statistical properties of the natural43

environment is an important problem in computer vision [19–21]. Although explored for decades,44

characterization of statistical invariance and symmetries in natural images continues to progress.45

For instance, as recently reviewed in [20], this progress has been obtained by considering first and46

higher statistics of the luminance and color distributions of natural images, local orientation in images47

or statistical cues in the natural visual environment that is available to compute disparity. Other48

approaches have also contributed to the characterization of natural images by considering different49

categories of them. This includes gazing at natural scenes with new sensors (range camera [22,23],50

thermal camera [24], polarized light [25] . . . ) or in various environments of interest for humans51

(underwater [26], man versus natural environment [27,28]). We adopt this approach of characterizing52

natural images by considering specific categories. We focus on urban street views with various amount53

of vegetation. These scenes are therefore important as already underlined for urban planning but also54

for vision understanding because they constitute an intermediate category between pure man-made55

scenes and purely natural scenes in which the visual system has evolved originally.56

The two main novelties of the paper appear along the following lines : (i) None of the existing57

strategies for urban greenery has proposed so far a computer vision perspective at a pedestrian level.58

Computer vision was already used to analyze the statistics of man-made versus wild images but59

(ii) we propose the first application of these techniques for man-made block world with various60

amount of vegetation. The article is organized along the following structure. In the second section,61

we explore how vegetation in urban street view can be quantified with computer vision tools in the62

Fourier domain. In the following section, we investigate another aspect of the visual impact of urban63

vegetation in the color domain. The fourth section explains the last aspect of the visual impact of urban64

vegetation on depth. In conclusion, the application of these results is discussed in terms of urban65

planning, and we mention new questions now opened for further investigation by this work.66

2. Impact of vegetation in the Fourier domain67

Different categories of natural environments present different orientations. For instance buildings,68

for stability reasons, will provide orthogonal edges while plants [29], because they seek for maximum69

light, are more likely to propose edges in all directions. This has been demonstrated in [28] to70

statistically translate into a characteristic signature in the power Fourier spectrum of natural images71

with anisotropy patterns in the Fourier domain of urban views and isotropic patterns in the natural72

landscape. In this section, we reproduce the experiment of [28] with urban street views including a73

various amount of vegetation between pure man-made and purely natural scenes.74

To this purpose we consider the cityscapes dataset [30] which includes 25,000 RGB annotated75

street pedestrian view images from 50 cities mainly located in Germany. For experiments in this76

article, 5,000 images from fine annotations category are used. The annotation includes the labeling of77

vegetation. It is therefore straightforward to associate a percentage of vegetation with each image of78
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this dataset. Three examples of this dataset are shown in Fig. 1 with the RGB images, the annotated79

images and the percentage of vegetation which is evaluated through annotated images.

Figure 1. Three examples of images taken from the dataset considered in this study [30]. The first row
shows the RGB images. The second row is the corresponding annotated images. The percentage value
gives the percentage of vegetation measured from the annotated images.

80

Figure 2 illustrates spectral signature computed by Fourier transform for the same three images of81

the dataset as in Fig. 1. As visible in Fig. 2 and similarly to what was found in [28] the presence of plants82

tends to reduce the anisotropy between the spectral energy in horizontal and vertical frequencies.83

Figure 2. Three examples of the modulus of the Fourier transform of the RGB images of Fig. 1 from left
to right with 0%, 28% and 60% of vegetation respectively.

Figure 3 illustrates the full pipeline followed for investigating the impact of vegetation in the
Fourier domain. Due to the underexposed aspect of the RGB images in this dataset, CLAHE [31]
algorithm is used for adjusting the contrast of the image and intensity equalization. Then, the
RGB images are converted into gray levels L = 0.299× R + 0.587× G + 0.114× B and transferred
from spatial domain to frequency domain through 2-D Fourier transform. The modulus of this
Fourier transform is thresholded, as in [28], in order to keep 70% of the energy. To measure the
vertical-horizontal anisotropy of this binarized spectrum the following ratio of orientation is computed
as

R =
D1 + D2√

H2 + V2
, (1)

where, as shown in Fig. 4, D1, and D2 represent the diagonal and antidiagonal size of the spectral84

signature, H indicates the horizontal size of spectral signature and V represents the vertical size of it.85

This anisotropy ratio is then plotted as a function of the percentage of vegetation. Examples of86

three cities from the dataset are given in Fig. 5 where a linear trend clearly appears with decreasing87

anisotropy ratio as a function of the percentage of vegetation in the image. The average slope on the88

whole dataset [30] is weak. However, this trend is systematically found and statistically valid for all89

cities as demonstrated in table 1.90

Experimental results of this Fourier approach demonstrate, as one could intuitively expect from91

[28], that the presence of vegetation tends to break the horizontal-vertical symmetry in the images as92

quantified by the anisotropy ratio defined in this section.93

We now come to propose a possible application of this statistical result for urban planning. We94

considered the pure concrete-based images and pure natural images (in the wild) of [28] to determine95

the expected range of the anisotropy ratio. Natural images were found on average with an anisotropy96

ratio of 0.84 and pure concrete of 0.74. An intermediate value in this range could constitute a transition97

limit between an environment perceived as natural and an environment perceived as pure man-made98

in the Fourier domain. To test this hypothesis, we considered the middle value of this anisotropy ratio99

between natural and pure concrete environment. This average value (0.79), pointed in green in Fig.100
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Figure 3. Image processing pipeline for the study of the impact of vegetation in the Fourier domain.
CityScapes DB [30] corresponds to an available dataset as illustrated in Fig. 1.
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Figure 4. Elements computed in the anisotropy ratio of Eq. (1) applied on the modulus of the Fourier
transform.

Figure 5. Anisotropy ratio as a function of the percentage of the vegetation of three examples of cities
taken from the dataset considered in this study [30]. The left column is Strasbourg city. The column
in the middle is for Aachen. The right column is Bremen city. The red line is the linear fit of the data.
The green line is the reference 0.79 corresponding to the average anisotropy value between the pure
man-made and pure natural environment.

5, crosses the linear fit computed for each city and provides an associated percentage of vegetation.101

The average value of the requested percentage of vegetation to reach this anisotropy ratio is not found102

to trivially be 50% but rather 28% with a standard deviation of 8.32%. The requested percentage of103

vegetation in cities is also debated in other scientific fields. Percentage of vegetation below which104

fragmentation of urban ecosystems has consequences on the diversity and viability of these ecosystems105

have been highlighted in [32–34] for instance. Interestingly, it appears that the threshold around which106

processes are favored or not are found to be between 20 and 30% of vegetation, i.e. in a similar range as107

the one found here with our computer vision approach. However, it is to be noticed that the decrease108

of anisotropy ratio statistically recorded could also be obtained without any vegetation by simply109

using non-orthogonal building architectures promoting, for example, curved shapes with edges in all110

orientations.111

3. Impact of vegetation in the color domain112

Another aspect of the visual impact of vegetation on the images is explored in this section. In113

a pure concrete urban environment, it is likely that the color embedded in the color histogram of114

images will be limited to some blue in the sky, grey-black on the ground and a small number of115

colors correlated to the mineral content used for walls of the building in the image (generally not116

green). Adding vegetation in an urban concrete environment is therefore expected to enrich the color117

histogram. The statistics of the color histogram of natural images have been studied in [35–37] where118

scale invariant symmetries were observed in the organization of the color in the RGB 3D histogram. We119

reproduce similar experiments with the dataset of the previous section [30] to investigate the evolution120

of the RGB 3D color histogram as a function of the amount of vegetation in the image.121
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Table 1. The slope of the anisotropy ratio as a function of the percentage of vegetation and associated
P-value.

