
THESE DE DOCTORAT DE 
 
 
 
L'UNIVERSITE D'ANGERS  
COMUE UNIVERSITE BRETAGNE LOIRE 
 
ECOLE DOCTORALE N° 601  
Mathématiques et Sciences et Technologies  
de l'Information et de la Communication  
Spécialité : Automatique productique et robotique 
 
 
 
 
 
 
 
 
 

 
State Estimation and Verification of Detectability and Opacity in 
Weighted Automata  
 
 
Thèse présentée et soutenue à  Angers, le 30/09/2019 
Unité de recherche : Laboratoire Angevin de Recherche en Ingénierie des Systèmes  (EA7315) 
Thèse N° :  

 

Aiwen LAI 
 
 
 

 

 

 
Rapporteurs avant soutenance : 
 
Jan  KOMENDA  Directeur de recherche, Czech Academy of Sciences 
Stéphane  GAUBERT Directeur de recherche,  INRIA 
 
 
Composition du Jury :  
 
Président :  Isabel  DEMONGODIN  Professeur, Université d'Aix-Marseille 
Rapporteurs:   Jan  KOMENDA  Directeur de recherche, Czech Academy of Sciences 
   Stéphane  GAUBERT  Directeur de recherche,  INRIA 
Examinateurs:   Bertrand  COTTENCEAU Professeur, Université d'Angers 
   Isabel  DEMONGODIN  Professeur, Université d'Aix-Marseille 
   Zhiwu  LI   Professeur, Xidian University 
Dir. de thèse :  Sébastien  LAHAYE  Professeur, Université d'Angers 
Co-dir. de thèse :  Alessandro  GIUA  Professeur, University of Cagliari 
 





Abstract

State estimation is an important and fundamental problem in the systems and control

theory. In many real-world systems, it is not always possible to obtain directly the

state information due to measurement noises, uncertainties or limited sensor availability.

Therefore, estimating the state of a system is critical when one wants to make decisions

in certain applications that rely on state information, such as supervisory control. State

estimation aims at accurately characterizing the possible states by observing system’s

behaviour, i.e., the output information obtained during the evolution of the system.

Another important issue that is closely related to state estimation is the verification problem.

Given a system, it is important to check if it has some desired properties. That is,

verify in a formal way whether the studied system satisfies some expected requirements

or specifications. Generally, we would like to propose algorithmic and provably correct

procedures to achieve the above checking, and such a formal satisfaction checking problem

is called the verification problem. Property verification has been extensively studied since it is

important in many complicated and safety-critical real-world systems.

Automata and Petri nets, two important classes of Discrete Event Systems (DESs) models,

have been intensively used to deal with state estimation and property verification over the

past few decades. A DES is a discrete-state, event-driven dynamic system in which the state

evolution depends entirely on the abrupt occurrence of asynchronous discrete events. Many

real-world systems, e.g., queueing systems, computer systems, communication systems,

traffic systems, are discrete event systems. DES models have been widely used to deal with

state estimation and verification problems in the literature.

This thesis focuses on the state estimation and verification problems, including detectability

and opacity verification, of DESs modeled as weighted automata (WAs). WAs are a

quantitative extension of classical finite automata in which the transitions carry weights
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belonging to a semiring. The weight associated to a transition can model, e.g., the cost,

the resource (energy), the time needed or the probability for executing the transition. The

main work of this thesis is as follows. (1) An online procedure is proposed to deal with

the problem of state estimation for WAs. (2) The state estimation approach is extended to

tackle the fault diagnosis problem. (3) Given an unambiguous weighted automaton (UWA),

a formal procedure with exponential complexity (resp. polynomial complexity) based on the

construction of observer (resp. detector) is introduced to verify its current-state detectability.

(4) Given a UWA, an approach is proposed to verify its initial-state detectability and initial-

state opacity.

Keywords: Discrete event system, weighted automata, state estimation, fault diagnosis,

detectability, opacity.
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thesis. I sincerely thank Prof. Stéphane Gaubert and Prof. Isabel Demongodin for accepting

to sit on my dissertation committee.

I thank Dr. Weian Yan, Dr. Yan Pan, Mr. Zequn Wei, Ms. Zhi Lu, Mr. Jintong Ren, Mr.

Liwen Li, Ms. Yinuo Li, Mr. Ming Wang, Ms. Lili Zang, Ms. Zhijuan Chen for their help

and company. We have had a happy time together in Angers. In particular, for a long time,

Zequn made me have a place to study on weekends or evenings.

Finally, I sincerely thank my parents, Maosong Lai and Zhaozhu Lai, and my sisters

Qiuju Lai, Qiuxiang Lai and Qiulian Lai, for their constant support and love. I would not

have been the person I am today without their support. I owe my fiancee, Ms. Jingfeng Lai,

too much in past two and half years. I would like to express my deepest appreciation to

5



6

jingfeng for her love, understanding and support. I love you, if there is a deadline, it will be

10,000 years.



Contents

List of Figures 12

List of Tables 13

1 Introduction 15

1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 State Estimation and Detectability Verification Problems . . . . . . . . 17

1.1.2 Fault Diagnosis Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.3 Opacity Verification Problem . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Motivation of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Organization and Contribution of the Thesis . . . . . . . . . . . . . . . . . . . 26

2 Preliminaries 29

2.1 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Alphabet and Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.2 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Weighted Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Semirings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Weighted Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 Generated Language of Weighted Automaton . . . . . . . . . . . . . . 42

3 State Estimation and Fault Diagnosis of Weighted Automata 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 State Estimation for Weighted Automata . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 An Online State Estimation Approach . . . . . . . . . . . . . . . . . . . 51

7



8 CONTENTS

3.3.2 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Some Attempts of Constructing Observer for State Estimation . . . . . 59

3.4 Fault Diagnosis of Weighted Automata . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Construction of the Augmented Automaton . . . . . . . . . . . . . . . 62

3.4.2 Diagnosis State Determination . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Current-State Detectability Verification for UWAs 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Consistent State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Detectability notions in Weighted Automata . . . . . . . . . . . . . . . 72

4.3 Observer-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Construction of the Observer . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Criteria for Verifying Strong and Weak Detectabilities . . . . . . . . . . 78

4.3.3 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . 82

4.4 Detector-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Construction of the Detector . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Creteria for Verifying Strong Detectabilities . . . . . . . . . . . . . . . . . . . . 88

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 I-Detectability and I-Opacity Verification for UWAs 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 I-Detectability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 I-Opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Verification of I-Detectability and I-Opacity . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Construction of the I-Observer . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2 Criteria for Verifying I-Detectability . . . . . . . . . . . . . . . . . . . . 103

5.3.3 Criteria for Verifying I-Opacity . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.4 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . 107

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion and Future Work 109

6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



CONTENTS 9

References 123





List of Figures

2.1 Nondeterministic finite automaton . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Deterministic finite automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Weighted automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Structure explaining the relation between the unambiguity in Def. 2.18 and in
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1
Introduction

State estimation is a fundamental problem in discrete event systems (DES), and it has

been extensively studied in the framework of automata and Petri nets. State estimation aims

at accurately characterizing the possible states by observing system’s behaviour, i.e., the

output information obtained during the evolution of the system. Generally, state estimation

can be partitioned into current-state estimation and initial-state estimation. In current-state

estimation problem, we want to estimate all possible states the system can be in currently

based on the observation. In initial-state estimation, we want to determine the set of initial

states the system may start from.

Recently, the problem of state estimation has been investigated in terms of detectability.

Current-state detectability requires that the current state of the system can always be

detected uniquely (or unambiguously) within a finite number of event observations. Initial-

state detectability (I-detectability) requires that the initial state can always be determined

uniquely (or unambiguously) after the occurrence of finite sequence of events.

The state estimation plays a very important role in some applications of DESs. One

related application is opacity. Opacity is a general information flow property characterizing

whether or not the “secret” of a system can be inferred by an external observer, called

intruder. Another important application is the fault diagnosis. For those DESs where the

failures are modeled by certain states, the diagnosis problem can be considered as a state

estimation problem.

In this chapter, we first present a literature review on state estimation, detectability, fault

15



16 CHAPTER 1. INTRODUCTION

diagnosis and opacity, and then we give the motivation for our study. Finally, we describe

the organization and contribution of this thesis.
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1.1 Literature review

1.1.1 State Estimation and Detectability Verification Problems

The state estimation of a dynamic system is a fundamental issue in control theory. This

problem has been investigated both in time driven systems and discrete event systems

(DESs). In time driven systems, the state estimation aims at generating an estimate x̂(t)

of the current state x(t) at a time instant t while in DES, it consists in capturing the

characterisation of possible states after a finite set of observed outputs [Giua, 2011].

In general, the output information of the considered system must be given in order to

address state estimation problem. Typically, there exists two different kinds of outputs since

DES can be described by states and events whereas sensors can be associated to events or

states. The corresponding outputs are event observation and state observation. In the case

of event observation, events are partitioned into observable and unobservable subsets. For

state observation, a subset of states to which the current states of system belong is known.

Note that these two outputs can be combined, which means that there may exist event and

state observations during the system evolution. Automata and Petri nets (PNs) are two well-

known abstractions for DES. These two mathematical formalisms can be used to deal with

the state estimation problem, which has been studied over the past few decades.

In the framework of automata, the embryonic form of state estimation problem first

appeared in [Wonham, 1976]. Since then, this problem has been studied by many researchers

using automata. The early work of investigating state estimation was done by Caines et al.

[Caines and Wang, 1989], Ramadge [Ramadge, 1986] and Ozveren and Willsky [Ozveren

and Willsky, 1990]. Caines et al. showed how it is possible to use the information contained

in the past sequence of observation states and control inputs to calculate the set of states

consistent with observation. Ramadge studied the issue of determining the current state

of the system modeled by nondeterministic finite automaton and showed the possibility of

designing an observer for a discrete event process. Ozveren and Willsky formulated the

observability with the assumption that the current state of system is known. An approach

is proposed to build an observer according to a finite string from outputs. Besides, they

showed that an observer may have an exponential number of states although it can be built

in polynomial time.

In the framework of PNs. Algorithms for state (or marking) estimaton are proposed for

labeled PNs with silent or/and indistinguishable transitions in [Corona et al., 2007; Giua

et al., 2005; Cabasino et al., 2011]. A transition is said to be silent if its firing cannot be
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detected by external agent. Two transitions are called undistinguishable if they are labeled

by the same symbol. In [Corona et al., 2007; Giua et al., 2005], the notion of basis marking is

proposed to compute the consistent markings. The authors proved that consistent markings

can be characterized by a linear system with a fixed structure that does not change as the

length of the observed word increases. In [Cabasino et al., 2011] the marking estimation

problem for PNs in the presence of silent and indistinguishable transitions is addressed first

in order to solve the diagnosis problem. We have to mention that there exists a survey [Giua

and Seatzu, 2014] pertaining the main contributions of state estimation in the field of PNs. Li

and Hadjicostis [Li and Hadjicostis, 2013] proposed a recursive algorithm whose complexity

is polynomial with respect to the length of observation for calculating the minimum initial

marking of a labeled Petri net.

There are fewer works dealing with state estimation in timed DES compared to logical

DES framework. In [Bonhomme, 2013; Bonhomme, 2015], a method for current state

estimation in P-time PNs is presented. A state observer is synthesized according to the

corresponding untimed PN, and the schedulability of a firing sequence is defined. The

candidate firing sequences of an observed word are obtained from the state observer.

One schedulable candidate sequence corresponds to a consistent marking. The checking

of schedulability of a sequence is completed by solving a linear programming problem.

In [Declerck and Bonhomme, 2014], timed labeled PNs with observable transitions

are described by algebraic models. An approach for reconstructing the sequence of

unobservable transitions, i.e., completing an observed word into a fireable sequence which

is consistent with this observation is developed therein. Timed free-choice PNs are studied

in [Wang et al., 2011]. The authors computed the set of basis markings, notion extended

from [Corona et al., 2007], and used the time equations to reduce this set by removing all

markings that are inconsistent with the time information. Basile et al. [Basile et al., 2013;

Basile et al., 2015] investigated the state estimation problem for time unlabeled and time

labeled PNs. An on-line approach based on the modified state class graph is presented

therein. Note that the assumption of acyclicity of unobservable transitions is no more

needed. The new assumption is that there is no cycle of unobservable transitions that can

fire in a null time interval.

Besides the automata and PNs, the max-plus algebra plays an important role in some

applications of timed DES [Baccelli et al., Wiley 1992; Gaubert and Plus, 1997; Cohen et al.,

1999; Heidergott et al., 2014; Komenda et al., 2017; Komenda et al., 2018]. Hardouin et al.

[Hardouin et al., 2010] investigated the state estimation of timed event graphs, a subclass
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of timed PNs capturing only synchronization and delay phenomena. Timed event graphs

can be represented by state-space equations in max-plus algebra, strongly reminiscent of

discrete-time representations for conventional linear systems. The design of an observer

matrix for timed event graphs is proposed in analogy to Luenberger observer for classical

linear systems.

In some literature, the state estimation problem has been investigated in terms of

detectability verification. Two common detectabilities are current-state detectability and

I-detectability. Current-state detectability requires that the current state of the system can

always be detected uniquely after observing a finite sequence of events. I-detectability

requires that the initial state can always be determined uniquely within a finite number

of observations.

In [Shu et al., 2007; Shu and Lin, 2011; Shu and Lin, 2013], the detectability of non-

probabilistic DESs based on the construction of the observer automaton is investigated.

[Shu et al., 2008; Keroglou and Hadjicostis, 2015; Keroglou and Hadjicostis, 2017; Yin, 2017]

studied the detectability of probabilistic (stochastic) DESs. Note that the detectability in

non-probabilistic systems characterizes whether the state of the system can be uniquely

determined after a finite number of observations. While in the probabilistic framework,

it characterises whether the probability of detecting the state of the system converges to one

as the length of the observation increases.

Shu et al. [Shu and Lin, 2011] defined four types of detectabilities, i.e., strong detectabil-

ity, detectability, strong periodic detectability, periodic detectability for nondeterministic

finite automata (NFAs) so as to characterise different properties of current state estimation.

More precisely, an NFA is strongly detectable if its current state and subsequent states

can be uniquely determined, after observing a finite sequence of events, for all trajectories

of the system. Note that a trajectory of a system is represented by an infinite sequence

that can be generated by the system. An NFA is weakly detectable if its current state

and subsequent states can be uniquely determined, after observing a finite sequence of

events, for some trajectories of the system. An NFA is said to be strongly periodically

detectable if the unique current state for all trajectories of the system can be periodically

determined. Similarly, if the unique current state for some trajectories of the system can

be periodically determined, then the system is said to be weakly periodically detectable.

An observer is constructed as to derive necessary and sufficient conditions for checking

these four detectabilities. In [Shu et al., 2008] the DES is represented as a non-deterministic

probabilistic automaton where probabilities are associated with the non-deterministic
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transitions. A given probabilistic automaton is first converted into a non-probabilistic

automaton, then necessary and sufficient conditions are proposed to check the strong and

weak detectabilities. Keroglou and Hadjicostis [Keroglou and Hadjicostis, 2017; Keroglou

and Hadjicostis, 2015] investigated the state estimation of a probabilistic automaton by

defining the concepts of A-detectability and AA-detectability respectively. As the observed

output symbols increase, the state estimation will become more accurate.

Shu and Lin [Shu and Lin, 2013] formulated the initial-state estimation problem of NFAs

as I-detectability. It characterizes whether the initial state of an NFA can be uniquely

determined after a finite number of events have been observed. An exponential algorithm

is introduced for checking strong I-detectability based on the construction of an I-observer.

In addition, a polynomial-time algorithm is introduced for checking weak I-detectability

based on the construction of an I-detector. Yin [Yin, 2017] introduced the notion of SI-

detectability as an extension of I-detectability in the stochastic setting by considering the

probabilistic sensor failures. SI-detectability characterizes the convergence of the probability

for determining the initial-state of a probabilistic finite state automaton. An algorithm for

verifying the SI-detectability is proposed, and the complexity of this verification is proved

to be PSPACE-complete.