City Slope P-value
Aachen 1.3 E-3 8.10 E-11
Bochum 1.4 E-3 1.73 E-07
Bremen 1.3 E-3 8.06 E-17
Cologne 1.1 E-3 1.87 E-06
Darmstadt 1.4 E-3 9.72 E-06
Dusseldorf 1.4 E-3 8.67 E-17
Hamburg 1.0 E-3 4.44 E-08
Hanover 1.4 E-3 4.58 E-12
Jena 1.0 E-3 1.40 E-05
Krefeld 1.5 E-3 5.82 E-06
Monchengladbach 1.5 E-3 1.22 E-07
Strasbourg 0.9 E-3 1.92 E-08
Stuttgart 0.8 E-3 3.35 E-05
Tubingen 0.5 E-3 2.37 E-03
Ulm 1.3 E-3 7.71 E-07
Weimar 1.2 E-3 2.38 E-10
Zurich 0.8 E-3 3.76 E-05

Figure 6 shows three examples of the 3D color histogram for the same images of Fig. 1. As visible122

in Fig. 6, the presence of plants tends to increase the complexity of the 3D color histogram.123

Figure 6. Three examples of the 3D color histogram of the RGB images in Fig. 1. From left to right with
0%, 28% and 60% of vegetation respectively. The presence of plants tends to increase the richness of the
3D color histogram.

Figure 7 illustrates the full pipeline followed for investigating the impact of vegetation on the 3D124

color histogram. A box-counting procedure is applied as follows. The colorimetric cube is successively125

covered with boxes of side a and volume a3, with varying a. For each box of size a, one computes the126

number N(a) of boxes which are needed to cover the support of the 3D histogram, i.e. to cover all127

the cells of the colorimetric cube which are occupied by pixels of the image. As observed in [35–37]128

the evolution of the number of counts N(a) as a function of the color scale on a log-log scale is well129

approximated by straight lines with slope −D, over a significant range of colorimetric scales a. This130

scale invariant symmetry is associated with a fractal behavior with fractal dimension D. Then for131

all images in each city, the slope values D are plotted as a function of the percentage of vegetation.132

Examples for three cities of the dataset are given in Fig. 8 where a linear systematic trend clearly133

appears over the whole set of cities with increasing fractal dimension D as a function of the percentage134

of vegetation in the image. Table 2 gives the slope of the fractal dimension and associated p-value for135

all cities in CityScape dataset.136

Experimental results of this approach in the color domain demonstrate that the presence of137

vegetation tends to enrich the complexity of the 3D color histogram. This enrichment is in the direction138

of higher dimension scale invariant symmetries as quantified by the box-counting fractal dimension139

defined in this section.140
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Figure 7. Image processing pipeline for the impact of vegetation in the color domain. CityScapes DB
[30] corresponds to available dataset shows in Fig. 1. All images of CityScapes dataset are processed
and batched city by city.

Figure 8. Fractal dimension values as a function of the percentage of the vegetation of three examples
of cities taken from the dataset considered in this study [30]. The left column is Strasbourg city. The
column in the middle is for Aachen. The right column is Bremen city.
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Table 2. Slopes of fractal dimension and associated P-value in the colorimetric approach.

City Slope p-value
Aachen 0.19 E-2 3.47 E-11
Bochum 0.23 E-2 5.87 E-06
Bremen 0.19 E-2 1.59 E-14
Cologne 0.10 E-2 9.79 E-03
Darmstadt 0.35 E-2 1.45 E-09
Dusseldorf 0.23 E-2 5.67 E-14
Erfurt 0.17 E-2 3.94 E-07
Hamburg 0.18 E-2 1.54 E-06
Hanover 0.14 E-2 2.00 E-03
Jena 0.25 E-2 7.90 E-10
Krefeld 0.16 E-2 5.31 E-02
Monchengladbach 0.20 E-2 2.66 E-02
Strasbourg 0.10 E-2 1.35 E-02

Similarly to what was proposed in the previous section on Fourier, there are possible applications141

of this statistical result for urban planning. Especially the increase of the fractal dimension could serve142

to control a requested amount of vegetation in cities where the uniform colors of concrete are used143

for buildings. However, it is to be noticed that the complexity of the 3D color histogram can also be144

enriched in the direction of fractal signatures by simply painting concrete urban environment when145

there is no possibility of adding vegetation. This is shown in Fig. 9 on a colorful urban image without146

any vegetation. This image has a high fractal dimension which would correspond to adding almost147

100% of vegetation in the mono-color concrete cities of Fig. 8.148

Figure 9. 3D color histogram and fractal dimension’s plot of a colorful urban image without any
vegetation.

4. Impact of vegetation on monocular depth cues149

We explore the last aspect of how the impact of vegetation in pedestrian view can be quantified150

with computer vision tools and now focus on the depth, i.e. distance to a point of view. Humans and151

computers are known to be able to estimate depth from the stereo and monocular visions [38,39]. In152

this study, we restrict ourselves to monocular vision with single images of the streets. Different cues of153

depth can be present in monocular vision such as textures, shadows, defocus [40], parallel lines [41]154

producing in a projective geometry the presence of vanishing point on the horizon line, repetition of155

similar objects at different distances from the camera. . . .156

For humans, all these cues can contribute to the perception of depth in monocular vision and157

it is difficult to quantify the relative importance of each individual cue in a scene. With computers,158

it is possible to design a feature especially capturing the presence of a single depth cue. Also, with159

the current development of machine learning in computer vision, it is possible to produce a global160

quantitative estimation of depth incorporating all cues. In this section, we propose a quantification of161

the presence of vegetation on the quality of depth estimation with these two approaches including162
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Table 3. Available datasets for the analysis of the impact of vegetation on depth.

dataset
Num. of
samples

RGB
images

Annotated
images

Depth images
evaluated with

Make3D
[48] 534 -

Laser range data
with ray position

KIITI
[49] 93,000 - Lidar

Cityscapes
[30] 25,000

SGM algorithm
applied on RGB images

[46]
WildDash

[50] 70 -

Mapillary
[51] 25,000 -

ApolloScape
[47] 140,000 survey-grade dense 3D point cloud

the detection of the vanishing point and a direct estimation of the depth map from a monocular RGB163

image.164

Virtual environments in urban systems research are very useful to access to situations that do not165

(yet) exist in real environments [42–44]. In our case, we need to have a dataset with RGB images of166

urban street view with various amounts of annotated vegetation. Ground truth depth map should not167

be computed from the RGB images to be compared with the depth cue estimation or depth estimation.168

There are a lot of available datasets with this structure for indoor and outdoor environments [45]. The169

most related outdoor datasets found in the literature are listed in table 3. It should be mentioned that170

for most of these datasets depths are not measured but estimated from RGB images in different ways171

such as semi-global matching (SGM) algorithm [46]. Therefore, they are not suitable depth for our172

purpose because we specifically want to extract depth from RGB and we need a depth map estimated173

from an independent distinct way as a ground truth. Also, the sole available outdoor dataset with a174

pedestrian urban street views in RGB and directly estimated depth [47] is not incorporating enough175

variation of percentage of vegetation. None of the available datasets listed in table 3 incorporate all the176

required aspects of our study. Therefore, we had to produce our own virtual dataset.177

We propose the virtual RGBD green-city dataset provided as supplementary material to this178

study where 300 high-resolution images (879 × 1680 pixels) generated from the virtual world in urban179

settings under the different percentage of vegetation. These virtual cities were created using the Unity180

game engine with available models of trees and urban blocks. The dataset includes the segmentation181

of the vegetation to compute the percentage of vegetation and the depth map. Figure 10 illustrates182

the content of this virtual RGBD green-city dataset with three examples of RGB images with different183

percentages of vegetation. One specific interest in working with simulated data is that it is possible184

to create datasets of the same street with various amounts of plants following different strategies of185

the positioning of the plants. We take benefit of this opportunity and design several (10) experiments.186

This includes positioning trees on one side or on both sides of the street, positioning trees with various187

orientations or a single vertical orientation, using a tree with different sizes or using a variety of trees.188

For further information related to the virtual RGBD green-city dataset see supplementary material.189

4.1. Detection of vanishing point190

The vanishing point corresponds to the place where parallel edges in a real scene produce191

lines which cross in the image due to the projective geometry created by the lens of a camera.192

There are different approaches to find the vanishing points in an image [39,52,53], in this study our193

purpose is not to compare them or select any best method. Instead, we arbitrarily select one of the194

techniques which provides good results on similar images to ours and show how the performance195

of this technique evolves when the amount of vegetation is increased. To this purpose, the Hough196
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Figure 10. Three examples of virtual RGBD green-city dataset. The first row gives RGB images; the
middle row is for the corresponding annotated images of the vegetation, the last row shows the
percentage of vegetation.

transform-based technique of [54] is incorporated in the pipeline shown in Fig. 11.197

198

A Hough transform is first applied to estimate the vanishing point on a reference image taken199

as the image with 0% of vegetation. Edges are extracted with the Canny edge detector [55] of the200

reference image. The extracted edges are then transformed into Hough space. The vanishing point201

is chosen as an intersection point with a large number (empirically chosen to 70) of intersection in202

the Hough space. Then, the extracted line segments are merged if they are associated with the same203

Hough transform bin and the distance between them is less than the value of a threshold empirically204

set to 400 pixels. Afterward, the detected lines in the Hough transform are counted as a contribution to205

the vanishing point if they are crossing in a vanishing area. Indeed, due to the limited and discretized206

size of the virtual environment, the lines do not intersect exactly at a single point [56]. We define the207

vanishing area with the size of 55 by 45 pixels around the largest number of convergent lines in the208

reference image without vegetation. Finally, the percentage of converged points in the vanishing area209

is recorded.210

This pipeline (Fig.11) is applied to all the images of the dataset. The percentage of vanishing211

points is plotted with the comparison to the reference image free from vegetation as a function of212

the percentage of vegetation. Figure 12 shows the evolution of this percentage of vanishing points213

remaining as a function of the percentage of vegetation introduced. The values of the linear slope for214

all 10 experiments are represented in tables 4, 5. Table 4 represents slope values for scenes with trees215

located on both sides of the street or everywhere like a forest and table 5 shows slope values for scenes216

which trees are located just on one side of the street.217

From Fig. 12 one can see that the presence of vegetation tends to change the position of vanishing218

points in the vanishing area and consequently fewer points are crossing in this area. An interpretation219

is that the increasing amount of leaf will increasingly cover the horizontal lines and thus affect the220

number of cues for the estimation of the vanishing point. However, it is to be noticed that other objects221

than vegetation could also occlude the horizontal lines and thus have an impact on the detection222

of vanishing points in a pure concrete urban environment. To further demonstrate the impact of223

vegetation on depth perception, we thus reproduced in the next section the experiment of this section224

using a completely different depth estimation method.225

Table 4. Result for detected vanishing point in experiments with trees placed on both sides of the street
and forest.

Category - two Side Slope
Same Tree-Same Size-Same Orientation - 0.9868
Same Tree-Same Size-Different Orientation - 1.1056
Same Tree-Different Size-Same Orientation - 0.5497
Different Tree-Same Size-Same Orientation - 1.3513
Different Tree-Different Size-Different Orientation - 0.9453
Forest - 0.6916
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Figure 11. Image processing pipeline for the impact of vegetation on the detection of the vanishing
point. VirtualCity DB refers to virtual RGBD green-city dataset which is provided for this study.
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Figure 12. Percentage of detected vanishing points as a function of vegetation’s percentage. a)
Forest, b) Different-Size, One-Side c) Different-Size, Two-Sides d) Different-Orientation, One-Side
e) Different-Orientation, Two-Side f) Different-Tree, Different-Size, Different-Orientation, Two-Side

Table 5. Result for detected vanishing point in experiments with trees placed on one side of the street.

Category - One Side Slope
Same Tree-Same Size-Same Orientation - 1.5522
Same Tree-Same Size-Different Orientation - 2.1866
Same Tree-Different Size-Same Orientation - 0.8548
Different Tree-Same Size-Same Orientation - 1.3543

4.2. Depth estimation226

We now propose to assess the impact of vegetation on the global perception of depth. To this227

purpose, we settled the pipeline described in Fig. 13. Here again, as for the estimation of the vanishing228

point, there is a huge literature on estimation of depth with machine learning approaches. Our purpose229

is not to compare any of them but to show the impact of vegetation on one of them [57]. We arbitrarily230

select one of the recent methods performing well for depth estimation of similar images to ours and231

submit this to our original virtual RGBD green-city dataset which contains RGB, depth and annotated232

images.233

At the first step, the estimated depth is calculated by Deep Convolutional Neural Field (DCNF)
algorithm developed by [57]. DCNF model is a depth estimation approach exploring Convolutional
Neural Network (CNN) and continuous Conditional Random Field (CRF). The whole networks of
DCNF are trained on Make3D dataset [48] for outdoor scenes. Make3D dataset approximately includes
1000 outdoor street pedestrian views captured in good weather conditions with 50% of vegetation on
average. At the second step, the global similarity is calculated between the estimated depth images
and ground-truth depth by normalized-cross-covariance (NCC) which reads

NCC(X, Y) =
E
[
((X− E(X)).(Y− E(Y))

]

σXσY
, (2)

where X and Y represent the estimated depth map and ground-truth depth map respectively, σX and234

σY are the standard deviations and E stands for the 2D mean.235
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Figure 13. Image processing pipeline for the impact of vegetation on normalized-cross-covariance
approach. VirtualCity DB refers to virtual RGBD green-city dataset which is provided for this study.
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Figure 14. Normalized cross-covariance as a function of the percentage of vegetation. a) Same tree-same
size-Same orientation-Two side, b) Different orientation-Two side, c) Different orientation-One side,
d) Forest, e) Different tree-Different size-Different orientation-Two side, f) Same tree-Same size-Same
orientation-One side

Figure 14 illustrates the value of normalized-cross-covariance as a function of the percentage236

of vegetation for the six different experiments included in the virtual RGBD green-city dataset. The237

impact of vegetation on the similarity of estimated depth map with the true depth map is systematic.238

The presence of the vegetation tends to decrease the quality of depth cues. This decrease modeled239

with a linear trend gives the slope provided in table 6 for scenes with trees located on both sides of240

the street or everywhere like a forest and table 7 for scenes with trees located just on one side of the241

street. Interestingly this result is similar to the one observed with the Hough transform in the previous242

section while it was obtained with a completely different approach.243

From an applied urban planning perspective, if we discard the solution that would correspond to244

position trees everywhere (Forest case) these experiments demonstrate that the highest decreases of245

depth cue (as given in table 4-7) are obtained for urban streets when they include a variability of tree246

shape and/or tree size and/or various tree orientations. Projective geometry with parallel lines like247

the one produced by urban block world is not present in wild landscapes. Therefore, we come up with248

the interesting conclusion that, consistently with the well-known necessity of diversity in ecosystems,249

computer vision also suggests to add plant diversity as the most effective strategy to break the depth250

cues created by non-natural urban block worlds.251

Table 6. Result for global similarity in experiments with trees placed on both sides of the street and
forest.