Giua and Seatzu [Giua and Seatzu, 2002] investigated the detectability of PNs by

assuming that the PN structure is known and the transition firings can be precisely observed.

Masopust and Yin [Masopust and Yin, 2019b] explored the existence of algorithms to verify

strong and weak detectability for labeled PNs. The authors showed that although there

exists an algorithm for checking strong detectability, this algorithm is infeasible because

it requires at least exponential space. Besides, it is proved that there is no algorithm for

checking weak detectability.

We refer the reader to [Yin, 2019; Ghazel et al., 2009; Ramı́rez-Treviño et al., 2003; Ma et al.,

2017; Masopust, 2018; Masopust and Yin, 2019a; Sasi and Lin, 2018; Yin and Lafortune, 2017c;

Zhang, 2017; Zhao et al., 2019] for more references on state estimation and detectability

verification.

1.1.2 Fault Diagnosis Problem

The fault diagnosis of discrete event systems (DES) has received a lot of attention in

recent years. A fault is defined to be any deviation of a system or of one of its components

from its normal behavior. According to the manner in which faults are reset after they

occur, faults are classified into permanent and intermittent ones. A fault is permanent if
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the recovery event occurs only due to a repair/replacement of the fault. On the contrary,

a fault is intermittent if the recovery event can occur either spontaneously or through

repair/replacement. In this thesis, we consider the case where all faults are permanent. In

other words, the studied system cannot spontaneously move from the fault state to a normal

state.

Generally, the goal of fault diagnosis is to achieve three complementary tasks [Zaytoon

and Lafortune, 2013]: fault detection, fault isolation and fault identification. Fault detection

aims at determining whether a system is in normal status or whether a fault has occurred.

If a fault has occurred, fault isolation and identification aim at localizing the system

component(s) causing the fault and identifying the nature of the fault respectively. In the

thesis, we use the terminology of fault diagnosis to describe the objective of the detection of

a fault class. Automata and Petri nets (PNs) have been intensively used to deal with fault

diagnosis in the literature.

An overview of fault diagnosis approaches for DES is proposed in [Zaytoon and

Lafortune, 2013]. The classification of diagnosis approaches with respect to different kinds

of criteria is provided. These criteria include fault compilation (on-line, offline), modelling

formalism (automata, PNs), fault representation (models including faulty behavior, fault-

free models), and decision structure (centralized, decentralized, distributed).

In [Sampath et al., 1995], fault diagnosis and diagnosability of DES are addressed in

an event-based framework, that is, the failures are treated as unobservable events. Given

an observation, the fault diagnosis consists in determining if a fault has occurred, i.e.,

if an evolution containing a transition labeled by a fault event has produced the given

observation. A deterministic finite automaton is diagnosable if the occurrence of any fault

event can be detected after a finite number of steps. Necessary and sufficient conditions

for diagnosability of a DES are proposed therein. Besides, the diagnosers are introduced

to solve the diagnosis problem. This approach has been extended to diagnosis of timed

DES where different time bounds can be associated to different transitions of the same event

label [Chen and Provan, 1997]. In [Tripakis, 2002], the above framework is extended to

timed automata 1. The notion of4−diagnosability for timed automata is proposed. A timed

automaton is4−diagnosable if a fault can be detected with a delay of at most4 time units

after it occurred. Besides, an algorithm is presented to check such diagnosability for a given

timed automaton, and it was shown that this checking has PSPACE-complete complexity.

1. A timed automaton is made of a finite automaton-based structure, a set of clocks, timing constraints and
clock resets on transitions. An edge (`, σ, g, r, `′) is a transition from locations ` to `′ with action σ, guard g and
clock resets r.
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In [Bouyer et al., 2005], the fault diagnosis is studied for deterministic timed automata

(DTA) and event-recording automata (ERA) 2. The complexities for checking the existence of

diagnoser for DTA and ERA are 2-EXPTIME-complete and PSPACE-complete respectively.

Other important contributions for fault diagnosis in the framework of probabilistic automata

have been presented in [Athanasopoulou and Hadjicostis, 2005; Fabre and Jezequel, 2010;

Lunze and Schröder, 2001; Thorsley et al., 2008], among others.

There exists work dealing with fault diagnosis in the state-based framework [Lin, 1994;

Zad et al., 2003; Zad et al., 2005]. In a state-based approach, it is assumed that the states of the

system can be partitioned according to the condition (normal or faulty status) of the system.

The fault diagnosis problem then becomes to use system output information to determine

the block of the normal/faults partition to which the state belongs. Zad et al. [Zad et al.,

2003] introduced state-based diagnoser to determine the occurrence of a failure mode based

on the sequence of state outputs. The authors extended the above approach for solving fault

diagnosis problem in timed DES [Zad et al., 2005]. Diagnosability of failures is discussed,

and necessary and sufficient conditions for time-diagnosability are derived.

In [Wu and Hadjicostis, 2005], redundancy (additional places and the connections

associated with them) is added into the original PN to enable fault identification using

algebraic decoding techniques. Two types of faults have been considered: place faults that

cause the corruption of the number of tokens in a certain place whereas transition faults

that prevent tokens from being removed from (deposited at) the input (output) places of

a particular transition. In other words, a place fault that corrupts the net marking, and a

transition fault that causes an incorrect update of the marking after events occurrences. In

this approach, the authors assumed that transition firings are not directly observable but that

the system marking is periodically observable. Basile et al. [Basile et al., 2009] studied fault

diagnosis through on-line computing of the set of possible fault events required to explain

the last observed event. The diagnoser was built by defining and solving integer linear

programming (ILP) problems. The computational complexity was reduced by reformulating

these ILP problems on specific parts of the considered PN that influence the occurrence of

the observed event. In [Basile et al., 2012], the ILP technique was adopted to deal with the

k−diagnosability, a fault can be detected within a finite delay of k−steps, for bounded PNs.

Necessary and sufficient condition for k−diagnosability is proposed. Moreover, there is no

2. DTA and ERA are two restricted class of timed automata. A timed automaton is deterministic if for each
pair of transitions (`, σ, g, r, `′) and (`, σ, g′, r′, `′′), the set of clocks valuations satisfying guard g is disjoint from
the set of clocks valuations satisfying guard g′. ERA are timed automata with a bijective mapping between
the set of clocks and the set of actions, and when a transition is taken, only the unique clock associated to the
action of the transition is reset.
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specific assumption on the structure of the subnet induced by unobservable transitions. In

[Basile et al., 2015], the modified state class graph is used to perform on-line fault diagnosis

for labeled time PNs.

Cabasino et al. [Cabasino et al., 2010; Cabasino et al., 2011] presented fault diagnosis

approaches for unlabeled and labeled PNs respectively using the notion of basis marking.

Given an observation ω, this approach characterizes the minimal sequences of unobservable

transitions whose firing enable ω using linear algebraic constraints. A diagnosis state is

associated to each observation and to each fault class by an on-line diagnosis algorithm.

In the case of bounded PNs, the basis reachability graph can be computed offline and

used to perform fast on-line fault diagnosis. In their recent work [Cabasino et al.,

2014], the diagnosability of labeled PNs is studied. Necessary and sufficient condition

for diagnosability are proposed, and the basis reachability diagnoser and modified basis

reachability graphs are introduced to test the diagnosability. Yin and Lafortune [Yin and

Lafortune, 2017b] proved that checking diagnosability for labeled PNs is decidable and is

EXPSPACE-complete.

Other important contributions for fault diagnosis in the framework of PNs have been

presented in [Ramı́rez-Treviño et al., 2007; Hernandez-Flores et al., 2011; Wen et al., 2005;

Lefebvre and Delherm, 2007; Dotoli et al., 2009; Benveniste et al., 2003; Jiroveanu and Boel,

2010; Cong et al., 2017], among others.

1.1.3 Opacity Verification Problem

Security and privacy are crucial properties in online services and network communi-

cations. Opacity is an important aspect of such properties. It characterizes whether the

“secret” of a system can be inferred by an intruder via observing its behavior. According to

the definition of secrets, opacity can be classified into state-based opacity and language-

based opacity. Moreover, the state-based opacity can be further partitioned as initial-

state opacity (I-opacity) ([Saboori and Hadjicostis, 2013b; Keroglou and Hadjicostis, 2013;

Wu and Lafortune, 2013; Wang et al., 2018; Tong et al., 2017]), current-state opacity ([Saboori

and Hadjicostis, 2007; Saboori and Hadjicostis, 2013a; Tong et al., 2017; Cong et al., 2018]),

initial-and-final-state opacity ([Wu and Lafortune, 2013]) and K-step opacity ([Saboori and

Hadjicostis, 2011]).

It is assumed the intruder has full knowledge of the system’s structure but only partial

observation of system’s evolution. Based on its observations, the intruder constructs an

estimate of the system’s behavior. Given a secret as a set of states, a system is said to be
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current-state opaque if, for any observation, the intruder can never infer that the current

state of the system is within the set of secret states. Given a secret as a language, i.e., a set

of event sequences, a system is language opaque if the intruder cannot conclude that the

evolution of the system belongs to the secret.

In this thesis, we focus on I-opacity. Given a secret as a set of states (Normally, the secret

is a subset of the set of initial states). A system is said to be initial-state opaque if, for any

observation, the intruder cannot determine if the evolution of the system has started from a

secret state. More precisely, I-opacity requires that the set of initial states estimated by the

intruder for any observation should contain at least one element that does not belong to the

secret . The I-opacity is first introduced for Petri nets by Bryans et al. [Bryans et al., 2005],

and extended to labeled transition systems in [Bryans et al., 2008]. It is proved in [Bryans

et al., 2005] that the problem of verifying I-opacity in bounded Petri nets is decidable. In

[Bryans et al., 2008], general opacity (including the I-opacity) problems in transition systems

are proved to be undecidable. Recently, the I-opacity for bounded labeled Petri nets is solved

by Tong et al. in [Tong et al., 2017] where the secret is defined as an arbitrary subset of the

reachability set. A necessary and sufficient condition for checking I-opacity based on the

construction of the modified basis reachability graph is proposed.

In the framework of automata, the I-opacity problem has been investigated in [Saboori

and Hadjicostis, 2013b; Keroglou and Hadjicostis, 2013; Wu and Lafortune, 2013; Wang

et al., 2018]. Particularly, in [Saboori and Hadjicostis, 2013b], an initial-state estimator is

constructed and it can be used to verify I-opacity of an NFA for both invariant-secret and

varying-secret. That is, the structure of such an initial-state estimator does not need to be

modified when the secret changes. The initial-state estimator has up to 2n2
states where n

is the number of states in the NFA. In addition, when the secret is fixed, the complexity

of verifying I-opacity is reduced to O(4n) by introducing the notion of verifier. Recently,

Wu and Lafortune [Wu and Lafortune, 2013] prove that the initial state of an NFA can

be estimated by the observer of its reverse automaton, and as a result, the verification

complexity of I-opacity is reduced to O(2n). In [Keroglou and Hadjicostis, 2013], I-opacity

is studied in the framework of probabilistic finite automata.

Cassez [Cassez, 2009a] investigates the decidability of opacity verification in dense timed

systems. It is shown that the opacity problem in timed automata is undecidable since it

is already undecidable for event recording automata, which is a very restrictive subclass

of timed automata. Recently, in [Wang et al., 2018], the problem of I-opacity in real-time
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automata 3 is proved to be decidable by reducing it into the inclusion problem of regular

languages.

Note that the state-based opacity verification problem is tightly related to state

estimation problem. The verification of current-state opacity and I-opacity can be done

by the construction of an observer (current state estimator) and an initial-state estimator

respectively. Opacity is also closely related to anonymity [Sweeney, 2002], non-interference

[Hadj-Alouane et al., 2005b; Hadj-Alouane et al., 2005a], and secrecy [Takai and Kumar,

2009], which are other information flow security properties. Note that anonymity and

secrecy can be formulated as opacity problems.

Jacob et al. [Jacob et al., 2016] present an overview of different notions of opacity in

DESs. The decidability of opacity verification problems in different DES models and the

complexity of decidable opacity checks are presented therein. The reader is referred to the

[Yin, 2019; Saboori and Hadjicostis, 2011; Yin and Lafortune, 2017a; Saboori and Hadjicostis,

2008; Badouel et al., 2007; Yin et al., 2019; Bérard et al., 2015] for more references on opacity

verification in the area of DESs.

1.2 Motivation of the Thesis

From the above literature review, we know that state estimation, fault diagnosis,

detectability and opacity verification problems are of significant interest in DESs. Most of

the existing works on these topics is focused on logical DESs, that is, classical automata

and PNs where no quantitative information is associated with the firing of transitions in a

PN or the occurrence of events in an automaton. However, in various real-world systems,

some quantitative information may be associated to state transitions and is of significant

importance for the system’s evolution. More precisely, the occurrence of a transition in the

system may take some time or require some amount of energy/resources. For instance, in a

manufacturing system, a product needs to undergo a series of processing before it goes on

the market, and each processing consumes a certain amount of power and time.

Weighted finite automata (WAs) are classical NFAs in which the transitions carry weights

belonging to a semiring. These weights may model, e.g., the cost involved when executing a

transition, the amount of resources or time needed for this, or the probability or reliability of

its successful execution [Droste et al., 2009]. From here, we know that a WA is a DES model

that takes into account the quantitative information of real-world systems.

3. Real-time automata is a subclass of timed automata with a single clock to be reset at each transition.
Real-time automata can be regarded as finite automata with time information associated to each transition
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For such a DES model, as in classical automata and PNs, it is relevant to investigate its

state estimation as well as the property verification problems. In this thesis, on one hand, we

propose formal online algorithms to tackle the state estimation and fault diagnosis problems

of WAs. On the other hand, the current-state detectability, I-detectability and I-opacity

verification problems are studied for unambiguous weighted automata (UWAs).

1.3 Organization and Contribution of the Thesis

This thesis investigates the state estimation as well as the verification of detectability and

opacity in the framework of WAs. The organization and main contributions of the thesis are

summarized as follows:

• Chapter 2. Some basics on classical automata and weighted automata are presented

in this chapter.

• Chapter 3. This chapter deals with state estimation of WAs. We first give the

definition of the set of states consistent with an observation and a given weight

value. Then we propose algorithms to solve online the state estimation problem.

The main idea behind the proposed algorithms originates from the fact that the

dynamic behavior of a WA can be characterized by its state vector, solution of

recurrent equations on words representing the sequence of occurring labels (events).

Thereafter the state estimation approach is extended to deal with fault diagnosis of a

WA. First, for a given WA where faults are associated with unobservable events, we

propose an algorithm that transforms it into another automaton, called augmented

automaton. Then, we prove that solving fault diagnosis of the original WA is

equivalent to estimating the states of the augmented automaton. In addition, we

define the diagnosis states, “normal” or “faulty” or “uncertain”, with respect to an

observation, a given value and a fault class. Finally, an on-line algorithm is proposed

to compute these diagnosis states.

• Chapter 4. The current-state detectability verification problem is studied for UWAs

in this chapter. We first define the concept of consistent states for an infinite sequence

of labels, which represents a trajectory of the system. Then, inspired by the work

in [Shu et al., 2007; Shu and Lin, 2011], we define four types of detectabilities,

i.e., strong detectability, weak detectability, strong periodic detectability, and weak

periodic detectability, for WAs. This chapter can be divided into two parts. In the

first part of this chapter, an exponential approach is presented to check strong and
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weak detectabilities. The main contributions of this part are as follows. (1) A novel

algorithm is introduced to construct a finite state automaton (called observer) for

a given UWA, and we prove that this observer can be used for the current-state

estimation of the studied system. Note that this algorithm is first presented in this

chapter, and will be adapted to deal with the verification problem of I-detectability

and I-opacity for UWAs in Chapter 5. (2) Necessary and sufficient conditions based

on the constructed observer are derived for verifying the strong and weak four

detectability properties of UWAs. In the second part of this chapter, a polynomial

approach is introduced to check strong detectability and strong periodic detectability,

or simply called strong detectabilities. The main contributions of this part are as

follows. (1) For a given UWA, we construct its detector, which is a special finite state

automaton over a weighted alphabet. The number of states of detector is polynomial

with respect to the state space cardinality of original system. (2) Necessary and

sufficient conditions based on the constructed detector are proposed for checking

strong detectabilities of the studied UWA. (3) We present an example to illustrate that

the conditions stated for the observer to check weak detectability and weak periodic

detectability, simply called weak detectabilities, cannot be transposed to detector so

as to check the weak detectabilities.

• Chapter 5. This chapter deals with the verification of I-detectability and I-opacity for

UWAs. (1) We extend the notion of I-detectability and I-opacity from logical DESs to

the framework of WAs. Two types of I-detectability, namely strong I-detectability and

weak I-detectability are defined for WAs. A WA is said to be strongly I-detectable if

we can uniquely determine its initial state for all trajectories after a finite number of

observations. A WA is said to be weakly I-detectable if we can uniquely determine its

initial state for some trajectories after a finite number of observations. (2) For a given

UWA, a formal procedure is proposed to construct its initial-state estimator (called

I-observer). More precisely, given a UWA, an algorithm is first proposed to construct

its augmented version, called augmented automaton, which is also a WA. Each node

(state) of the augmented automaton is a pair of states of the original WA indicating

that the first state of the pair is reachable from the second state in the system. Then,

the algorithm that is first presented in Chapter 4 is used to construct the current-state

estimator of augmented automaton, and we prove that this estimator can serve as the

initial-state estimator of original system. (3) Necessary and sufficient conditions are

developed for verifying I-detectability and I-opacity of the studied UWA based on
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the constructed I-observer.

• Chapter 6. Conclusion and future directions related to this thesis are stated in this

chapter.



2
Preliminaries

In this chapter, we recall some basics of automata and weighted automata. For more

details, we fefer the reader to [Cassandras and Lafortune, 2009] and [Droste et al., 2009;

Sakarovitch et al., 2009].
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2.1 Automata

In this section we recall some basics of automata. For more details, we refer the reader to

[Cassandras and Lafortune, 2009].

2.1.1 Alphabet and Language

Definition 2.1. An alphabet E is a finite and non-empty set of labels. The number of labels

that E contains is called its cardinality and is denoted by |E|.

Definition 2.2. A string ω defined on E is a finite sequence of labels in E. The number of

labels that ω contains is called its length and is denoted by |ω|. The set of all finite strings

defined over alphabet E is denoted by E∗, including the empty string having length zero.

In this thesis, the empty string is denoted by ε instead of ε because symbol ε will be used

for a neutral element of a semiring.

Definition 2.3. The concatenation of two strings ω1 ∈ E∗ and ω2 ∈ E∗ is a new string,

denoted by ω = ω1 · ω2 or simply by ω = ω1ω2, composed by the sequence of labels in ω1

followed by the sequence of labels in ω2.

Definition 2.4. If a string ω ∈ E∗ can be represented as ω = νγη with νγ, η ∈ E∗, then string

ν is called a prefix of ω, string γ is called a substring of ω, and string η is called a suffix of ω.

Example 2.1. Consider an alphabet E = {a, b, c}. Its cardinality is |E| = 3. Strings ω1 = ab,

ω2 = abc and ω3 = abac defined on E have lengths |ω1| = 2, |ω2| = 3 and |ω3| = 4

respectively. The concatenation of ω1 and ω2 is ω1 ·ω2 = ababc. Consider string ω3 = abac.

Its prefixes are ε, a, ab, aba and abac. Its suffixes are ε, c, ac, bac and abac. Its substrings are:

all its prefixes, all its suffixes and b, a and ba.

Languages are defined as sets of strings over an alphabet. In other words, L is said to be

a language over alphabet E if it is a subset of E∗, i.e., L ⊆ E∗.

Definition 2.5. A language L defined on an alphabet E is a set of strings on this alphabet. Its

cardinality, i.e., the number of strings that it contains, is denoted by |L|.

Example 2.2. Consider an alphabet E = {a, b, c} and the following sets of strings.

L1 = {aa, ab, ac, ca} , L2 = {a, b, c} , L3 = {ε} , L4 = ∅, L5 = {ab, d} .
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We find that sets L1, L2, L3, and L4 are languages defined on alphabet E. Set L5 is not a

language defined on E since it contains an element d that does not belong to E. Language

L1 consists of four strings, i.e., |L1| = 4. Language L2 consists of three strings, i.e., |L2| =
3, which is consistent with the alphabet. Language L3 only consists of the empty string.

Language L3 is the empty set that does not contain any strings.

Sequence projection

Definition 2.6. Let E′ ⊆ E be a subset of E. The natural projection of E∗ to E′∗ is denoted by

PE′ : E∗ → E′∗ and is defined as:



PE′(ε) = ε

PE′(a) = a, i f a ∈ E′;

PE′(a) = ε, i f a ∈ (E \ E′);

PE′(sa) = PE′(s)PE′(a), s ∈ E∗, a ∈ E.

(2.1)

The inverse of projection PE′ is denoted by P−1
E′ : E′∗ → E∗ and is defined as:

P−1
E′ (ω) = {σ ∈ E∗ | PE′(σ) = ω} ⊆ E∗. (2.2)

From the above definitions, we know that the projection operator PE′(σ), σ ∈ E∗,

removes all the labels that are not in E′ from string σ, while its inverse projection P−1
E′ (ω)

associates to a sequence ω the set of all strings whose projection on E′ is ω.

Example 2.3. Let E = {a, b, c}, E′ = {b, c} and σ = abcbac. The projection of σ on E′

is PE′(σ) = bcbc. Let ω = bc ∈ E′∗. Then P−1
E′ (ω) =

{
aibajcak} where i, j, k ∈ N =

{0, 1, 2, · · · }.

2.1.2 Automata

In this subsection, we introduce the notions of non deterministic finite automata and

deterministic finite automata.

Definition 2.7. A nondeterministic finite automaton (NFA) is a 5-tuple

G = (Q, E, δ, Qi, Qm)

where
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• Q is a finite set of states;

• E is a finite alphabet;

• δ : Q× E→ 2Q is a (partial) transition relation;

• Qi ⊆ Q is the set of initial states;

• Qm ⊆ Q is the set of final states.

Note that, in some literature, an NFA may contain transitions labeled by empty string ε

whose occurrence can not be detected. In this thesis, we consider that no transition in an

NFA is labeled by ε, but the alphabet E is split into observable and unobservable parts. An

automaton can be described by a graph in which each state corresponds to a node, and is

represented by a circle. In particular, the initial state is specified by an input arrow, and a

final state is represented by a double circle. If q′ ∈ δ(q, a), then there is a directed edge from

node q to node q′ labeled by symbol a to represent the transition from q to q′.

Example 2.4. Fig. 2.1 is the graphical representation of an NFA G = (Q, E, δ, Qi, Qm) with

Q = {1, 2, 3, 4}, E = {a, b, c, d}, Qi = {3, 4} and Qm = {2}. Its transition relation is given in

Table 2.1.

b

a

d

c

1 2

34

d

b

Figure 2.1 – Nondeterministic finite automaton

δ a b c d
1 2 - - -
2 - {2, 3} - -
3 - - 4 -
4 - - - {1, 2}

Table 2.1 – Transition relation of the NFA in Fig. 2.1

The transition relation can be extended to strings δ : Q× E∗ → 2Q as follows: δ(q, ε) = q, f or all q ∈ Q;

δ(q, σa) = δ(δ(q, σ), a), f or σ ∈ E∗ and a ∈ E.



2.1. AUTOMATA 33

Note that for a subset of state set, e.g., Q′ ⊆ Q, and a label a ∈ E, δ(Q′, a), one can also

define

δ(Q′, a) =
⋃

q′∈Q′
δ(q′, a).

Definition 2.8. Given an NFA G = (Q, E, δ, Qi, Qm), the set of labels enabled at state q ∈ Q

is defined as

E(q) = {a ∈ E | δ(q, a) 6= ∅} .

Definition 2.9. Consider a state q ∈ Q in an NFA G = (Q, E, δ, Qi, Qm). State q ∈ Q is said

to be:

• reachable (or accessible) from state q′ ∈ Q if there is a string ω such that q ∈ δ(q′, ω). A

state q reachable from an initial state q0 ∈ Qi is simply called reachable;

• co-reachable (or co-accessible) to state q′ ∈ Q if there is a string ω such that q′ ∈ δ(q, ω).

A state q co-reachable to a final state qm ∈ Qm is simply called co-reachable;

• a deadlock state if no label is enabled at state q, i.e., E(q) = ∅.

Definition 2.10. An NFA G = (Q, E, δ, Qi, Qm) is said to be:

• reachable if all its states are reachable;

• co-reachable if all its states are co-reachable;

• trim if it is reachable and co-reachable.

In this thesis, the studied automaton is always supposed to be accessible. We use G =

(Q, E, δ, Qi) to represent an NFA if no final state is specified in the system.

In Def. 2.11, if the initial states set Qi is a singleton, i.e., |Qi| = 1, and the transition

relation δ is a partial function: δ : Q × E → Q, then the defined automaton becomes a

deterministic finite automaton (DFA).

Definition 2.11. A deterministic finite automaton (DFA) is a 5-tuple

G = (Q, E, δ, q0, Qm)

where

• Q is a finite set of states;

• E is a finite alphabet;

• δ : Q× E→ Q is a partial function;



34 CHAPTER 2. PRELIMINARIES

• q0 ∈ Q is the unique initial state;

• Qm ⊆ Q is the set of final states.

The transition function δ of a DFA G = (Q, E, δ, q0, Qm) can be extended to strings δ :

Q× E∗ → Q in the same way as in NFA. From the definitions of NFA and DFA, it is clear

that a DFA is a special NFA in which there is only one initial state, and the transition relation

is a one to one function. As in the case of NFA, we use G = (Q, E, δ, q0) to represent a DFA

if no final state is specified.

Example 2.5. Fig. 2.2 is the graphical representation of a DFA G = (Q, E, δ, q0, Qm) with

Q = {1, 2, 3, 4}, E = {a, b, c, d}, q0 = 4 and Qm = {2}. Its transition function is given in

Table 2.2.

b

a

d

c

1 2

34

Figure 2.2 – Deterministic finite automaton

δ a b c d
1 2 - - -
2 - 3 - -
3 - - 4 -
4 - - - 1

Table 2.2 – Transition function of the DFA in Fig. 2.2

Now we give the definition of language generated by an NFA.

Definition 2.12. Given an NFA G = (Q, E, δ, Qi), its generated language is defined as

L(G) = {σ ∈ E∗ | ∃q0 ∈ Qi : δ(q0, σ) 6= ∅} .

2.2 Weighted Automata

In this section we recall some basics of weighted automata, which is the formalism

used in this thesis. Weighted automata are classical automata where the transitions carry



2.2. WEIGHTED AUTOMATA 35

weights belonging to a semiring. For more details we refer the reader to [Droste et al., 2009;

Sakarovitch et al., 2009].

2.2.1 Semirings

A semiring is a specific algebraic structure [Baccelli et al., Wiley 1992; Gaubert and Plus,

1997; Gondran and Minoux, 2008; Heidergott et al., 2014].

Definition 2.13. A set D equipped with a binary operation ⊕ : D × D → D is a monoid,

denoted by (D,⊕), if

• ⊕ is associative, i.e., (a⊕ b)⊕ c = a⊕ (b⊕ c) for any a, b, c ∈ D:

• ⊕ has a neutral element ε, i.e., a⊕ ε = ε⊕ a = a for any a ∈ D.

Monoid (D,⊕) is said to be commutative if ⊕ is commutative, i.e., a⊕ b = b⊕ a for any

a, b ∈ D.

Definition 2.14. A semiring is a quintuple S = (D,⊕,⊗, ε, e) composed by a set D, two

binary operations ⊕ and ⊗ on D, and two constant values ε, e ∈ D satisfying the following

four axioms:

• (D,⊕) is a commutative monoid with neutral element ε (also called zero element),

i.e., a ⊕ b = b ⊕ a, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c), and ε ⊕ a = a ⊕ ε = a hold for any

a, b, c ∈ D;

• (D,⊗) is a monoid with neutral element e (also called identity element), i.e., (a⊗ b)⊗
c = a⊗ (b⊗ c), and e⊗ a = a⊗ e = a hold for any a, b, c ∈ D;

• the distributive laws (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b)

hold for any a, b, c ∈ D;

• ε is absorbing for ⊗, i.e., ε⊗ a = a⊗ ε = ε.

A semiring S is said to be idempotent if addition ⊕ is idempotent, i.e., a⊕ a = a holds

for every a ∈ D. An idempotent semiring is also called a dioid.

Example 2.6. The structure

S = (R∪ {−∞} , max,+,−∞, 0)

is a typical instance of idempotent semiring, called max-plus semiring. By definition, D =

R ∪ {−∞}, ε = −∞ and e = 0. The maximum plays the role of addition ⊕, i.e., ⊕ = max,
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and the conventional addition plays the role of multiplication ⊗, i.e., ⊗ = +. For any

a, b ∈ D, we have a⊗ b = a + b and a⊕ b = max(a, b) . Max-plus semiring is also called

Max-plus algebra, and is often denoted by Rmax.

Example 2.7. Other important semirings include: The set of nonnegative integers equipped

with the usual addition and usual multiplication operations, i.e., S = (N,+,×, 0, 1).

Boolean semiring ({0, 1} ,∨,∧, 0, 1), tropical semiring (R ∪ {+∞} , min,+,+∞, 0) and

probability semiring ([0, 1] , max,×, 0, 1).

The set of matrices with m rows and n columns over S = (D,⊕,⊗, ε, e) is denoted by

Sm×n. For matrices A, B ∈ Sm×n and C ∈ Sm×n, the matrix sum and product under semiring

framework are defined in the following way:

[A⊕ B]ij , Aij ⊕ Bij

[A⊗ C]ij ,
n⊕

k=1

(
Aik ⊗ Ckj

) (2.3)

2.2.2 Weighted Automata

Weighted automata (WAs) are a quantitative extension of finite state automata, which

were originally introduced by Schützenberger in [Schützenberger, 1961]. More precisely, a

WA is a finite state automaton in which each transition carries a weight that belongs to a

semiring S [Schützenberger, 1961; Droste et al., 2009]. The weight associated to a transition

can model, e.g., the cost, the resource (energy), the time needed or the probability for

executing the transition.

Definition 2.15. A weighted automaton (WA) over a semiring S = (D,⊕,⊗, ε, e) is a tuple

G = (Q, E, α, µ, β) where

• Q and E are respectively a non-empty finite set of states and an alphabet;

• α ∈ S1×|Q| is a row vector specifying the initial weights. A state q ∈ Q is said to be an

initial state iff αq 6= ε, and αq is the corresponding initial weight;

• µ: E → S|Q|×|Q| is a morphism representing the state transitions given by the family

of matrices µ (a) ∈ S|Q|×|Q|, a ∈ E. For any string ω = e1 · · · ek ∈ E∗, we have

µ(ω) = µ(e1)⊗ µ(e2) · · · ⊗ µ(ek).

• β ∈ S|Q|×1 is a column vector specifying the final weights. A state q is said to be a

final state iff βq 6= ε, and βq is the corresponding final weight.
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Note that |Q| represents the number of states of G and S can be any semiring in the

above definition. In particular, it can be the Boolean semiring ({0, 1} ,∨,∧, 0, 1), in which

case the corresponding WA is a classical finite automaton. Besides, if S represents the max-

plus semiring, i.e., S = Rmax = (R ∪ {−∞} , max,+,−∞, 0), then the corresponding WA is

called a max-plus automaton.

From the above definition, we know that a WA may be nondeterministic because there

may be more than one element different from ε in α or/and in a row of µ(a) for any a ∈ E.

Therefore, one can say that WA are classical NFA in which the transitions carry weights

belonging to a semiring. We simply write G = (Q, E, α, µ) if there is no final state in a WA.