Category - two Side Slope
Same Tree-Same Size-Same Orientation - 0.0072
Same Tree-Same Size-Different Orientation - 0.0015
Same Tree-Different Size-Same Orientation - 0.0089
Different Tree-Same Size-Same Orientation - 0.0019
Different Tree-Different Size-Different Orientation - 0.0175
Forest - 0.0083
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Table 7. Result for global similarity in experiments with trees placed one side of the street.

Category - One Side Slope
Same Tree-Same Size-Same Orientation - 0.0051
Same Tree-Same Size-Different Orientation - 0.0046
Same Tree-Different Size-Same Orientation - 0.0118
Different Tree-Same Size-Same Orientation - 0.0016

5. Conclusion252

In this pilot experimental study, we quantified, on large datasets, the impact of vegetation on253

visually perceptible symmetries in urban street pedestrian viewpoint. Correlation of this amount of254

vegetation with objective computer vision traits has been shown statistically in the Fourier domain,255

in the color histogram, and in depth from monocular view. This objectively quantifies the expected256

common-sense intuition that vegetation in street pedestrian views breaks the orthogonal symmetry257

of urban blocks, enriches the color space in the direction of higher dimension fractal symmetries and258

decreases the cues of depth included in projective geometry. The result obtained in the Fourier domain259

and the color histogram corresponded to existing experiments of the literature carried here for the first260

time on urban scene with various amount of vegetation while the experiment designed and carried on261

depth is, to the best of our knowledge, completely new.262

Possible applications in urban planning of the carried experiment have been proposed. The263

most interesting is that a percentage of the vegetation of 20 to 30% is found to be necessary to264

have an urban street which appear closer to natural images than pure man-made from the Fourier265

point of view. Interestingly this also meets the typical percentage of vegetation often mentioned as266

necessary to maintain ecological viability and diversity in urban ecosystemic studies [32–34]. The267

novel contribution on the impact of vegetation on depth could be extended in various directions to268

enable a deeper understanding of the recorded effect. For instance, it would be possible to reproduce269

the experiment carried here to objectively quantify the effect of vegetation on other computer vision270

traits. In particular, one could investigate the pedestrian viewpoint in urban streets with bio-inspired271

traits such as the estimation of depth from stereovision [58–60] or at a higher integrative level from272

visual saliency, [61] or also with the heat map produced by eye-tracking systems when applied on273

large cohorts of human observers [62]. The effect of vegetation on pedestrian view in urban street274

was objectively quantified in this article. It could also be interesting to compare these results with275

aesthetic assessments [63–65] on the same scenes when perceived by the human. One could directly276

embed humans in virtual environments with grabbing tasks (similarly to [66] for instance) and assess277

their performance while varying the amount of vegetation. Finally, with the analytical approach278

followed in this preliminary work, the standard deviation from the simple linear trends identified on279

few descriptors, although already interesting, could be considered as still too high to serve as good280

predictors of a correct amount of vegetation to be placed in an urban planning. Using more expressive281

multivariate models with a learned and large feature space based on deep learning [67] could be a282

promising direction.283

In another direction, one could seek to apply the computer vision traits used in this study on284

cognitive architecture [68] or urban landscape experiments carried in the domain of ecology. In285

architecture, one could, for instance, investigate pedestrian view of the urban environment through286

the window at different floors of buildings (while the experiment in this article was limited to ground287

floor view). In the domain of ecology, one could study the relationship between the computer vision288

metrics designed in this study and the ecological diversity along the seasons (while the experiment289

in this article was limited to spring-like views with unlabeled ecological diversity) or in night vision290

as allowed by the simulation environment introduced in this work. Such architectural or ecological291

experiments had in the past been relying on qualitative psycho-visual studies [69,70] but also tend to292

use computer vision features in 2D dimensions [71,72] or as recently shown in [73] with 3D LIDAR293

data.294
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6. Supplementary material295

As a side result of this work, a novel dataset has been produced which corresponds to a synthetic296

urban street in pedestrian view through RGB images with the various amount of vegetation. These297

images are associated with depth maps and percentages of vegetation. It is made freely available as298

pointed in the supplementary material section.299
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ABSTRACT

In this article, we address the problem of the classification of the health state of the colon’s wall of mice, possibly injured
by cancer with machine learning approaches. This problem is essential for translational research on cancer and is a priori
challenging since the amount of data is usually limited in all preclinical studies for practical and ethical reasons. Three states
considered including cancer, health, and inflammatory on tissues. Fully automated machine learning-based methods are
proposed, including deep learning, transfer learning, and shallow learning with SVM. These methods addressed different
training strategies corresponding to clinical questions such as the automatic clinical state prediction on unseen data using
a pre-trained model, or in an alternative setting, real-time estimation of the clinical state of individual tissue samples during
the examination. Experimental results show the best performance of 99.93% correct recognition rate obtained for the second
strategy as well as the performance of 98.49% which were achieved for the more difficult first case.

Introduction

Classically the characterization of colon’s pathology is realized from histology1 but is now also investigated with in vivo
imaging techniques which enable the oncological2 early detection of abnormal physiological processes such as inflammation of
dysplastic lesions. This includes chromoendoscopy3, confocal laser endomicroscopy4, 5 or multiphoton microscopy6. These
modern video-microscopies introduced in preclinical studies on mice with the promises of translational research7.
These imaging techniques are producing videos which for the inspection of one colon of one mouse corresponds to thousands
of frames to be further multiplied by the number of mice inspected. Each frame of these videos can be different in the structure
and texture as it is recorded over a colon’s wall with movement of the probe, spurious presence of unexpected items between
probes and colon, variation of contrast agent concentration. To draw benefit from such imaging protocols, the bottleneck is thus
the automation of the image analysis. In this article, we consider one of these protocols and propose a fully automated solution
for the classification of colon wall images into healthy, inflammation and dysplastic tissues.
We work with the confocal endomicroscopy imaging protocol of5 for the classification of the health state of the colon’s wall of
mice. Since its introduction, this protocol has seen widespread usage in multiple research groups8–10. So far, image analysis for
the classification of colon’s wall health state with this protocol has been relatively limited. The existing literature is based on
handcrafted features5, 8–10.

In this article, we go beyond the sole characterization (feature handcrafting) and, for the first time on Mice colon in cancer
study from confocal laser endomicroscopy, in the growing trend of machine learning applied to medical image analysis11–13,
propose a fully automated classification method based on supervised learning that we validate on thousands of images. This
work is a priori challenging since the amount of data in preclinical studies, such as in our case, is rather limited compared to the
usual amount of data available in medical applications of machine learning. Also, another a priori open question addressed
in the preclinical study is the question of translational research, i. e. the reusability of the knowledge gained for animals on
human or human on animals. We address this question here, for the first time to our knowledge, in the perspective of machine
learning. As the last innovation in our methodology to address a specific unsolved preclinical problem, we discuss different
scientific use cases and corresponding strategies for training concerning some properties of confocal laser endomicroscopy.



Figure 1. Top: Human samples of colon’s wall images: healthy (left) and unhealthy (right) tissues observed from fluorescent
confocal endomicroscopy. Bottom: Mouse samples of colon’s wall images: healthy (left) and unhealthy (right) tissues observed
from fluorescent confocal endomicroscopy.