A WA G can be associated with a useful graphical representation, which is a valued

multigraph:

• Q corresponds to the set of nodes;

• an initial state q ∈ Q (i.e., αq 6= ε) is characterized by an input arrow labeled by αq

representing its initial weight. Let us denote Qi ⊆ Q the set of initial states;

• a final state q ∈ Q (i.e., βq 6= ε) is characterized by an output arrow labeled by βq

representing its final weight;

• there exists an arrow from q to q′, labeled by a/µ(a)qq′ , iff µ(a)qq′ 6= ε, a ∈ E. It

represents the state transition when label a occurs. In this thesis, µ(a)qq′ is interpreted

as the activation weight 1 for label a before it can occur for the transition from q to q′.

Note that we assume the states of G are well ordered by natural numbers. With an abuse

of notation, we denote µ(a)qq′ the element in the qth row and q′th column of the matrix µ(a)

for any a ∈ E. The following is an equivalent definition of a WA G = (Q, E, α, µ, β).

Definition 2.16. A WA G = (Q, E, α, µ, β) can be equivalently defined by

G = (Q, E, t, Qi, Qm, $, ρ)

where

• t : Q× E× Q → S is the transition function, which is defined as t(q, a, q′) , µ(a)qq′ ,

for any q, q′ ∈ Q;

• Qi , {q ∈ Q | αq 6= ε} is the set of initial states;

• Qm , {q ∈ Q | βq 6= ε} is the set of final states;

1. Note that the activation weight can represent an amount of time, resources (energy), or a cost, depending
on the interpretation of weights adopted in the underlying work.
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• $ : Qi → S is the function of initial weights $(q) , αq, for any q ∈ Qi;

• ρ : Qm → S is the function of final weights ρ(q) , βq, for any q ∈ Qm.

Note that items α and β in Def. 2.15 are replaced by the set of initial states Qi and the set

of final states Qm. Functions $ and ρ are adopted to specify the weights of initial and final

states. Throughout this thesis, we denote by Qi the set of initial states of a WA G. We simply

write G = (Q, E, t, Qi, $) if no final state is specified.

Example 2.8. Fig. 2.3 shows the graphical representation of a WA G = (Q, E, α, µ, β) with

set of states Q = {1, 2, 3, 4}, alphabet E = {a, b, c, d}, transitions µ(a)1,2 = 2, µ(b)2,2 = 1,

µ(b)2,3 = 6, µ(c)3,4 = 3, µ(d)3,2 = 3, µ(d)4,1 = 2, µ(d)4,2 = 1, initial weights vector α =

(ε, ε, 2, e), and final weights vector β = (ε, 3, ε, ε). The other values for µ(a), µ(b), µ(c) and

µ(d) are equal to ε.

The equivalent representation of this automaton is G = (Q, E, t, Qi, Qm, $, ρ) with Q =

{1, 2, 3, 4}, E = {a, b, c, d}, Qi = {3, 4}, Qm = {2}, $(3) = 2, $(4) = e, ρ(2) = 3. The

transitions t(qi, a, qj) = ε for any qi, qj ∈ {1, 2, 3, 4} and any a ∈ E, except t(1, a, 2) = 2,

t(2, b, 2) = 1, t(2, b, 3) = 6, t(3, c, 4) = 3, t(3, d, 2) = 3, t(4, d, 1) = 2 and t(4, d, 2) = 1.

/ 6b

/ 2a

/ 2d

/ 3c

1 2

34

/ 1d

/ 1b

e 2

3

/ 3d

Figure 2.3 – Weighted automaton

Now we introduce the notion of unambiguity property for a WA.

Definition 2.17. Given a WA G = (Q, E, α, µ), a path of length k is defined as a sequence of

transitions

π = (q1, e1, q2) (q2, e2, q3) · · · (qk, ek, qk+1) (2.4)

where qi ∈ Q, ei ∈ E and µ(ei)qiqi+1 6= ε for i = 1, · · · , k.

Path π is said to be labeled by string e1e2 · · · ek, and π is a circuit if q1 coincides with qk+1.

We use notation p ω
 q to represent the set of paths labeled by string ω ∈ E∗ leading to state

q from state p. If ω equals the empty string ε, i.e., ω = ε, then p ω
 q is the empty set, i.e.,
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p ω
 q = ∅. For any P, R ⊆ Q, we denote by P ω

 R the union of p ω
 q for all p ∈ P and

q ∈ R.

Definition 2.18. A WA G = (Q, E, α, µ) is said to be unambiguous if ∀q ∈ Q, ∀ω ∈ E∗,

|Qi
ω
 {q} | ≤ 1, where Qi is the set of initial states of G.

In simple words, the unambiguity requires that for any state q of G and any string ω

in E∗, there is at most one path labeled by ω leading to q from an initial state. WAs with

unambiguity property are called unambiguous weighted automata (UWAs).

Remark 2.1. Different definitions can be found for the notion of unambiguity in the

literature. In [Béal et al., 2008], the unambiguity is defined as: ∀p, q ∈ Q, ∀ω ∈ E∗, |p ω
 q| ≤

1. That is, for any p, q ∈ Q and any string ω ∈ E∗, there exists at most one path labeled by ω

which leads to q from p. In [Klimann et al., 2004; Kirsten and Lombardy, 2009], an automaton

is said to be unambiguous if ∀ω ∈ E∗, |Qi
ω
 Qm| ≤ 1, where Qm is the set of final states.

That is, the unambiguity requires that for any string ω in E∗, there is at most one successful

path 2 of label ω. The unambiguity given in the above two definitions and the unambiguity

given in Def. 2.18 have the following relationships. (1) The unambiguity in Def. 2.18 is more

restrictive than the first definition above if the automaton is accessible. That is, for a given

accessible WA G, if ∀q ∈ Q, ∀ω ∈ E∗, |Qi
ω
 {q} | ≤ 1, then ∀p, q ∈ Q, ∀ω ∈ E∗, |p ω

 q| ≤ 1.

This can be proved as follows. Assume ∃p, q ∈ Q, ∃ω ∈ E∗, |p ω
 q| > 1. Since G is

accessible, then there is a path leading from an initial state to state p (assume this path is

labeled by ν). Hence, there must exist more than one path labeled by string νω leading from

an initial state leading to state q. That is, we have ∃q ∈ Q, ∃νω ∈ E∗, |Qi
νω
 {q} | > 1. The

structure in Fig. 2.4 illustrates this visually. (2) The unambiguity in Def. 2.18 is more general

than the second one if the automaton is co-accessible. That is, for a given co-accessible WA

G, if ∀ω ∈ E∗, |Qi
ω
 Qm| ≤ 1, then ∀q ∈ Q, ∀ω ∈ E∗, |Qi

ω
 {q} | ≤ 1. This can be proved

as follows. Assume ∃q ∈ Q, ∃ω ∈ E∗, |Qi
ω
 {q} | > 1. Since G is co-accessible, then there

is a path leading from state q to a final state (assume this path is labeled by string ν). Hence,

there must exist more than one path labeled by string ων leading from an initial state. The

structure in Fig. 2.5 illustrates this process.

Remark 2.2. Given a WA G = (Q, E, α, µ), its unambiguity given in Def. 2.18 can be verified

by some algorithms in the literature, such as [Allauzen et al., 2011; Weber and Seidl, 1991].

In fact, algorithms in these two work are proposed for checking the unambiguity defined in

2. A path which starts from an initial state and ends with a final state is called a successful path.
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Figure 2.4 – Structure explaining the relation between the unambiguity in Def. 2.18 and in
[Béal et al., 2008].







q
iQ

mQ

Figure 2.5 – Structure explaining the relation between the unambiguity in Def. 2.18 and in
[Klimann et al., 2004].

[Klimann et al., 2004]. That is, these algorithms are introduced to check if for any string ω

belongs to E∗, there is at most one successful path labeled by ω. Although this unambiguity

is different from the unambiguity defined in this thesis, according to their relationship stated

in Remark 2.1, the algorithms in [Allauzen et al., 2011; Weber and Seidl, 1991] can be used to

check the unambiguity in Def. 2.18. This can be done by considering a state q of WA G to be

the unique final state when we want to check, for any string ω, whether there is at most one

path labeled by ω leading to q from the initial states, that is, at most one successful path.

In the remaining of this thesis, the unambiguity property of a WA refers to the ones

defined in Def. 2.18.

Example 2.9. The WA presented in Fig. 2.6 is unambiguous. This automaton is a

modification of the WA in Fig. 2.3 which is not unambiguous by removing the output

transition of initial state 3 that is labeled by d.

Remark 2.3. For a WA G = (Q, E, α, µ) where all states are initial states, i.e., Qi = Q, G is

unambiguous iff every state in G has no two or more input transitions labeled by the same

symbol. On one hand, suppose (q′, a, q) and (q”, a, q) with q′, q” ∈ Q, q′ 6= q”, and a ∈ E,

are two input transitions of state q in G. Since q′ and q” are initial states, then there exists

a string ω = a such that |Qi
ω
 {q} | > 1. That is G is not unambiguous. On the other



2.2. WEIGHTED AUTOMATA 41

/ 6b

/ 2a

/ 2d

/ 3c

1 2

34

/ 1d

/ 1b

e 2

3

Figure 2.6 – Unambiguous weighted automaton

hand, assume G is not unambiguous, i.e., |Qi
ω
 {q} | > 1. Let a be the last label of ω. Then

we know that there is more than one input transition of q that are labeled by a. In the case

where Qi 6= Q, it is easy to check that any state in G has no two or more input transitions

labeled by the same symbol is a sufficient condition for the unambiguity. Whereas, a WA is

unambiguous does not mean that any state in G has no two or more input transitions with

the same label.

Remark 2.4. As in the case of finite automata, a WA is said to be deterministic if it has a

unique initial state and from any state, no two output transitions are labeled by the same

symbol. From here we know that the determinism implies the unambiguity, but the reverse

is not always true.

Example 2.10. Consider the WA shown in Fig. 2.7. This automaton is unambiguous.

However, we find that one of its states, i.e., state 2, has two input transitions labeled by

b. In addition, according to Remark 2.4, this automaton is not deterministic since it has two

initial states and state 2 has two output transitions labeled by b.

/ 6b

/ 2a

/ 2d

/ 3c

1 2

34

/ 1b

e 2

3

/ 2b

Figure 2.7 – Unambiguous weighted automaton in which state 2 has two input transitions
labeled by b

The following subsection introduces the notions of state vector, weighted sequence

generated by a path and weighted language generated by a WA.
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2.2.3 Generated Language of Weighted Automaton

Definition 2.19. Given an arbitrary path π = (q1, e1, q2) (q2, e2, q3) · · · (qk, ek, qk+1) of a WA

G = (Q, E, α, µ), its weight is denoted by W(π), and is defined as

W(π) =


αq1 ⊗

⊗
i=1,··· ,k

µ(ei)qiqi+1 , i f q1 ∈ Qi;⊗
i=1,··· ,k

µ(ei)qiqi+1 , otherwise.
(2.5)

Note that if the first state in a path is an initial state, then its initial weight is included in

the weight of the path.

Definition 2.20. Given a WA G = (Q, E, α, µ), its state vector is denoted by x(ω) ∈ S1×|Q|,

ω ∈ E∗, and is defined as

x(ω) =

 α, i f ω = ε;

α⊗ µ(ω), otherwise.
(2.6)

For any string ω ∈ E∗, by considering the matrix sum and product defined in Eq. (2.3), it

can be verified that x(ω)q corresponds to the sum ⊕ of weights of paths labeled by ω from

an initial state to state q:

x(ω)q =
⊕

π∈Qi
ω
 q

W(π) =
⊕
p∈Qi

αp ⊗ µ(w)pq. (2.7)

Note that x(ω)q is a real value, and we interpret it as the weight to reach state q according

to ω. By convention, x(ω)qk = ε if qk is not reachable via ω from an initial state. Again,

different interpretations can be associated to the weights of WA G = (Q, E, α, µ), such as the

amount of time, resources (energy), or cost of firing the transitions. If the time interpretation

is adopted, then we say that x(ω)q is the time instant at which state q is reached when string

ω is completed. If the energy interpretation is adopted, then x(ω)q is interpreted as the

energy consumed to reach state q by the occurrence of sequence ω.

In addition, ⊗ and ⊕ can represent different operations, depending on the underlying

semiring S. For example, in probability semiring, ⊕ represents the max operation, i.e., ⊕ =

max, and ⊗ represents the usual multiplication, i.e., ⊗ = ×. In max-plus semiring Rmax,

⊕ represents the max operation, i.e., ⊕ = max, and ⊗ is equal to the usual addition, i.e.,

⊗ = +.
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Example 2.11. Consider the WA G = (Q, E, α, µ) in Fig. 2.8 with Q = {1, 2, 3, 4}, E = {u, b},
µ(u)1,2 = 1, µ(u)4,3 = 2, µ(b)2,2 = 6, µ(b)2,1 = 4, µ(b)3,2 = 3, α = (e, ε, ε, e). The other

values for α, β, µ(b) and µ(u) are equal to ε. We assume that the underlying semiring of G

is the max-plus semiring.

It can be checked that x(u) = (ε, 1, 2, ε), x(ub) = (5, 7, ε, ε), and |Qi
ub
 2| = 2 since

π1 = (1, u, 2)(2, b, 2) and π2 = (4, u, 3)(3, b, 2) are the two paths labeled by ub from an

initial state to state 2. When u is completed, state 2 is reached with a weight value of 1

because x(u)2 = 1. Besides, x(ub)2 = 7 means that state 2 is reached with a weight value

of 7 when ub is completed. Here we observe that labels along path π1 occur as soon as

the activation weights of the corresponding transitions have been reached. However, this

is not always the case. In particular, along path π2, state 3 is first reached with a weight

value of 2 since x(u)3 = 2, and state 2 is then reached with a weight value of 7 when string

ub is completed. Whereas the activation weight of label b for transition (3, b, 2) is equal to

µ(b)3,2 = 3, this label here occurs 5 units of weight (7− 2 = 5) after state 3 is reached. Value

5 is the real weight needed for transferring from state 3 to state 2 along path π2. This is

consistent with the interpretation that µ(b)3,2 specifies the activation weight before label b

can occur for this transition.

1 2 3 4
0

0
0

1/u

4/b

6/b

3/b 2/u

Figure 2.8 – Weighted automaton

Let us rephrase more formally the last observation in Example 2.11. Consider the

occurrence of label a ∈ E for transition (q, a, q′), µ(a)qq′ 6= ε in WA G = (Q, E, α, µ).

Suppose that state q is reached with a weight value of τq. It may happen that label a

occurs with a weight value that is different from τq ⊗ µ(a)qq′ . This can happen if ∃q ∈ Q,

∃ω ∈ E∗ : |Qi
ω
 q| ≥ 1, i.e., several paths labeled by ω leading from an initial state to

state q. Such a configuration captures a synchronization occurring in the system, which is a

common phenomenon in DESs.

Based on the above discussion, we can say that a WA describes a system characterized

by synchronizations between concurrent sequential weighted processes. A path in a WA

represents a concurrent process whose transition weights denote the activation weight

before the transitions can fire. The weighted evolution of the automaton will be given by
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the synchronization of the evolutions of processes corresponding to paths with the same

labeling and reaching the same state. Therefore, we associate to each path π of WA G a

weighted sequence corresponding to this synchronization.

Definition 2.21. Given a path π = (q0, e1, q1) (q1, e2, q2) · · · (qk−1, ek, qk) of a WA G =

(Q, E, α, µ) with q0 ∈ Qi, the weighted sequence generated by π is denoted by σ(π) ∈
(E×D)∗ and is defined as follows:

σ(π) = (e1, τ1)(e2, τ2) · · · (ek, τk) (2.8)

where τj is defined by τj = x(e1, · · · , ej)qj for j = 1, · · · , k.

We use notation q0
σ(π)
 qk to denote the fact that path π starts from initial state q0

and generates the weighted sequence σ(π) reaching state qk. Such a generated weighted

sequence consists of pairs composed by a label and a weight value, i.e., (ej, τj) with ej ∈ E,

τj ∈ D for j = 1, 2, . . . , k. In simple words, it specifies a sequence of labels, i.e., the

unweighted sequence generated by π, and their occurrence weights.

If WA G is unambiguous, then x(ω)q defined in Eq. (2.7) as well as the weighted

sequence generated by a path π defined in Eq. (2.8) can be simplified as follows.

Definition 2.22. Consider an arbitrary string ω = e1 · · · ek ∈ E∗ and a state q ∈ Q in UWA

G = (Q, E, α, µ). The value x(ω)q defined in Eq. (2.7) can be simplified to:

x(ω)q =


αp ⊗ µ(ω)pq , i f q is reachable from p

according to ω (i.e.|p ω
 q| = 1);

ε, otherwise.

(2.9)

This is simply because, for any ω ∈ E∗ and any q ∈ Q, there exist at most one path

labeled by ω leading from an initial state to state q in a UWA. As a result, the weighted

sequence generated by a path can be simplified.

Definition 2.23. Given a path π = (q0, e1, q1) (q1, e2, q2) · · · (qk−1, ek, qk) of a UWA G =

(Q, E, α, µ) with q0 ∈ Qi, the weighted sequence (E × D)∗ generated by π defined in Eq.

(2.8) can be simplified to:

σ(π) = (e1, τ1)(e2, τ2) · · · (ek, τk) (2.10)

where τ1 = αq0 ⊗ µ(e1)q0q1 , τi = τi−1 ⊗ µ(ei)qi−1qi for i = 2, · · · , k.

Based on the definition of weighted sequence generated by a path π, we define the

generated weighted language of a WA as follows.
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Definition 2.24. Given a WA G = (Q, E, α, µ), the generated weighted language L(G) (set

of all weighted sequences generated by G) is defined as:

L(G) = {σ ∈ (E×D)∗ | ∃q ∈ Q, ∃ω ∈ E∗, ∃π ∈ Qi
ω
 q : σ(π) = σ}. (2.11)

For any weighted sequence σ ∈ L(G), we denote by (E f (σ), w f (σ)) the last pair in σ.

That is, E f (σ) is the last label of σ, and w f (σ) is the completion weight of σ.

Example 2.12. Consider again path π1 = (1, u, 2)(2, b, 2) and path π2 = (4, u, 3)(3, b, 2) of

WA G in Fig. 2.8 with Qi = {1, 4}. Let max-plus semiring be the underlying semiring of G.

Then, the generated weighted sequences are σ1 = σ(π1) = (u, 1)(b, 7) and σ2 = σ(π2) =

(u, 2)(b, 7). Therefore, (E f (σ1), w f (σ1)) = (b, 7) and (E f (σ2), w f (σ2)) = (b, 7).

Remark 2.5. In the existing literature, e.g., [Gaubert, 1995; Droste and Gastin, 2007;

Buchholz, 2008; Droste et al., 2009], the behavior of a WA is usually represented by a

mapping, called a formal power series. More precisely, for a WA G defined over semiring

S, its behavior is defined by the formal power series l(G) : E∗ → S with L(G)(ω) =

α ⊗ µ(ω) ⊗ β, which assigns to each string a weight in semiring S. Compared with such

a formal series, the generated weighted language of G, defined in this thesis, gives more

information on the evolution of the system. In fact, formal power series only compute the

completion weight of a task (represented by a string), which is the sum ⊕ of the weights

of its successful paths, while weighted sequence specifies a sequence of labels and their

occurrence weights. In general and for some purposes, such as for the state estimation

problem investigated in this thesis, more information is needed. Hence, from a practical

point of view, the generated weighted language defined in the thesis is useful.

As in the classical automata, for any weighted sequences σ1, σ2 ∈ (E × D)∗, notation

σ1 · σ2 is used to represent their concatenation.

Definition 2.25. The concatenation of two weighted sequences σ1, σ2 ∈ (E×D)∗ is a new

weighted sequence σ1 · σ2 composed by the sequence of pairs in σ1 followed by the sequence

of pairs in σ2.

Definition 2.26. If a weighted sequence ω ∈ (E×D)∗ can be represented as ω = νγη with

νγ, η ∈ (E×D)∗, then weighted sequence ν is called a prefix of ω, weighted sequence γ is

called a substring of ω, and weighted sequence η is called a suffix of ω.

The projection operation on E′ ⊆ E, i.e., PE′ : E∗ → E′∗, defined in Eq. 2.1, is extended

to weighted sequences σ = (e1, t1) · · · (ek, tk) ∈ (E×D)∗. The projection of a weighted
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sequence on E′ ⊆ E is denoted by PE′ : (E×D)∗ → (E′ ×D)∗ where P(σ) is the weighted

string obtained from σ by erasing all pairs whose labels not belonging to E′. For instance,

consider σ = (a, 1)(u, 4)(a, 5) where a ∈ E′ and u ∈ E. Then, we have PE′(σ) = (a, 1)(a, 5).

In this thesis, we denote by PE′(L(G)) the projection of the generated language of WA G on

E′, that is,

PE′(L(G)) =
{

σ ∈ (E′ ×D)∗ | ∃σ′ ∈ L(G) : PE′(σ
′) = σ

}
. (2.12)

If E′ represents the set of observable labels, then PE′(L(G)) is the set of all possible

observations, i.e., all weighted sequences that can be obtained by an external agent during

the evolution of system G.

In the case of classical finite automata, a trajectory of the system is represented by an

infinite sequence of labels that the system may generate. The set of all possible trajectories

of the system is called ω-language [Thistle and Wonham, 1994; Shu and Lin, 2011]. Similarly,

given a WA G, a trajectory is represented by an infinite sequence of pairs (label, weight) that

G may generate. The set of all possible trajectories of G defines the ω-language, which is

denoted by Lω(G). For an arbitrary finite or infinite sequence σ that can be generated by G,

we denote Pr(σ) the set of all its prefixes.



3
State Estimation and Fault Diagnosis of

Weighted Automata

This chapter investigates the current-state estimation and fault diagnosis problems for

weighted automata (WAs).
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3.1 Introduction

In this chapter, we focus on current-state estimation and fault diagnosis problems for

WAs where only a part of the labels (events) of the system are observable for the external

agents. That is, the set of labels is divided into two disjoint subsets, i.e., observable and

unobservable subsets. We consider the case where the observations are static, i.e., a label is

either observed or not observed at every state in which it can occur. Besides, the failures

are associated to some of the unobservable labels, and supposed to be permanent. In other

words, the system cannot spontaneously move from the fault state to a normal state. Given

an observation and a weight value, state estimation consists in calculating the set of possible

states that are consistent with them, and fault diagnosis is to determine whether a fault label

has occurred or not. Note that the general terminology fault diagnosis refers to detecting the

occurrence of fault labels in this chapter.

This chapter is organized as follows. Section 3.2 formally states the problem of state

estimation and fault diagnosis and specifies our assumptions. In subsection 3.3.1, we

propose algorithms to estimate the consistent current states for any observed weighted

sequence according to system’s evolution. Following the proposed algorithms, one

numerical example is shown to illustrate them. In Subsection 3.3.2, we analyse the

computational complexity of state estimation for a fixed-length observation using our

approach. Section 3.3.3 shares the failure experience of building a structure like “observer”

for state estimation. In Section 3.4, we extend the state estimation approach to deal with fault

diagnosis. We first propose an algorithm to construct the augmented automaton of a WA,

and another algorithm is presented to summarize how to perform on-line fault diagnosis.

Finally, conclusions are drawn in Section 3.5.

3.2 Problem Statement

The studied WA G = (Q, E, α, µ) is assumed to be completely known, namely, initial

states, state transitions, weights of transitions are available. The label set E is partitioned

into two disjoint subsets: the set of observable labels Eo and the the set of unobservable

labels Euo. We use PEo : E∗ → E∗o to denote the natural projection from E to Eo.
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3.2.1 State Estimation

Considering that the firing of unobservable labels cannot be detected by an external

agent observing the system’s evolution, we assume that all the unobservable labels are

represented by the same symbol u, i.e., Euo = {u} and E = Eo ∪ {u}. We make the following

assumption when dealing with state estimation.

Assumption 3.1. There is no circuit labelled only by unobservable labels.

Assumption 3.1 implies that generated sequences of unobservable labels (strings

composed exclusively of u) have finite length.

For any state q ∈ Q, we use notation q• to represent the set of its output transitions,

i.e., q• =
{
(q, a, q′)|a ∈ E, q′ ∈ Q : µ(a)qq′ 6= ε

}
. Given a weighted sequence σ =

(e1, t1)(e2, t2) · · · (ek, tk), we denote lab(σ) = e1e2 · · · ek the sequence of labels associated with

σ, neglecting the occurrence weights. The fact that a label a ∈ E appears in sequence lab(σ)

is denoted by a ∈ lab(σ).

Given an observed weighted sequence σo ∈ P(L(G)) and a weight value τ, we define the

set C(σo, τ) of (σo, τ)−consistent states as the set of all possible states in which the system

may be at τ after the observation of σo. We assume that there is no further observation after

the last label in σo.

Definition 3.1. Given an observed weighted sequence σo ∈ P(L(G)) and a weight value

τ ≥ w f (σo), the set of all (σo, τ)− consistent states is defined as

C(σo, τ) = {q ∈ Q | (∃σ ∈ L(G), ∃q0 ∈ Qi : q0
σ
 q, P(σ) = σo, w f (σ) ≤ τ)∧

((q• = ∅) ∨ (∃(q, a, q′) ∈ q• : τ < x(lab(σ)a)q′))}
(3.1)

Note that x(lab(σ)a)q′ is the element in state vector x(lab(σ)a) that corresponds to state

q′. From the above definition, a state q without output transition is a consistent state, if there

exists a weighted sequence σ from an initial state to q such that the projection of σ coincides

with the observation, and the completion weight of σ is less than or equal to given value τ.

If q has output transition(s), then at least one of the output transitions is required to lead to

a weight larger then τ.

Problem 3.1. The state estimation problem for a WA consists in finding a systematic

approach to characterize the set C(σo, τ) for any observation σo and any weight τ ≥ w f (σo).

Example 3.1. Consider again the automaton G in Fig. 2.8 with details in Example 2.11.

Assume that the underlying semiring of G is the max-plus semiring. Let σo = (b, 7)(b, 11)
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and τ = 11.5. It can be verified that the set of consistent states is C(σo, τ) = {1}. In fact,

π = (1, u, 2)(2, b, 2)(2, b, 1) is the unique path whose weighted sequence is consistent with

σo. We have σ = σ(π) = (u, 1)(b, 7)(b, 11), 1 σ
 1, w f (σ) = 11 ≤ 11.5, and P(σ) = σo.

Moreover, the occurrence weight of the output transition (1, u, 2) of state 1 is x(ubbu)2 = 12,

which is greater than 11.5. Therefore, state 1 is consistent with σo and τ.

3.2.2 Fault Diagnosis

The set Euo of unobservable sets is partitioned as Euo = E f ∪ Ereg where E f is the set

of fault labels 1 (modeling the faulty behavior), while Ereg is the set of regular labels that,

although not observable, do not describe a faulty behavior. In addition to Assumption 3.1

in Subsection 3.2.1, we make another hypothesis when dealing with fault diagnosis.

Assumption 3.2. For any two different states p, q ∈ Q, there is at most one unobservable

state transition from p to q.

Remark 3.1. An unobservable state transition is a transition that is labeled by an

unobservable label. For state estimation described in Subsection 3.2.1, it is considered that

an external agent cannot distinguish one unobservable label from the others, and all the

unobservable labels are denoted with the same symbol u. In fault diagnosis problem, we

admit different symbols for unobservable labels since fault and normal unobservable labels

must be distinguished. Then Assumption 3.2 is needed to avoid the confusion between

unobservable labels for a transition from state p to state q.

Given an observed weighted sequence, the fault diagnosis problem is to detect the

occurrence of some labels that belong to fault class E f . In fault diagnosis problem, rather

than being interested in finding the states in which the system can be, we are interested in

determining the set of labels that may have occurred.

Definition 3.2. Given an observed weighted sequence σo ∈ P(L(G)) and a weight value

τ ≥ w f (σo). The set of weighted sequences consistent with σo and τ is

S(σo, τ) = {σ ∈ L(G) | (P(σ) = σo, w f (σ) ≤ τ)∧

(∃q0 ∈ Qi, ∃q ∈ Q : q0
σ
 q, (q• = ∅) ∨ (∃(q, a, q′) ∈ q• : x(lab(σ)a)q′ > τ))}

(3.2)

1. Note that the set E f could be further partitioned to r disjoint subsets, i.e., E f = E1
f ∪ E2

f ∪ · · · ∪ Er
f

representing different fault classes. In this chapter, we consider single fault class scenario for sake of clarity
and without loss of generality since it is known that solving a diagnosis problem for r fault classes is equivalent
to solve r single-class diagnosis problems.
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In simple words, weighted sequence σ is a consistent sequence, if its projection coincides

with the observation, and its completion weight is less than or equal to τ. In addition, there

must be a state q that can be reached by σ from an initial state such that it has no output

transition or at least one of its output transitions is required to lead to a weight greater than

τ.

We extend the notion of diagnoser for PNs proposed in [Cabasino et al., 2011] to the

framework of WAs.

Definition 3.3. A diagnoser is a function ϕ :
[
(E×D)∗

]
× D × E f that associates to each

observation σo ∈ P(L(G)), to each given weight τ, and to fault class E f , a diagnosis state.

• ϕ(σo, τ, E f ) = N if ∀σ ∈ S(σo, τ) and ∀e f ∈ E f , we have e f /∈ lab(σ).

In such a case, a fault cannot have occurred, because none of the generated sequences

consistent with the observation contain a fault label belonging to class E f .

• ϕ(σo, τ, E f ) = F if ∀σ ∈ S(σo, τ), ∃e f ∈ E f such that e f ∈ lab(σ).

In such a case fault must have occurred, because all generated sequences consistent

with the observation contain at least one fault label belonging to class E f .

• ϕ(σo, τ, E f ) = U if the following conditions are satisfied:

(i) ∃σ ∈ S(σo, τ), ∃e f ∈ E f such that e f ∈ lab(σ);

(ii) ∃σ′ ∈ S(σo, τ) such that ∀e f ∈ E f , e f /∈ lab(σ).

In such a case a fault label belonging to E f may have occurred or not, namely, it is

uncertain.

Problem 3.2. The fault diagnosis problem of a WA consists in finding a systematic approach

to compute the diagnosis state for any observation σo, any given weight τ ≥ w f (σo) and the

fault class E f .

3.3 State Estimation for Weighted Automata

3.3.1 An Online State Estimation Approach

In this subsection we introduce an approach to solve Problem 3.1.

Definition 3.4. Given a WA G = (Q, E, α, µ, β), a pair (qj, ωj) with qj ∈ Q and ωj ∈ E∗

is said to be compatible with a weighted sequence σo = (e1, t1)(e2, t2) · · · (ej, tj) ∈ P(L(G)),

j ≥ 1, if there exists path π labeled by ωj ending with ej from an initial state q0 in G such

that P(σ(π)) = σo and q0
σ(π)
 qj. We define W(σo) as the set of all pairs compatible with σo.
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We first define two functions UpdateW and ConsistentSet, which are given in Algorithms

3.1 and 3.2 respectively. Then Propositions 3.1, 3.2 and 3.3 are introduced to prove that the

current state according to system’s evolution can be correctly calculated by combining the

functions UpdateW and ConsistentSet.

Algorithm 3.1: Update the compatible set
Input: W(σo), a pair (e, t) ∈ (Eo ×D).
Output: W(σo · (e, t)).

1: function UpdateW((e, t), W(σo))
2: W(σo · (e, t)) := ∅
3: for each (q′, ω′) ∈W(σo) do
4: for each q ∈ Q do
5: for i = 0 to |Q| − 1 do
6: if

[
x(ω′)⊗ µ(ui)⊗ µ(e)

]
q = t and

[
µ(ui)⊗ µ(e)

]
q′q 6= ε then

7: W(σo · (e, t)) := W(σo · (e, t)) ∪
{
(q, ω′uie)

}
8: end if
9: end for

10: end for
11: end for
12: return(W(σo · (e, t)))
13: end function

Function UpdateW in Algorithm 3.1 is employed to update the compatible set each time

a new pair (e, t) is observed. The details on how this algorithm operates are explained in the

proof of Proposition 3.1.