Images are acquired at the video frame rate while the expert holding the endoscopic probes moves it slowly to inspect the tissue
when located close to the tissue of interest. Consequently, though the imaging system is producing vast amounts of images,
a large number of images are very similar. We consider the possibility of taking benefit from this self-similarity in order to
significantly reduce the size of the data set requested during the training stage. This training approach is vital for the expert
in charge of the annotation of the training data sets since it is a highly time-consuming task. In a second configuration, we
also discuss the performance obtained with different machine learning approaches when we learn on images corresponding to
a given set of mice while applying the classification on a distinct cohort of mice. This cross-subject training is relevant for
clinical purposes because it quantifies to which extend the disease observed is generic or patient-specific. The performances of
these two training strategies compared to the best performance obtained with a brute force random sampling on a whole cohort
for the training of the classification algorithm.

In the literature, several studies have focused on the classification of colon’s health state from endomicroscopy. Up to our
knowledge, this body of work based on the classical methodology of handcrafted feature design (taking into account domain
knowledge), followed by supervised machine learning.
A method based on global descriptors proposed in5, whose introduced fractal box-counting metrics and illustrated them on two
images. Vessel detection was proposed in8 after a Hessian-based filter in addition to length area and diameter measurements of
vascular crypts of the colon’s wall. Blood vessels of the colon’s wall characterized in9 from Fourier analysis. Also, vascular
networks of colon’s wall were characterized in terms of graphs in10 after skeletonization on few hundreds of images.
Closest to our work is the method by Ştefănescu et al., which is based on machine learning with neural networks of images of
human tissues14 acquired with confocal laser endomicroscopy. However, the images are clearly different; in contrast, the field
of view and resolution, as can be seen in Fig. 1. These differences motivate our proposition of designing a specific method
for mice trained on mouse images. In contrast to14, we (i) propose a method based on representation learning15 as opposed
to handcrafted features, and (ii) specifically discuss different experimental protocols and develop different training strategies
adapted to these protocols.

Results
In this section, we give experimental results using the experimental protocol and training strategies described in the method
section as well as the different feature extraction and feature learning techniques.

Cross-subject training
For this protocol, the most challenging one of all considered cases, where generalization to unseen subjects (mice) is required,
randomly chosen images of mice for three datasets of training, validation, and testing as shown in table 1. While the training set
is used to adjust the parameters of the model, the validation set is used to minimize overfitting and tune the parameters. The test
set of unseen data is used to confirm the predictive power and that the model generalises. The final classification of trials is
computed as the average performance of each fold. The number of healthy and unhealthy mice are not equal. We simulated
cross-validation for this approach by changing mice between training, validation, and testing for each new experiment.
Table 2 gives results with the different feature representations and classifiers described in the method section. In addition,

table 3 shows classification accuracy of a transfer learning method with different freezing layers discussed in section . Our

2/11



Table 1. Number of mice in each dataset

Healthy mice Mice with cancer Mice with inflammation
Training 5 7 7

Validation 1 2 2
Testing 3 4 7

proposed architecture trained from scratch shows the best recognition rate compared to handcrafted features, and state of the art
high-capacity architectures with pre-training. The experiments indicate that high-capacity networks overfit on this amount of
target data even when they are pre-trained on large datasets of natural images. We conjecture that the shift in data distributions
is too large in the case of this application. The last layer of the network, still trained from scratch even in the case of transfer
learning, overfits on the small target data set. To sum up the essence of the contribution, we train a high-capacity model on a
large scale data set, followed by fine-tuning of a low capacity SVM model on the small volume target data set.
Also, we studied the dependency of the classification results on the number of subjects in the training data, as illustrated in the
figure 2. For this study, we chose the LBP based representation and the SVM classifier since it can work better when a small
size of the database is available for training. As expected, the system performance increases significantly when additional mice
are added to the training set, as each mouse potentially has its specific pattern for health, inflammation, and cancer tissues.
Figure 3 shows some cases of correctly and wrongly classified images with their coarse localization maps. As can be seen,
these images are indeed difficult to assess as the miss classified images have a similar pattern with another class.

Table 2. Left: Results of cross-subject training with full data, where all images of 6 healthy mice, 9 mice with cancer, and 9
mice with inflammation used for training the system. Right: Confusion matrix of cross-subject performance where our
proposed CNN architecture is used.

Classifiers Transfer learning Accuracy

Proposed CNN architecture - 98.49% ±0.6

DenseNet X 94.54% ±2.9
VGG16 + linear SVM X 90.60% ±0.4
VGG16 X 89.62 % ±3.3
ResNet50 X 75.93% ±4.1
VGG16 - 74.82% ±3.2

LBP features + linear SVM - 83.01% ±0.4
Proposed method at14 - 77.41% ±1.3

True Cancer True Inflammation True Healthy
Predicted Cancer 13107 0 0

Predicted Inflammation 0 5012 46
Predicted Healthy 0 75 2011

Table 3. Results of cross-subject training with different numbers of frozen layers when transferring the VGG16 network from
ImageNet to the target dataset.

No. Freezing
Conv. layers 1 2 3 4 5 6 7 8 9 10 11 12 13

Accuracy 40.8%±17.4 65.6±29.9% 89.6±3.3% 89.2%±3.9 42.8%±21.9 43.4%±23.25 70%±24.1 52.8%±22.2 75.4%±23.9 82.2%±9.4 65.8%±29.9 41.2%±18.3 33%±0

Figure 2. Dependency on the number of training subjects for cross-subject training (LBP features + SVM classifier).

Cross-sample training with all samples
Let us recall that in another use case of cross-sample training, subjects (mice) are mixed between training and test sets. In our
setup, the 7 fold cross-validation approach used where almost 75% of images are dedicated for training and 25% of images for
testing purposes, which corresponds to the proportions chosen for a similar problem in14, albeit for human colon’s walls. When
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Figure 3. Example of correctly and miss classified images of the proposed CNN architecture for the cross-subject training
strategy. Each cell consists from left to right of a grayscale image, a coarse localization map of the important regions in the
image for the network16, and a high-resolution class-discriminative visualization16. Cells with dashed lines mean that there is
no miss classified images for that class.

needed, the validation set was chosen from the training set. Table 4 gives the prediction performance of the different classifiers
on this data. We report means and standard deviations of ten runs.

Table 4. Left: Results of cross-sample training with full data. Right: Confusion Matrix of cross-sample performance where
our proposed CNN architecture is used.

Classifiers Transfer learning Accuracy

Proposed CNN architecture - 99.93% ±0.13
LBP features + linear SVM - 97.7% ±0.39
VGG16 + linear SVM X 85.9% ±0.4
VGG16 X 82.12% ±4.1
ResNet50 X 79.94% ±4.6
DenseNet X 79.51% ±3.8
VGG16 - 78.49% ±1.27

True Cancer True Inflammation True Healthy
Predicted Cancer 13994 0 0

Predicted Inflammation 0 4032 0
Predicted Healthy 0 5 1849

In this more natural case, where correlations between subsequent frames in the input video can be exploited, our CNN
architecture still outperforms other models and feature learning methods with a close to perfect performance of 99.93%. Even
transfer learning of deep networks cannot compete in this section, where generalization to unseen subjects is not an issue. We
conjecture that the reason is that pre-training on the large-scale data set learns a representation tailored for high generalization,
which requires encoding invariances to large deformation groups into the prediction model. These invariances help to recognize
natural classes, like animals and objects from daily life, even though their viewpoints and shapes might be profoundly different.
It is clearly not the objective for our cross-sample use case, where generalization is less an issue than encoding extremely
fine-grained similarities between samples which are very close in feature space.
Overall deep learning methods with a pre-training, the best results were obtained by the VGG16 model pre-trained on ILSVRC
and fine-tuned on our target data set, where after fine-tuning a linear SVM classifier was trained on the last feature layer of the
deep network. Interestingly, this performance is comparable to what was obtained in14 for a similar colon’s wall classification
but on humans.