Proposition 3.1. Assume W(ε) = {(q, ε) | q ∈ Qi}. Called for successive pairs in sequence

σo = (e1, t1)(e2, t2) · · · (ej, tj) ∈ P(L(G)), function UpdateW returns W(σo).

Proof. Proposition 3.1 can be proved by induction on the length of the observation.

W(ε) = {(q, ε) | q ∈ Qi} is the compatible set for the empty weighted sequence. Let

σ′o = (e1, t1)(e2, t2) · · · (ej−1, tj−1), and assume that function UpdateW returns W(σ′o) when

it has been called for successive pairs in σ′o. When called for (ej, tj), function UpdateW first

computes the state vector values
[
x(ω′)⊗ µ(ui)⊗ µ(ej)

]
q and

[
µ(ui)⊗ µ(ej)

]
q′q with i =

0, · · · , |Q| − 1, for each pair (q′, ω′) ∈ W(σ′o) and for any q ∈ Q. Then, any pair (q, ω′uiej)

is included in set W(σo) if
[
x(ω′)⊗ µ(ui)⊗ µ(ej)

]
q = tj and

[
µ(ui)⊗ µ(ej)

]
q′q 6= ε. Note

that the condition
[
x(ω′)⊗ µ(ui)⊗ µ(ej)

]
q = tj ensures that state q can be reached with the

weight tj via string ω′uiej and the condition
[
µ(ui)⊗ µ(ej)

]
q′q 6= ε ensures that there exists a

path labeled by uiej from state q′ to q. Since (q′, ω′) is compatible, the above two conditions

ensure that (q, ω′uiej) is compatible with σo. Therefore, function UpdateW returns W(σo)

when it has been called for successive pairs in σo.
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Function ConsistentSet in Algorithm 3.2 is employed to determine the set of states

consistent with an observation σo and a weight τ ≥ w f (σo). Although we assume that

no observable label occurs after last observed label E f (σo), some unobservable labels may

occur provided that the reached weight is less than τ. This requires us to enumerate all the

possible unobservable transitions in continuation of compatible pairs in W(σo). Together

with the operations of Algorithm 3.2, these aspects are detailed in the proof of Proposition

3.2.

Algorithm 3.2: Compute the set of consistent states
Input: W(σo), τ ≥ w f (σo).
Output: C(σo, τ).

1: function ConsistentSet(W(σo), τ)
2: C := ∅
3: for each (q′, ω′) ∈W(σo) do
4: for i = 0 to |Q| − 1 do
5: Qτ := ∅
6: for each q ∈ Q do
7: if ε 6=

[
x(ω′)⊗ µ(ui)

]
q ≤ τ and

[
µ(ui)

]
q′q 6= ε then

8: Qτ := Qτ ∪ {q}
9: end if

10: end for
11: for q ∈ Qτ do
12: Tq := ∅
13: if q• = ∅ then
14: C := C ∪ {q}
15: else
16: for each (q, a, q′′) ∈ q• do
17: Tq = Tq ∪

{[
x(ω′)⊗ µ(ui)⊗ µ(a)

]
q′′

}
18: if ∃t ∈ Tq such that t > τ then
19: C := C ∪ {q}
20: end if
21: end for
22: end if
23: end for
24: end for
25: end for
26: return(C(σo, τ) = C)
27: end function

Proposition 3.2. For any σo ∈ P(L(G)) whose compatible set is W(σo) calculated by

Algorithm 3.1, and for a weight τ ≥ w f (σo), the set C(σo, τ) returned by function

ConsistentSet is equal to C(σo, τ) defined in Eq. (3.1).

Proof. According to Algorithm 3.1, we know that W(σo) is composed of all pairs (q′, ω′) such
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that q′ is reached with a weight w f (σo) from an initial state by a path π labeled by ω′ ending

with the last label in σo, and P(σ(π)) = σo. For each pair (q′, ω′) ∈W(σo) and for any q ∈ Q,

function ConsistentSet computes the state vector values
[
x(ω′)⊗ µ(ui)

]
q and

[
µ(ui)

]
q′q,

i = 0, · · · , |Q| − 1. Conditions ε 6=
[

x(ω′)⊗ µ(ui)
]

q
≤ τ and

[
µ(ui)

]
q′q 6= ε ensure that state

q can be reached by a generated weighted sequence σ such that P(σ) = σo and w f (σ) ≤ τ.

Besides, the existence of transition (q, a, q′′) ∈ q• such that
[
x(ω′)⊗ µ(ui)⊗ µ(a)

]
q′′ > τ

guarantees that at least one of the occurrence weights of the output transitions of q is

greater than τ. Condition q• = ∅ ensures that q has no output transition. All states

satisfying the above conditions is included in C(σo, τ), which coincides with the definition

of (σo, τ)−consistent states.

Using functions proposed in Algorithms 3.1 and 3.2, Algorithm 3.3 is introduced to deal

with the state estimation problem during the operation of the system.

Algorithm 3.3: Online state estimation
Input: G = (Q, E, α, µ, β).
Output: C(σo, τ).

1: σo := ε, W(σo) := ∅
2: for each q ∈ Qi do
3: W(σo) := W(σo) ∪ {(q, ε)}
4: end for
5: while state estimation is required do
6: if observation (e, t) arrives then
7: W(σo · (e, t)) := UpdateW((e, t), W(σo))
8: σo := σo · (e, t)
9: end if

10: if the set of consistent states is required then
11: Let τ be the current weight
12: C(σo, τ) := ConsistentSet(W(σo), τ)
13: end if
14: end while

Proposition 3.3. Algorithm 3.3 provides an online solution to Problem 3.1.

Proof. Algorithm 3.3 initializes W(ε) = {(q, ε) | q ∈ Qi} since all initial states can be reached

via an empty string (no observation has occurred). Each time a new observable label occurs,

function UpdateW is called to update the compatible set, and, when needed, the consistent

states is determined by calling function ConsistentSet. According to Propositions 3.1 and

3.2, Algorithm 3.3 does provide a solution to Problem 3.1.

Example 3.2. Let us consider again WA G in Fig. 2.8. Let us assume that the weighted

sequence σo = (b, 5)(b, 10) is observed and that the set of consistent states is required at a
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given weight τ = 14. It can be checked that α = (e, ε, ε, e), β = (e, ε, ε, ε),

µ(u) =


ε 1 ε ε

ε ε ε ε

ε ε ε ε

ε ε 2 ε

 , µ(b) =


ε ε ε ε

4 6 ε ε

ε 3 ε ε

ε ε ε ε

 .

1) Initialize W(ε) = {(1, ε), (4, ε)}.

2) Update the compatible set when observation (b, 5) arrives:

Firstly, compute µ(ui), i = 0, 1, 2, 3:

µ(u0) =


e ε ε ε

ε e ε ε

ε ε e ε

ε ε ε e

 , µ(u2) = µ(u3) =


ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

 .

Secondly, for pair (1, ε), compute x(ε) ⊗ µ(ui) ⊗ µ(b) and
[
µ(ui)⊗ µ(b)

]
1,• (the row

corresponding to state 1 in matrix µ(ui) ⊗ µ(b)), i = 0, 1, 2, 3: x(ε) ⊗ µ(u) ⊗ µ(b) =

(5, 7, ε, ε); x(ε) ⊗ µ(ui) ⊗ µ(b) = (ε, ε, ε, ε), for i = 0, 2, 3; [µ(u)⊗ µ(b)]1,• = (5, 7, ε, ε);[
µ(ui)⊗ µ(b)

]
1,• = (ε, ε, ε, ε), for i = 0, 2, 3. According to function UpdateW, any pair

(q, uib) is recorded as an element of the compatible set if
[
x(ε)⊗ µ(ui)⊗ µ(b)

]
q = 5 and[

µ(ui)⊗ µ(b)
]

1,q 6= ε. In this case, the only pair (1, ub) is obtained as an element of the

updated set W since [x(ε)⊗ µ(u)⊗ µ(b)]1 = 5 and [µ(u)⊗ µ(b)]1,1 = 5 6= ε.

Thirdly, for pair (4, ε), compute x(ε)⊗ µ(ui)⊗ µ(b) and
[
µ(ui)⊗ µ(b)

]
4,•, i = 0, 1, 2, 3:

x(ε) ⊗ µ(u) ⊗ µ(b) = (5, 7, ε, ε); x(ε) ⊗ µ(ui) ⊗ µ(b) = (ε, ε, ε, ε), for i = 0, 2, 3;

[µ(u)⊗ µ(b)]4,• = (ε, 5, ε, ε);
[
µ(ui)⊗ µ(b)

]
4,• = (ε, ε, ε, ε), for i = 0, 2, 3.

Similar to the above process, any pair (q, uib) is added into the updated set W if[
x(ε)⊗ µ(ui)⊗ µ(b)

]
q = 5 and

[
µ(ui)⊗ µ(b)

]
4,q 6= ε. In this case, no pair is recorded.

Hence, function UpdateW returns W((b, 5)) = {(1, ub)}.

3) Update the compatible set when observation (b, 10) arrives: Similar to step 2), any pair

(q, ubuib) is recorded as an element of the new compatible set if
[
x(ub)⊗ µ(ui)⊗ µ(b)

]
q =

t2 = 10 and
[
µ(ui)⊗ µ(b)

]
1,q 6= ε. In this case, the unique pair (1, ubub) is recorded, and

function UpdateW returns W((b, 5)(b, 10)) = {(1, ubub)}.

4) Compute the set of consistent states required at weight τ = 14: For pair (1, ubub),

compute x(ubub) ⊗ µ(ui) and
[
µ(ui)

]
1,•, i = 0, 1, 2, 3: x(ubub) ⊗ µ(u0) = (10, 12, ε, ε);

x(ubub) ⊗ µ(u) = (ε, 11, ε, ε); x(ubub) ⊗ µ(ui) = (ε, ε, ε, ε), for i = 2, 3;
[
µ(u0)

]
1,• =
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(e, ε, ε, ε); [µ(u)]1,• = (ε, 1, ε, ε);
[
µ(ui)

]
1,• = (ε, ε, ε, ε), for i = 2, 3.

According to Algorithm 3.2, we get Qτ = {1, 2}. State 1 is not consistent with σo =

(b, 5)(b, 10) and τ = 14 since it has only one output transition labeled by u leading to state

2, and x(ababa)2 = 11 < τ. State 2 is consistent with σo and τ because one of its output

transitions leads to a weight x(ababab)2 = 17 greater than τ. Therefore C(σo, τ) = {2}.

3.3.2 Computational Complexity Analysis

Complexity of Our Online State Estimation Approach

In this subsection, we discuss the computational complexity of estimating all possible

states consistent with an observation σo = (e1, t1)(e2, t2) · · · (ek, tk) ∈ P(L(G)) and a given

value τ ≥ w f (σo) = tk using Algorithm 3.3.

Function UpdateW is used to update the compatible set each time a label is observed.

Let σ′o = (e1, t1)(e2, t2) · · · (ej−1, tj−1) and σ′′o = (e1, t1)(e2, t2) · · · (ej, tj) with 1 ≤ j ≤ k. In

order to calculate W(σ′′o ) from W(σ′o) when observation (ej, tj) arrives, we have to check

whether the pair (q, ω′uiej), i = 0, · · · , |Q| − 1, satisfies
[
x(ω′)⊗ µ(ui)⊗ µ(ej)

]
q = tj and[

µ(ui)⊗ µ(ej)
]

q′q 6= ε for each pair (q′, ω′) belonging to W(σ′o). Therefore, computing W(σ′′o )

requires 2× |Q|2 × |W(σ′o)| comparisons where |W(σ′′o )| is the cardinality of W(σ′o). In the

worst case, it is equal to 2× |Q|j+2 since |W(σ′o)| ≤ |Q|
j. There are k observed labels in σo,

which means that function UpdateW should be called k times. Thus, the total number of

comparisons for calculating W(σo) is at most
k
∑

j=1
2× |Q|j+2.

The function ConsistentSet is called to calculate all states consistent with observation σo

and τ. Any state q ∈ Q is a consistent state if there exists a pair (q′, ω′) ∈ W(σo) and an

integer number l ∈ [0, |Q| − 1] such that ε 6=
[

x(ω′)⊗ µ(ul)
]

q
≤ τ and

[
µ(ul)

]
q′q 6= ε.

Besides, the occurrence weights of output transitions of q need to be compared with τ. In

the worst case, the number of comparisons required to check this for all states in the worst

case is (3 + |E|)× |Q|k+3.

Therefore, in the worst case, the total complexity of solving the problem of state

estimation for a fixed-length observation σo = (e1, t1) (e2, t2) · · · (ek, tk) and a given value

τ ≥ tk using Algorithm 3.3 is O(
k
∑

j=1
2× |Q|j+2 + (3 + |E|)× |Q|k+3).

Remark 3.2. The computational complexity, in terms of the number of comparisons, of

our online algorithm grows exponentially with the length of the observation. This is

because each time a new label is observed, the compatible set must be updated from the

previous one. For an observation σo = (e1, t1) (e2, t2) · · · (ek, tk), all possible sequences of
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unobservable transitions interleaved with it should be taken into account. That is, at worst,

we have to consider all sequences ui1e1ui2e2 · · · uik ek with i1, · · · , ik = 0, 1, · · · |Q| − 1 to

determine W(σo). This implies that in the worst case |W(σo)| = |Q|k+1.

Complexity of other Approaches for State Estimation or Related Problems

In this part, after a careful analysis of the literature, we make the following comments

on the complexity of some existing approaches for state estimation or related problems,

including fault diagnosis and detectability verification.

(1) In the case of automata, there exist online algorithms that are polynomial in the

number of states of the system for detectability [Shu and Lin, 2011] and for online fault

diagnosis [Jiang et al., 2001; Yoo and Lafortune, 2002].

More precisely, in [Shu and Lin, 2011], an approach whose complexity is polynomial in

the number of states |Q| of an automaton G is presented to check (strong) detectability of

G. A new automaton called detector Gdet, the cardinality of its state space is bounded by

1 + |Q|+ |Q|(|Q| − 1)/2, is first constructed. Then a necessary and sufficient condition is

proposed to check the ability to determine the current and subsequent states of G. Clearly,

once Gdet is built, it can be used to perform online state estimation with a polynomial

complexity in the length of observation and in the number of states of G. Yoo and Lafortune

[Yoo and Lafortune, 2002] check diagnosability by constructing a verifier and Jiang et al.

[Jiang et al., 2001] check diagnosability by constructing a new automaton Gd based on

the concurrent composition of two plant models. These algorithms are polynomial in the

number of states of the system and also in the number of fault classes. Online fault diagnosis

can be performed on verifier and Gd with a polynomial complexity.

(2) For the diagnosis of place/transition nets, online approaches are typically based on

integer linear programming (ILP) techniques which are known to be NP-complete, but they

do not need to enumerate the reachability space.

For instance, in [Basile et al., 2009; Dotoli et al., 2009], the authors present an online

algorithm solving at each observed event some ILP problems in order to determine the

occurrence of different faults. Since, no polynomial algorithm for ILP is known to exist, so

the online computational effort of these proposed algorithms in these work can be high (may

not be polynomial). They also prove that the computational complexity can be reduced to

be polynomial if the unobservable subnet of the studied Petri nets enjoys suitable properties

(for instance, the subnet is an acyclic state machine and the studied Petri nets system is

bounded). In Cabasino et al. [Cabasino et al., 2010], the basis reachability graph is offline
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constructed to reduce the complexity of online fault diagnosis.

(3) When timed models are considered, the complexity of online approaches for state

estimation and fault diagnosis (usually) becomes exponential.

For instance, Basile et al. [Basile et al., 2015] investigate state estimation for time

labeled Petri nets based on the construction of the modified state class graph (MSCG).

The complexity comes from two folds: 1) the number of nodes of the MSCG increases

exponentially with the system complexity (net structure, and number of tokens in the initial

marking). 2) Based on the MSCG, a process which consists of two main steps is introduced

to determine the set of consistent states for a given observed sequence of events σo and a

given time instant τ. More precisely, during the first step, the authors compute the set of

paths in the MSCG that are logically consistent with the observation σo. The complexity of

finding all such paths is O(|T|lmax) where lmax is the length of the longest path in the MSCG

that is logically consistent with the observation σo and the given value of τ. During the

second step, an integer linear programming problems with 1 + |T| + 3× lmax × |T| + lmax

constraints is formulated to establish if the above paths are timing consistent with all the

labels in σo. It is clear that lmax increases as the length of the observation σo increases. Hence

the total complexity of this approach is exponential in the length of the observation σo.

Tripakis [Tripakis, 2002] and Bouyer et al. [Bouyer et al., 2005] investigate the

diagnosability for timed automata. The algorithm proposed in [Tripakis, 2002] is based

on state estimation in a timed automaton with ε-transitions (unobservable transitions), its

complexity to diagnose faults for an observation is doubly exponential in the size of the

plant and in the size of the observation. An algorithm based on regions (and no more on

zones) with a complexity exponential in both the size of the plant and of the observation

could be proposed as well. Bouyer et al. [Bouyer et al., 2005] deals with the diagnosability

for deterministic timed automata (DTA) and event-recording timed automata (ERA). The

authors prove that the checking of existence of diagnoser in the class DTA (with bounded

resources) is 2EXPTIME-complete whereas it is PSPACE-complete for the class ERA (with

bounded resources). Moreover it is possible to build a diagnoser if it exists. The number

of states of such a diagnoser is doubly exponential in the granularity and in the size of the

plant, but only linear in the length of the observation.

From the above comments, we can conclude that the complexity of our state estimation

approach is due to the fact that we are considering WAs, which can be considered as a class

of timed DES models if time interpretation is associated to the weights of transitions.
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3.3.3 Some Attempts of Constructing Observer for State Estimation

As discussed in subsection 3.3.2, our proposed approach has an exponential complexity

in the length of the observation, which may be an issue during the implementation phase.

However, there may be approaches (similar to the construction of the observer [Sampath et

al., 1995; Shu and Lin, 2011] or similar structure [Cabasino et al., 2010; Basile et al., 2015])

that would move the complexity to the offline phase. Once this is done, the complexity of

the online phase would be low. We tried but did not succeed in building such structures

for general WAs (without restrictive assumptions). Let us sketch some of the attempts and

explain informally why they are not conclusive.

(1) Our first idea was to build a WA Gobs (possibly nondeterministic) playing the role

of “observer” in the sense that its alphabet is restricted to observable labels and that it

can generate the same observation. A straightforward construction could be to define the

transition matrices by

µobs(a) =
⊕

i=1,··· ,|Q|−1

(
µ(ui)⊗ µ(a)

)
, for all a ∈ Eo

If we consider the following UWA G in Fig. 3.1 where u is unobservable and b is

observable. Assume G is defined over the max-plus semiring. Then, we have

µ(u) =


ε 1 ε

ε ε ε

ε ε ε

 , µ(b) =


ε ε 1

ε ε 1

ε 2 ε

 ,

µobs(b) = µ(b)⊕ (µ(u)⊗ µ(b)) =


ε ε 2

ε ε 1

ε 2 ε

 .

1 2 3

Figure 3.1 – Weighted automaton G

The resulting “observer” Gobs is depicted in Fig. 3.2. Gobs is not satisfactory since it cannot

generate, for instance, the observation (b, 1)(b, 3) which can be generated by G. From this
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example, we can conjecture that, even for a UWA, it is impossible to build a WA playing the

role of its state-estimator.

2/b2/b

1/b

1 23

Figure 3.2 – Gobs with µobs(b) =
⊕
i=1

(
µ(ui)⊗ µ(b)

)
, f or i = 0, 1

(2) Another possibility could be to define a specific alphabet for Gobs composed of

symbols corresponding to strings uia for each a ∈ Eo and i = 0, 1, · · · , |Q| − 1 (remember

that there is no circuit labeled only by unobservable labels). Transition matrices for Gobs can

be defined by

µobs(uia) = µ(uia), f or a ∈ Eo

The idea behind is that letters appearing in possible observation from G are the

projections of letters into the alphabet of Gobs. In this case, for example, the “observer”

Gobs of the WA G in Fig. 3.1 is depicted in Figure 3.3.

1 23

/ 1b

/ 1b

/ 2b

/ 2ub

Figure 3.3 – Gobs with µobs(uib) = µ(uib), for i = 0, 1

Then, based on Gobs, to check if state qk is consistent with a given observation

(a1, t1)(a2, t2) · · · (ak, tk) we not only need to verify that there exist i1, i2, · · · , ik ∈
{0, 1, · · · , |Q| − 1} such that xobs((ui1 a1)(ui2 a2) · · · (uik ak))qk = tk but also verify that

∃qk−1 s.t. xobs((ui1 a1)(ui2 a2) · · · (uik−1 ak−1))qk−1
= tk−1 and µobs(uik ak)qk−1qk 6= ε

...

∃q1 s.t. xobs(ui1 a1)q1
= t1 and µobs(ui1 a1)q0q1 6= ε with q0 ∈ Qi

Finally, this leads to the same enumerations as in our algorithms, and complexity is not

enhanced.

(3) We also tried to iteratively build “observer” Gobs whose states would reflect the
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consistent states in the original WA G. In other words, Gobs now is a finite state automaton,

and each of its states qobs is a subset of states of G, i.e., qobs ⊆ Q. Gobs can be built as follows:

• the initial state of Gobs is defined to be the set of initial states of G;

• for any state qobs of Gobs, a state transition is defined for each possible “observed

transition”.

For example, consider the WA G in Fig. 2.8, its “observer” Gobs obtained according to the

above principle is depicted in Fig. 3.4.

5/b

7/b

7/b

5/b

4/b

6/b

7/,6/ bb

5/,4/ bb

 1,2

 1,4  1

 2

Figure 3.4 – Gobs of weighted automaton G in Fig. 2.8

One of the problems with such construction is that the resulting “observer” may generate

trajectories that are not possible observations in the original automaton. In this example,

(b, 5)(b, 11) is generated by Gobs, but it is impossible in G. From this example, we can

conjecture that it is not possible to construct a finite state automaton playing the role of

state-estimator of a general WA.

We have investigated a lot of different ways for building an “observer” through a WA or

even a finite state automaton with tailored labelings, but so far, we have not succeeded in the

general case. However, for a UWA, we find it is feasible to construct its observer (current-

state estimator), which is a finite state automaton over a weighted alphabet. Details about

this are presented in Chapter 4 which deals with the problem of detectability verification.

3.4 Fault Diagnosis of Weighted Automata

In the framework of logical DES, Zad et al. [Zad et al., 2003] pointed out that the fault

diagnosis problem in event-based framework can always be transformed to an equivalent

problem in a state-based framework. In other words, fault diagnosis can be reduced to a

state estimation problem. Inspired by this, in this section, we prove that the event-based

fault diagnosis of a WA is also equivalent to solving state estimation problem. Given a
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WA, we first propose an algorithm to construct its augmented version, called augmented

automaton, with respect to a fault class. Then, the diagnosis state with respect to a fault class

is associated to each observation and a weight value using the state estimation approach

presented in subsection 3.3.1.

3.4.1 Construction of the Augmented Automaton

Suppose that we want to determine the occurrence of some labels belonging to fault class

E f . We transform the original WA G = (Q, E, α, µ, β) into G∗ =
(
Q∗, E, t∗, Q∗i , Q∗m, $∗, ρ∗

)
,

where Q∗ ⊆ Q×{0, 1} is the set of states, t∗ : Q∗× E×Q∗ → Rmax is the transition function,

Q∗i ⊆ Q∗ (resp. Q∗m ⊆ Q∗) is the set of initial states (resp. final states), $∗ : Q∗i → Rmax (resp.

ρ∗ : Q∗m → Rmax) is the function of initial weights (resp. final weights).

Note that, each element q∗ ∈ Q∗ is a pair (q, f ) where q is a state symbol of G, and f is a

boolean variable. Variable f is used to mark the state status of G∗. More precisely, (q, f ) is

a normal (resp. fault) state when f is equal to 0 (resp. 1). In other words, Q∗ is partitioned

into two parts, i.e., Q∗ = Q∗N ∪Q∗f where Q∗N and Q∗f are the set of normal and faulty states,

respectively. G∗ is called the augmented automaton of G with respect to fault class E f . In

the worst case, the number of states of G∗ is |Q∗| = 2× |Q|.

For automaton G = (Q, E, α, µ, β), we denote R(q, a) the set of reachable states for a ∈ E

from state q, i.e., R(q, a) =
{

q′ ∈ Q | µ(a)qq′ 6= ε
}

. Now we define the set of reachable states

for a ∈ E from state (q, f ) in G∗ as: R∗((q, f ), a) = {(q′, f ) | q′ ∈ R(q, a)} , if a /∈ E f , and

R∗((q, f ), a) = {(q′, 1) | q′ ∈ R(q, a)} , if a ∈ E f .

Algorithm 3.4 is used to construct the augmented automaton of G with respect to fault

class E f .

Steps 2-5 of Algorithm 3.4 enables us to compute the set of initial states and to specify the

function of initial weights for G∗. In its graphical representation, these states are represented

by nodes. The initial states of G are initial states of G∗ and have a value 0 defining that no

fault label has occurred at the beginning of the system evolution. We use stack Queue to

store these nodes. Now, for each element (q, f ) in Queue, we calculate all states that can be

reached by labels a ∈ E, i.e., R∗((q, f ), a). If a pair (q′, f ′) ∈ R∗((q, f ), a) is not contained

in the previous nodes, a new node is added to G∗. The arc going from (q, f ) node to (q′, f ′)

node is labeled by a/µ(a)qq′ . At step 18, (q′, f ′) is added into stack Queue. The procedure is

iterated until stack Queue becomes empty. Steps 24-27 of Algorithm 3.4 determine the set of

final states and the function of final weights.
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Algorithm 3.4: Construction of the augmented automaton
Input: A WA G = (Q, E, α, µ, β) and the fault class E f .
Output: An augmented automaton G∗ of G.

1: function Trans f ormG(G, E f )
2: Let Q∗i = ∅
3: for each q ∈ Qi do
4: Q∗i = Q∗i ∪ {(q, 0)}, $∗((q, 0)) = αq
5: end for
6: Let Q∗ = Q∗i , Queue = Q∗i
7: while Queue 6= ∅ do
8: Dequeue (q, f ) from Queue
9: for each a ∈ E do

10: if a ∈ E f then
11: R∗((q, f ), a) = {(q′, 1) | q′ ∈ R(q, a)}
12: else
13: R∗((q, f ), a) = {(q′, f ) | q′ ∈ R(q, a)}
14: end if
15: for each (q′, f ′) ∈ R∗((q, f ), a) do
16: if (q′, f ′) /∈ Q∗ then
17: Q∗ = Q∗ ∪ {(q′, f ′)}
18: Enqueue (q′, f ′) in Queue
19: end if
20: t∗((q, f ), a, (q′, f ′)) = µ(a)qq′

21: end for
22: end for
23: end while
24: Let Q∗m = ∅
25: for each (q, f ) ∈ Q∗ such that βq 6= ε do
26: Q∗m = Q∗m ∪ {(q, f )}, ρ∗((q, f )) = βq
27: end for
28: Let G∗ =

(
Q∗, E, t∗, Q∗i , Q∗m, $∗, ρ∗

)
29: return(G∗)
30: end function

Example 3.3. Consider the WA G in Fig. 3.5. Assume that Eo = {a, b, c}, Euo = E f ∪ Ereg

with E f =
{

ε f
}

and Ere f = {εn}. After applying Algorithm 3.4, the augmented automaton

G∗ is shown in Fig. 3.6 where the fault states are highlighted in red.

Lemma 3.1. The generated weighted language of G is equal to the generated weighted

language of G∗, i.e., L(G) = L(G∗).

Proof. We need to prove for any weighted sequence σ, σ ∈ L(G)⇔ σ ∈ L(G∗).

(Only If) For any σ = (e1, τ1)(e2, τ2) · · · (ek, τk) ∈ L(G), by the definition of

generated weighted language of G, there must be at least one path from one ini-

tial state, and the weighted sequence it generates is equal to σ. Assume π =
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1 2

3

0 0

0

/ 2a

/ 4f

/ 1n

/ 2b

/ 3a

/ 2c

Figure 3.5 – A weighted automaton G

/ 2a

/ 1n

/ 2b

/ 3a

/ 2c

/ 2a

/ 4f

/ 1n

/ 2b

/ 3a

/ 2c

 2,0 1,0

 3,0

 2,1 1,1

 3,1

0

0

0

0

/ 4f

Figure 3.6 – The augmented automaton G∗ of G in Fig. 3.5

(q0, e1, q1)(q1, e2, q2) · · · (qk−1, ek, qk) is such a path. By Algorithm 3.4, there must exist the

following path in G∗:

π′ = ((q0, 0), e1, (q1, f1))((q1, f1), e2, (q2, f2)) · · · ((qk−1, fk−1), ek, (qk, fk))

where (q0, 0) ∈ Q∗i , and for i = 1, · · · , k, fi = 1 if ei ∈ E f , otherwise, fi = fi−1. Besides, the

weights of transitions of π′ are t∗((qi−1, fi−1), ei, (qi, fi)) = µ(ei)qi−1qi , for i = 1, · · · k. Now

we assume that the weighted sequence generated by π′ is different from σ, i.e., σ(π′) 6=
(e1, τ1)(e2, τ2) · · · (ek, τk). This implies that there exists at least one i ∈ {1, · · · , k}, such that

x(e1 · · · ei)(qi , fi)
6= τi, which contradicts x(e1 · · · ei)qi = τi. Therefore, σ is generated by π′,

i.e., σ ∈ L(G∗). Hence, ∀σ ∈ L(G)⇒ σ ∈ L(G∗).

(If) For any σ = (e1, τ1)(e2, τ2) · · · (ek, τk) ∈ L(G∗), there must be at least one path from

one initial state in G∗, and its associated weighted sequence is equal to σ. Assume the
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following is such a path:

π = ((q0, 0), e1, (q1, f1))((q1, f1), e2, (q2, f2)) · · · ((qk−1, fk−1), ek, (qk, fk))

where fi ∈ {0, 1}, i = 1, · · · , k. By Algorithm 3.4, there must exist the path π′ =

(q0, e1, q1)(q1, e2, q2) · · · (qk−1, ek, qk) in G where q0 ∈ Qi. Besides, the weights of transitions

of π′ are µ(ei)qi−1qi = t∗((qi−1, fi−1), ei, (qi, fi)), for i = 1, · · · k. Similar to the prove process

of (Only If), we know that σ is generated by π′, i.e., σ ∈ L(G). Hence, ∀σ ∈ L(G∗) ⇒ σ ∈
L(G).

Intuitively, according to Algorithm 3.4, G∗ does not change the state transitions of G

because the reachable states of any state (q, f ) in G∗ are defined by the reachable states of q

in G, i.e., R∗((q, f ), a), a ∈ E, is calculated based on R(q, a). Besides, the transition weights in

G∗ are equal to the corresponding weights in G since t∗((q, f ), a, (q′, f ′)) = µ(a)qq′ . Finally,

G and G∗ have the same initial states with identical weights, and the same final weights.

3.4.2 Diagnosis State Determination

This subsection shows that solving the diagnosis problem for G is equivalent to solving

the state estimation problem for its augmented automaton G∗.

Given an observed weighted sequence σo ∈ P(L(G)), obtained from WA G, and a weight

τ ≥ w f (σo), the set of all consistent states C(σo, τ) in G is defined in Eq. (3.1). In this section,

we denote C∗(σo, τ) the set of states consistent with σo and τ in augmented WA G∗ of G with

respect to fault class E f .

Lemma 3.2. Consider an observed weighted sequence σo ∈ P(L(G)), a given weight τ, and

fault class E f .

• ϕ(σo, τ, E f ) = N if C∗(σo, τ) ⊆ Q∗N;

• ϕ(σo, τ, E f ) = F if C∗(σo, τ) ⊆ Q∗f ;

• ϕ(σo, τ, E f ) = U if C∗(σo, τ) ∩Q∗N 6= ∅ and C∗(σo, τ) ∩Q∗f 6= ∅.