Cross-sample and cross-subject training with sample selection
We tested the performance of the handcrafted pipeline when the number of input data is limited. For this approach, images of
each state are divided into training and testing sets, and then the training set is split into an increasing number of clusters based
on their similarities. We stop at around 1000 clusters when a plateau of performance is reached. Then, a random image of
each cluster in each state is selected to train the model, and the model is tested on the test data. Figures 4 shows the average
recognition rate of the system after three trials as a function of the number of clusters, i.e., the size of the data set for the
training for both cross-subject and cross-sample approaches. As visible in Fig. 4, the performance of both cross-sample and
cross-subject training with sample selection overpasses the random selection of images with a gain approximately constant of
13% of recognition rate in all the range. However, at its maximum level, the performance is lower than the best performance
obtained in Table 4. This approach can also be used for real-time applications as there is no need to use clustering on test data.
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Figure 4. Average of recognition rate of cross-subject (left) and cross-sample (right) training respectively with sample
selection in solid red line versus a random selection of data in dashed blue line as a function of the number of images in the
training dataset. Yellow and purple lines show the average recognition rate plus and minus standard deviation respectively.

Methods

Experimental protocols and associated training strategies
Our main objective is to automate the classification process of mouse tissues into three classes, healthy, inflammation, and
cancer tissues. Below, we describe two different medical use cases, where these predictions are helpful. In other words, two
different approaches of splitting data into training and testing for our experiments are introduced, which refers to two different
clinical problems where prediction is required on subjects or samples.

Scientific use cases
Cross-subject predictions — this use case arises when a prediction must be made on unknown subjects (unknown mice)
using a model which has been created (trained) during an off-line training phase. The underlying scientific question addressed
by this use case is whether locally acquired samples of tissue can be correctly classified without any additional information
from the same subject. Alternatively, in other words, we would like to study whether prediction models based on machine
learning can generalize to unseen subjects; it quantifies to which extent the observed diseases are generic or patient-specific.
In a real-world scenario, the corresponding prediction model is static in a sense that different predictions on new subjects will
be based on the same model acquired by the medical personnel at a single instant (software updates not with standing). It means
a model is trained on a given set of subjects, and will then apply it to new subjects (previously unseen). Decoupling training
and prediction is the main advantage of this use case, as the prediction model does not require re-training between predictions,
and results can be obtained using the same model on any new subject.

Cross-sample predictions — the second use case focuses more on individual tissue samples. This situation arises when one
or more subjects are studied in detail, and a large number of tissue samples need to be classified. The underlying scientific
question is, whether tissue annotation can be done semi-automatically when a large number of tissues need to be annotated
from a low number of subjects. Alternatively, in other words, we would like to study whether a prediction model based on
machine learning can generalize to different regions from the same or different subjects.
In a real-world scenario, the corresponding prediction model is dynamic, as (on-line) re-training is necessary for regular
intervals. The medical personnel uses an application, which allows them to view tissue samples and annotate them in real-time,
available in the additional information section.
The two uses cases are inherently different. Cross-subject predictions are usually more difficult, as the shift between the training
data distribution and testing data distribution is generally higher, putting higher requirements on the generalization performance
of the predictors. In practice, both cases can be addressed using fully supervised machine learning.

Proposed training strategies
We propose three different training strategies to address the scientific use cases described above.
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Cross-subject training — this training strategy is designed to cover the cross-subject use case. The data set is split cross-
subject wise, i.e., that subjects (mice) whose samples are in the training set are not present in the test set. It should be considered
that the colon’s wall of a subject can sometimes consist of all three labels at the same time, which means that a part of the
colon’s wall show cancer tissues. Another part show some inflammation tissues, and the rest can be considered as healthy
tissues. Thus, it is essential to design a classifier that tries to label every image independently. Later a subject could be labeled
based on the majority of labels of its images.

Cross-sample training with all samples — this strategy corresponds to the cross-sample use case. The data set is split
into training and test sets by randomly sampling images of each type to be classified (health, inflammation, and cancer). In
particular, this approach selects images without information on whether they are consecutive in video frames, or whether they
belong to a given subject. In this strategy, images from one subject (a mouse) can be in both training and testing sets, but it does
not mean that the same images are used in training and testing. As the microprobe captured images through the colon’s wall of
subjects, each image is taken from one specific part (tissue) of the colon’s wall.

Cross-sample training with sample selection — in an alternative training strategy for the cross-sample use case, we
address the fact that images correspond to video frames which are acquired in the continuity of a local probe inspection process.
Therefore, consecutive images are visually similar with a high probability. This temporal correlation between frames can lead
to skewed (unbalanced) data distribution and, if not dealt with, to sub-optimal performance.

We propose an unsupervised sample selection processing based on clustering. Features are extracted from each image, which
includes standard deviation, mean, variance, and the skewness of the raw pixel values. The features are clustered with k-means,
and a single sample is picked from each cluster for training. The rest of the images of the database are used for testing.

Features, feature learning and classification
Independently of the training strategy, we proposed two different procedures, including both feature extraction and classification
methods. The first is based on handcrafted features, whereas the second resort to automatic learning of the intermediate
representation.

Handcrafted features
In this methodology, we handcraft feature representations instead of learning them. Handcrafted representations have been
optimized by the computer vision community over decades of research, including theoretical analysis and experiments. In our
setting, we resort to the local binary patterns (LBP)17, a state-of-the-art handcrafted descriptor which has been used in a variety
of tasks in computer vision, among which are face recognition, emotion recognition, and others, see the survey in18. Notably,
LBPs have been shown to be valuable for medical image texture analysis19.

Under the original form of17 and as used in this article, for a pixel positioned at the point (x,y), LBP indicates a sequential
set of the binary comparison of its value with the eight neighbors. In other words, the LBP value assigned to each neighbor is
either 0 or 1, if its value is smaller or greater than the pixel placed at the center of the mask, respectively. The decimal form of
the resulting 8-bit word representing the LBP code can be expressed as follows:

LBP(x,y) =
7

∑
n=0

2ns(in − ix,y ) (1)

where ix,y corresponds to the grey value of the center pixel, and in denotes that of the nth neighboring one. Besides, the function
s(x) is defined as follows:

s(x) =
{

1 x ≥ 0
0 x < 0 . (2)

The LBP operator remains unaffected by any monotonic gray scale transformation, which preserves the pixel intensity order in a
local neighborhood. It is worth noticing that all the bits of the LBP code hold the same significance level, where two successive
bit values may have different implications. The process of equation (1) is realized at the scale of a patch size of N×N pixels.
The LBP(x,y) of each pixel inside this patch are concatenated to create a fingerprint of the local texture around the pixel at the
center of the patch. Equations (1) and (2) are applied on all patches of an image. Finally, all histogram outputs of patches (after
applying LBP on them) are concatenated and considered as the feature vector of an image. This patch size N, in this study, is
chosen in the order of an average size of vesicular crypts on health images. In our database, a patch size of 8×8 can almost
cover a healthy vesicular crypt. At the next step, a linear SVM is applied to classify the images based on their LBP features.
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Representation learning
Representation learning, or deep learning, aims at jointly learning feature representations with the required prediction models.
We chose the predominant approach in computer vision, namely deep convolutional neural networks20, which have proven to
be well suited for standard tasks in the medical domain like cell segmentation21, tumor detection, and classification22, brain
tumor segmentation23, De-noising of Contrast-Enhanced MRI Sequences24 and several other purposes15. We train two different
models, one which was designed for the task and trained from scratch, and one which has been adapted from (and pre-trained
on) image classification.

Training from scratch — the baseline approach resorts to a standard supervised training of the prediction model (the neural
network) on the target training data corresponding to the respective training strategies described in section . No additional data
sources are used. In particular, given a training set comprised of K pairs of images xi and labels ŷi, we train the parameters θ of
the network f using stochastic gradient descent to minimize empirical risk:

θ ∗ = argmin
θ

K

∑
i=1

L (ŷi, f (xi,θ)) (3)

L denotes the loss function, which is cross-entropy in our case. The minimization is carried out using the ADAM optimizer25

with a learning rate of 0.001.
The architecture of our proposed architecture f (·, ·), shown in figure 5, has been optimized on a cross-validation set and is
given as follows: five convolutional layers with filters of size 3×3 and respective numbers of filters 64, 128, 256, 512, 512 each
followed by ReLU activations and 2×2 max pooling; a fully connected layer with 1024 units, ReLU activation and dropout
(p=0.5) and a fully connected output layer for 3 classes (health, inflammation and cancer) and softmax activation.

Transfer learning — Deep learning addresses complex prediction problems through neural networks with high capacity, i.e.,
highly non-linear functions with a large number of parameters, whose estimation typically requires a large amount of annotated
training data. If this data is not available, the trained networks tend to overfit on the training data and thus generalize poorly to
unseen data.
A standard solution to this problem is transfer learning or domain adaptation. The idea is to learn high capacity models on large
alternative source data sets whose content is sufficiently correlated with the target application and then transfer the learned
knowledge to the target data. Various techniques have been proposed, which differ, among other in the way this transfer
is performed and whether labels are available for the target data set (supervised techniques, e.g.,26, 27) or not (unsupervised
techniques, e.g.,28).

We perform supervised transfer using classical weight freezing and fine-tuning26, which transfers knowledge by first solving
equation 3 on the target data set, and then using the obtained parameters θ ∗ as initialization (starting point) for the training of
the network on the target data set. The assumption is somehow grounded by the existence of standard features in images from
natural scenes, which transfer well to images from other domains.

We transfer knowledge from the well-known image classification task ILSCVR 2012 (aka ImageNet), a dataset of roughly
one million images and 1000 classes29. Our model architectures optimized for this task, and as described above, is very likely to
underfit on this transfer learning setting. Its hyper-parameters, among which are its architecture and the number of parameters,
has been optimized over a validation set, which is very much smaller than the ILVSRC data by roughly a factor of 500. Its
design capacity will, therefore, tend to be much too small for the knowledge encoded in the source data (ILVSRC). For this
reason, we take “classical” and well-known high-capacity models for the ILVSRC task, namely VGG1630, DenseNet31, and
ResNet5032. From the pre-trained model, we remove the task-specific output layer (designed for 1000 classes) and replace it
with a new layer for three classes. Among all possible combinations of freezing layers which tested, the model with freezing at
the first 3 layers and fine-tuning the other layers on the validation data set returned the best performance shown in the table 3.
The results of the transfer learning method with different freezing layers on our database show the transferability of features
from ImageNet database in the spirit of26.

We would liketo point out that the two different strategies (training from scratch vs. pre-training and transfer) are compared
using two different model architectures. Our goal is to compare strategies, and different strategies can possibly have different
optimal architectures. Network architectures need to be adapted to various parameters of the problem, namely the complexity
of the task and the number of training samples. As mentioned above, in our case, there is a big difference between the small
size of our dataset and the large size of typical computer vision datasets like the ImageNet/ILSVRC dataset ( 1M images).
Therefore, this involves optimizing parameters (through SGD) as well as the hyper-parameters (through model-search). Only if
both are optimized, the potentials of the two strategies are compared. In contrast, comparing two identical architectures would
have been inconclusive, as one of two architectures would have been better suited to the task at hand.
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Figure 5. The proposed architecture of the deep network optimized for the task on the cross-validation set.

1 Database

The experiments involving animals were led in accordance with the rules of the University Lyon 1 Ethics Committee on
animal experimentation. Animals were acclimated for two weeks prior to the experiment in the following environment: a
12-hour day/night rhythm in 300 cm2 plastic cages (for four animals) with straw bedding, pellet food, and tap water. The
temperature of each cage was monitored and kept between 19 and 21 C. To induce colitis, mice were chemically treated with a
single injection of azoxymethane (AOM, intraperitoneal injection, 10mg/kg body weight) at the beginning and then, during six
months, with dextran sulfate sodium in drinking water (DSS, concentration of 2%). During the experiment, a pressure sensor
placed on the mouse’s chest in order to monitor the respiratory index of animals. Analyzed images used in this article chosen
at the extrema of the respiratory cycle, where the movements are the slowest to minimize artifacts due to these movements.
Mice anesthetized with 3% isoflurane and aspiration flow set at 0.4 L / min during the induction phase. A 25 µL solution
of Fluorescein Isothiocyanate FITC- Dextran 5% (Sigma Aldrich), used as a contrast agent, is injected in retro-orbital of the
mouse’s eye before the CEM investigation.
The anesthesia maintained during imaging with 1.4 to 1.7% isoflurane vaporization and aspiration flow set up on 0.4L/min. The
endoscopic test was conducted using a mini multi-purpose rigid telescope dedicated to small animals (Karl Storz). Acquisition
of images made by using a 488nm confocal endomicroscope CEM (CellVizio c, Mauna Kea Technologies) combined with a
0.95mm outer diameter Proflex MiniZ microprobe (PF-2173, Mauna Kea Technologies). The microprobe was inserted through
the operating sheath of this endoscope and positioned on the mice’s colon walls. During the acquisitions, the depth assessed
was approximately 58 µm for a lateral resolution of 3.5 µm and a frame rate of 12 fps. The output image size is 329×326
µm2 corresponding to a matrix of 292×290 pixels10.
In total, 38 mice were included in the study for a total of 66788 images which have been annotated as healthy tissue images
(6474 images from 9 mice), cancer tissue images (46566 images from 13 mice) or inflammation tissue images (13748 images
from 16 mice) by two experts together at the same time with a pre-knowledge of mice diseases. Images were also labeled
according to the mice from which they were acquired. Annotation was realized with the help of an application (available in the
additional information section) especially developed for this study freely available, as pointed in the supplementary material
section. It enables the classification of images according to the three classes studied in this article but also other classes of
interestin biomedical studies of the colon’s wall. This application is made available as supplementary material to this study.
As mentioned in5, some of the raw images do not carry any information for diagnosis. This can be due to misposition of
the probe which does not receive enough signal, a decrease of the fluorescence, saturation of the imaging sensor due to too
high amount of fluorescence, due to residues, due to contrast agent extravasation or presence of some light-absorbing objects
within mucous film located between the probes and the tissue. To prevent the expert from spending time on annotating such
non-relevant images and improve the learning process, we decided, as usually done in video endomicroscopy33, 34 to withdraw
them automatically and only keep the informative frame. A simple test based on the computation of the skewness of the gray
level histogram of the images demonstrated to be very efficient for this task. Images with a skewness higher than −5(as an
empirical threshold) were kept. The skewness captures the dissymmetry of the histogram around its mean value. This is useful
to detect saturated or underexposed images. We estimated, on some 6000 images, that this simple statistical test performs 98%
of good detection for the detection of images carrying no useful diagnostic information with a false alarm of 1%. Additionally,
in order to assess the influence of theses artifactual images if they would not have been removed, an additional experiment
has been done on all raw data (without removing noisy data). This experiment showed a reduction of 2% (on average) on the
recognition performance of each training strategy by using our proposed CNN model. This demonstrates the interest of the
denoising step but also quantify the robustness of our model.
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Based on the training strategies, the database was spilled into three datasets of training (for training of our model), validation
(to optimize hyper-parameters), and testing (to report performance on). In the cross-subject training strategy, images of each
subject (mouse) were transferred into one of the datasets of training, validation, and testing. The exact number of mice in each
dataset shown in table 1. In the cross-sample training strategy, 75% of the whole database transferred to the training dataset, and
the rest of the data belonged to the testing dataset. In this case, the validation dataset was extracted from the training dataset for
deep learning experiments. This splitting database approach made a guaranty that the test dataset was not seen during training
and validation of the model.

2 Conclusion
In this paper, we have presented three classification approaches to classify three states of health, inflammation, and cancer on
mice colon’s wall. Fully automated machine learning-based methods are proposed, including deep learning, transfer learning,
and classical texture-based classification. Different training strategies are compared in order to find the best approach for
this specific problem. The images processed in this paper were acquired in the framework of a preclinical study on colon
mice. In this type of study (preclinical), the size of the database is not comparable with other domains in machine learningAs
also underlined in35 on the different types of images, we found that a custom deep learning model shows superiority over
handcrafted features and well-known deep learning-based architectures. The best classification performance on this type of
images are achieved with our proposed CNN model which are trained on colon’s wall images.
In the cross-sample case, where generalization to unseen subjects is not an issue, Deep learning gave a performance of 99.93%
of correct classification. Similar to the cross-sample, in the cross-subject approach where classification on un-seen objects
is an issue, our proposed CNN method showed a performance of 98.49% of correct classification. These are usual order of
magnitude of performance obtained with nowadays machine learning approaches when vast data sets are available, but this can
be considered as excellent performance indeed here since we worked with the typical small data sets available in preclinical
studies.

This work corresponds to the first fully automated classification algorithm for mice colon’s wall images reported in the
literature. Similar works were carried on the human colon’s wall with the same imaging system. The comparison of the
closest work14 with our algorithm shows a comfortable margin of a 14% of accuracy. This is an interesting result which
demonstrates that in the perspective of machine learning, there is no guarantee of translational research between human and
animal. Also, a novel unsupervised sampling strategy based on the specific similarities of images in the acquisition of images
with endomicroscopy in the colon has been designed. The interest of this sampling strategy has been demonstrated in terms of
amount of data required in the training data sets to reach a plateau of performance. However, the performance of this sampling
strategy is lower than brute forces classical approaches. It would be possible to improve the metric of similarity used to select
the images in the training data sets automatically. This was based on first-order statistics in this study, but other approaches
could be used to include more dynamical information. However, due to the multi-scale sources of temporal noise (movement of
the probes36, passing of unexpected items between probe and tissues, biological movement,etc.) it would be an open question
to determine a reasonable time scale for this smoothing.

Our clustering method is somewhat related to active learning, where the agent requests feedback on data from a user. The
comparison is a little bit a stretch, as no new data is collected from decisions by an agent. In our current implementation, the
dataset stays stable, and only a subset is actively chosen.

However, we plan to investigate active learning as future work, where a classifier is trained on a subject followed by
continued examination of the subject on new samples. Here, an agent could quickly provide decisions on i) which samples
should be added to the training set, and ii) into which direction the user should emphasize its search in order to optimize
performance and discovery. This leads to an exploitation/exploration trade-off known from Reinforcement learning.

Direct perspectives of other sampling strategies are possible. It would now be possible to apply the classification scheme
developed here to produce a score on individual mice quantifying the number of images with the disease. Such a quantification
could then be compared with clinical scores realized on other types of imaging systems in a multimodal perspective such as the
one recently shown with magnetic resonance imaging37. Also, the machine learning approach presented with a discussion on
the different training strategies could be transposed to other bioimaging problems. In confocal endomicroscopy, this includes,
for instance, the characterization of other colon’s diseases observed in confocal microscopy38 or other parts of the digestive
system39 or also to other organs40 which have received interest and could benefit from machine learning approaches to perform
automated characterization of tissues.
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Titre : Contributions à l’imagerie à bas coût et à l’apprentissage automatique pour le phénoty-
page des plantes.

Mot clés : imagerie, apprentissage machine, phénotypage

Résumé : Dans cette thèse, nous étudions les
possibilités de réaliser une imagerie à haut dé-
bit pour le phénotypage végétal à faible coût
sur un ensemble de questions biologiques.
Nos contributions peuvent être organisées en
deux parties. La première partie se concentre
sur la façon de réduire le coût du phénoty-
page végétal au niveau du capteur. Dans cette
section, nous montrons l’utilisation novatrice
des mini-ordinateurs, associés aux caméras
RVB et/ou LiDAR, pour surveiller les plantes
à partir de la vue de dessus en tant qu’indivi-
dus, ou au niveau de la canopé. Avec un ac-
cès plus pratique aux systèmes d’imagerie, le
goulot d’étranglement actuel du phénotypage
végétal correspond désormais au développe-
ment d’algorithmes de traitement d’image op-
timisés. La deuxième partie traite de cette
question et se concentre sur la réduction du

coût de calcul et du temps requis pour la créa-
tion de la vérité-terrain associée aux images
à traiter. Nous avons étudié la valeur de la
transformation scatter, qui est une architec-
ture de réseaux profonds ne nécessitant pas
de ressources informatiques massives ou de
grands ensembles de données annotés. Nous
avons également étudié la possibilité d’effec-
tuer des annotations d’images automatisées
avec un apprentissage automatique non su-
pervisé dans des séquences d’images. Nous
avons démontré, la possibilité d’accélérer l’an-
notation avec des outils ergonomiques basés
sur la capture de la direction du regard de l’an-
notateur. Enfin, nous avons démontré la pos-
sibilité d’accélérer l’annotation en utilisant des
données synthétiques annotées automatique-
ment.

Title: Contributions to low-cost imaging and machine learning for plant phenotyping.

Keywords: Low-cost plant Phenotyping, imaging, Machine Learning.

Abstract: In this thesis, we investigate
the possibilities of performing high-throughput
imaging for plant phenotyping at low cost on
a set of biological questions. Our contribu-
tions can be organized into two parts. The
first part focuses on how to reduce the cost
of plant phenotyping at the sensor level. In
this section, we show the innovative use of
mini-computers, associated with RGB and/or
LiDAR cameras, to monitor plants from the top
view as individuals , or at a canopy level .
With more convenient access to imaging sys-
tems, the current bottleneck in plant pheno-
typing now corresponds to the development of
optimized image processing algorithms. The
second part addresses this issue and focuses

on reducing the computational cost and the
time required for the creation of ground-truth
associated with the images to be processed.
We have investigated the value of the scat-
tering transform, which is a deep architecture
without the need for massive computational
resources or large annotated datasets. We
have also investigated the possibility of per-
forming automated image annotation with un-
supervised machine learning in sequences of
images . We have demonstrated, the possi-
bility to speed up annotation with ergonomic
tools based on the capture of the annotator’s
gazing direction . Last, we have demonstrated
the possibility to speed up annotation by using
synthetic data automatically annotated.
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