Proof. Let S∗(σo, τ) denotes the set of sequences, generated by G∗, that are consistent with

σo and τ. By Lemma 3.1, we have S∗(σo, τ) = S(σo, τ). From Definition 3.2 and Definition

3.1, we know that for each consistent state q∗ = (q, f ) ∈ Q∗, there must be a corresponding

consistent sequence by which it is reached. Assume σ = (e1, τ1)(e2, τ2) · · · (ek, τk) ∈ L(G∗)

is such a sequence. According to Algorithm 3.4, we know that q∗ belongs to Q∗N iff there

exists at least one i ∈ {1, 2, · · · k} such that ei ∈ E f . Therefore, according to Definition 3.3 of

diagnosis states, Lemma 3.2 is established.
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In fact, all states of the set C∗(σo, τ) are outside (resp. inside) the set Q∗f , which definitely

means that fault class E f cannot (resp. must) have occurred. On the other hand, we cannot

conclude whether a label in E f has occurred or not if C∗(σo, τ) contains normal and faulty

states. Lemma 3.2 shows that the problem of detecting the occurrence of a fault label

belonging to E f in G reduces to a state estimation problem for the WA G∗.

Algorithm 3.5 summarizes the online procedure for solving fault diagnosis problem.

Algorithm 3.5: On-line fault diagnosis
1: G∗ = Trans f ormG(G, E f )
2: Let σo = ε
3: while fault diagnosis is required do
4: if observation (e, t) arrives then
5: Let σo = σo · (e, t)
6: end if
7: if the diagnosis state is required then
8: Let τ be the current given weight
9: Calculate C∗(σo, τ) in G∗ using state estimation algorithm in Section 3.3

10: if C∗(σo, τ) ⊆ Q∗N then
11: ϕ(σo, τ, E f ) = N
12: else if C∗(σo, τ) ⊆ Q∗f then
13: ϕ(σo, τ, E f ) = F
14: else
15: ϕ(σo, τ, E f ) = U
16: end if
17: end if
18: end while

Step 1 of Algorithm 3.5 calls Function Trans f ormG to transform G into G∗ with respect to

fault class E f . Initially, the observation is ε (nothing has been observed at the beginning of

system’s evolution). Each time a new observable label occurs, the observation is updated as

the concatenation of previous observation and the new occurred label (with its occurrence

weight), and, when needed, the diagnosis state is determined based on the consistent states

obtained by calling the state estimation algorithm.

Remark 3.3. As pointed out in Remark 3.1, the algorithm proposed in Subsection 3.3.1 for

state estimation uses the single symbol u for all the unobservable labels. It is then required

to replace all the labels corresponding to unobservable labels in the augmented automaton

G∗ by u to be able to call the state estimation algorithm at step 9.

Example 3.4. Consider again the WA G in Fig. 3.5, where Eo = {a, b, c}, Euo = E f ∪ Ereg

with E f =
{

ε f
}

and Ere f = {εn}. Let observation σo = (a, 3)(c, 5)(a, 8) and τ = 12.

We want to determine the occurrence of fault class E f , i.e., determine the diagnosis state
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value ϕ(σo, τ, E f ). First, we have to calculate the augmented automaton G∗ of G with

respect to E f , which is presented in Fig. 3.6. Then, calculate all states that are consistent

with σo = (a, 3)(c, 5)(a, 8) and τ = 12 in G∗. Applying the approach proposed in

Subsection 3.3.1, we get C(σo, τ) = {(1, 1)}. Since C∗(σo, τ) contains no normal state,

then the diagnosis state ϕ(σo, τ, E f ) = F. In fact, from G we know that S(σo, τ) ={
(a, 3)(c, 5)(a, 8)(ε f , 12), (a, 3)(c, 5)(εn, 6)(a, 8)(ε f , 12)

}
, which means that fault label ε f

must have occurred if σo = (a, 3)(c, 5)(a, 8) is observed with weight τ = 12.

Example 3.5. Consider again the WA G in Fig. 2.8, where Eo = {b} and E f = Euo = {a}.
Its augmented automaton G∗ calculated by applying Algorithm 3.4 is shown in Fig. 3.7 in

which the faulty states are highlighted in red. Let observation σo = (b, 5)(b, 10) and τ = 14.

Then, we obtain the set of consistent states C(σo, τ) = {(2, 1)} by applying the approach

proposed in Subsection 3.3.1. Since C(σo, τ) contains no normal state, then the diagnosis

state ϕ(σo, τ, E f ) = F. In fact, from G we know that S(σo, τ) = {ababa}, which means that

fault label a must have occurred if σo = (b, 5)(b, 10) is observed with weight τ = 14.

 1,0

 1,1

 2,1  3,1  4,0
/1a

/ 4b

/ 6b

/ 3b / 2a0

00

0

/1a

Figure 3.7 – The augmented automaton G∗ of G in Fig. 2.8

3.5 Conclusion

This chapter addresses the problems of state estimation and fault diagnosis in the

framework of WAs. Once a weighted sequence is observed and a weight value is given,

the state estimation problem consists in determining the states in which the system may be,

and the fault diagnosis is to determine if a fault label has occurred or not. On one hand, an

algorithm based on the analysis of the state vector is proposed to deal with state estimation

online. On the other hand, the state estimation approach is extended to cope with fault

diagnosis problem. For a given WA, we first propose an algorithm that transforms it into its

augmented version with respect to a fault class. Then we prove that the diagnosis problem

can be reduced to the problem of state estimation. Finally, an algorithm is presented to
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summarize the online procedure for detecting the occurrence of some labels that belong to a

given fault class.

The work in this chapter has been published as follows:

A. Lai, S. Lahaye and A. Giua. “State estimation of max-plus automata with

unobservable events”, In Automatica, Vol. 105, pp. 36–42, 2019 [Lai et al., 2019a].

A. Lai, S. Lahaye and A. Giua. “A two-step approach for fault diagnosis of max-plus

automata”, In proceeding of the 6th International Conference on Control, Decision and Information

Technologies (CoDIT), 2019 [Lai et al., 2019b].
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Current-State Detectability Verification

for UWAs

This chapter studies the current-state detectability verification for unambiguous weighted

automata (UWAs).
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4.1 Introduction

Chapter 3 deals with the current-state estimation problem, which aims at accurately

characterizing the set of possible current states of the system based on the partial observation

of its evolution. In this chapter, we deal with the detectability problem for UWAs. The

problem is to determine if, after a finite number of observations, the current state can be

uniquely determined. That is, the set of possible current states is reduced to a singleton.

Four types of detectabilities, namely, strong detectability, weak detectability, strong periodic

detectability, and weak periodic detectability are defined in terms of different requirements

for current state estimation. On one hand, given a UWA G, we propose an approach based

on the construction of an observer Gobs to verify the four detectabilities. The number of

states of Gobs is exponential with respect to the number of states of G. On the other hand,

we introduce another approach based on detector Gdet to verify the strong detectabilities,

i.e., strong detectability and strong periodic detectability. The number of states of Gdet is

polynomial with respect to the state space cardinality of G.

The structure of this chapter is as follows. Section 4.2 formally defines the problem of

detectability and gives the definitions of four types of detectabilities. In Section 4.3, given a

UWA G, we detail the process of constructing the observer, i.e., current-state estimator, of G.

Note that such an observer is a DFA over a weighted alphabet. In Section 4.3.2, necessary

and sufficient conditions based on constructed observer are introduced for checking the

detectabilities of a UWA. Section 4.4 details the construction process of the detector of a

UWA and then proposes a Lemma to illustrate its relationship with the observer built in

Section 4.3. In Section 4.5, we present the necessary and sufficient conditions based on the

detector for verifying strong detectabilities of UWAs. Section 4.6 summarizes the conclusion

of the work in this chapter.

4.2 Problem Formulation

In this chapter we restrict our attention to a WA G = (Q, E, α, β) with identity initial

weights 1. The label set E is partitioned into two disjoint parts: the observable part Eo and

the unobservable part Euo. For sake of simplicity, we assume that all unobservable labels are

represented by symbol u, i.e., E = Eo ∪ {u}. Notation PEo : E∗ → E∗o denotes the natural

1. The coefficients in α different from ε are all equal to e. This assumption is without loss of generality since
an automaton with non-identity initial weights can always be transformed into an equivalent automaton with
identity initial weights by adding new states and by considering these weights as state transitions durations
associated to new fictive initial labels.
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projection from E∗ to E∗o . We also make the following assumptions on the studied WA G

when dealing with current-state detectability:

Assumption 4.1. G is unambiguous.

Assumption 4.2. G is deadlock free, that is, for any state, there exists at least one output

transition: (∀q ∈ Q)(∃a ∈ E, q′ ∈ Q)µ(a)qq′ 6= ε.

Assumption 4.3. There is no circuit labelled only by unobservable labels in G.

Assumption 4.1 requires that for any state q of G and any string ω ∈ E∗, there is at

most one path labeled by ω leading to q from the initial states. However, Assumption 4.1

does not imply that an observed weighted sequence can be generated by a single path. For

example, assuming that ⊗ is the usual addition +, the WA G in Fig. 4.1 is such that σo =

(b, 0.5)(b, 0.8) can be generated by two paths, i.e., π1 = (1, u, 2)(2, b, 2)(2, b, 2) and π2 =

(4, u, 3)(3, b, 3)(3, b, 3). In addition, Assumption 4.2 implies that the length of the generated

weighted sequence becomes infinite as the system evolves indefinitely. By Assumption 4.3,

for an infinite sequence, the length of its projection is also infinite.

1

2 3

4

/ 0.3b

/ 0.3a/ 0.2b

/ 0.3b

/ 0.4c

/ 0.2u / 0.2u

/ 0.1a

e

e

e

e

Figure 4.1 – Unambiguous weighted automaton G

4.2.1 Consistent State

In Section 3.3, we investigate the problem of state estimation for WAs. Briefly, for a finite

weighted sequence σo and a given value τ ≥ w f (σo), the goal is to determine the set of

possible current states that are consistent with σo and τ, which includes the states possibly

reached by unobservable transitions after E f (σo) leading to weights less than or equal to τ.

In this chapter, we check whether the set of possible current states at the end of weighted

sequence σo ∈ P(L(G)) shrinks to a singleton, and if this continues with next observations.

We then focus on the states that can be reached at the completion of σo for the following



72 CHAPTER 4. CURRENT-STATE DETECTABILITY VERIFICATION FOR UWAS

definition of consistent states. This is without restriction since the possible subsequent

unobservable transitions (after E f (σo)) are considered through possible observations in

continuation of σo. In addition, since the length of a weighted sequence can be infinite, the

completion weight of the sequence can also be infinite. In this case, it does not make sense

to consider a value greater than the completion weight of an observation when calculating

the set of consistent states. That is why we consider a definition of consistent states that is

different from the one given in Eq. (3.1).

Definition 4.1. Given an observed weighted sequence σo ∈ P(L(G)), the set of all

σo−consistent states is defined as

C(σo) = {q ∈ Q | ∃σ ∈ L(G), ∃q0 ∈ Qi : q0
σ
 q, P(σ) = σo, E f (σ) = E f (σo)}. (4.1)

In simple words, a state q is consistent with observation σo, if there exists a generated

weighted sequence σ ending with the last label in σo leading to q such that the projection of

σ coincides with σo.

Example 4.1. Consider again the WA G in Fig. 4.1 with ⊗ = +, Eo = {b, c} and Euo = {u}.
Given σo = (b, 0.5)(b, 0.8), it can be verified that the set of consistent states is C(σo) =

{2, 3}. In fact, two different paths from an initial state have weighted sequences that are

consistent with σo, namely, π1 = (1, u, 2)(2, b, 2)(2, b, 2) and π2 = (4, u, 3)(3, b, 3)(3, b, 3).

Considering π1, we have σ1 = σ(π1) = (u, 0.2)(b, 0.5)(b, 0.8), 1
σ1 2 and E f (σ1) = E f (σo) =

b. Therefore, state 2 is consistent with σo. Similarly, state 3 is a consistent state by considering

path π2.

4.2.2 Detectability notions in Weighted Automata

In this subsection, we extend the detectability problem defined for logical DESs modeled

by NFAs in [Shu and Lin, 2011] to the framework of WAs.

The set of all possible trajectories of a WA is denoted by Lω(G). For an arbitrary finite or

infinite sequence σ that can be generated by G, we denote by Pr(σ) the set of all its prefixes.

Four types of detectabilities for WAs are defined as follows.

Definition 4.2 (Strong Detectability). A WA G is strongly detectable with respect to a

projection P if one can determine, after a finite number of pair observations, the current
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state and subsequent states of the automaton for all trajectories of the automaton. That is,

(∃n ∈ N)(∀σ ∈ Lω(G))(∀σ′ ∈ Pr(σ))|P(σ′)| > n ⇒ |C(P(σ′))| = 1.

Definition 4.3 (Weak Detectability). A WA G is weakly detectable with respect to a

projection P if one can determine, after a finite number of pair observations, the current

state and subsequent states of the automaton for some trajectories of the automaton. That is,

(∃n ∈ N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pr(σ))|P(σ′)| > n ⇒ |C(P(σ′))| = 1.

Definition 4.4 (Strong Periodic Detectability). A WA G is strongly periodically detectable

with respect to a projection P if one can periodically determine the current state of the system

for all trajectories of the automaton. That is,

(∃n ∈N)(∀σ ∈ Lω(G))(∀σ′ ∈ Pr(σ))(∃σ′′ ∈ (E×D)∗)

σ′σ′′ ∈ Pr(σ) ∧ |P(σ′′)| < n ∧ |C(P(σ′σ′′))| = 1.

Definition 4.5 (Weak Periodic Detectability). A WA G is weakly periodically detectable with

respect to a projection P if one can periodically determine the current state of the system for

some trajectories of the automaton. That is,

(∃n ∈N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pr(σ))(∃σ′′ ∈ (E×D)∗)

σ′σ′′ ∈ Pr(σ) ∧ |P(σ′′)| < n ∧ |C(P(σ′σ′′))| = 1.

Problem 4.1. Solving the detectability problem of a WA aims to find a systematic way to

check if the automaton is strongly detectable, detectable, strongly periodically detectable,

and periodically detectable.

4.3 Observer-Based Approach

In this section, we first construct an observer that can be used to perform the current-state

estimation for a UWA. Then, based on the constructed observer, the necessary and sufficient

conditions for verifying the four detectabilities are proposed.
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4.3.1 Construction of the Observer

In this subsection, we first construct an observer, denoted by Gobs, for an unambiguous

WA G. In detail, the observer Gobs is a finite state automaton over a weighted alphabet

Eobs ⊂ Eo ×D, which is built so that it has the following structural properties: Gobs has only

one initial state, and from a given state no two transitions of Gobs are labeled by the same

weighted label (a, ta) ∈ Eobs. That is, Gobs is a DFA over the weighted alphabet Eobs. Let us

stress, however, that from a state in Gobs there may exist several output transitions labeled

by the same label a ∈ Eo but with different weights ta. In this case, the external agent can

distinguish the transitions from the different associated weights. Then, we prove that Gobs

can be used to estimate the consistent states for any infinite or finite weighted sequence

observed from system G.

Algorithm 4.1 details the construction of such an observer Gobs for a given unambiguous

automaton G. This algorithm is first presented here and it will be adapted to deal with

verification of the I-detectability in next chapter.

Algorithm 4.1 can be explained as follows. Step 2 determines the initial state of the

observer Gobs, which is equal to the set of initial states of G. Stack Queue is employed to store

it. At step 5, an element qobs (which corresponds to a subset of Q) is removed from Queue for

analysis. For each label a ∈ Eo, for each state q ∈ qobs, and for each i ∈ {0, 1, · · · , |Q| − 1}:
we first include the value µ(uia)qq′ (resp. (q′, µ(uia)qq′)) in the set Wa (resp. Ωa) for q′ that

can be reached from q via the occurrence of uia (q′ is reachable from q according to uia if

and only if µ(uia)qq′ 6= ε). Note that when the for loop on i is completed, Wa consists of the

weights of all paths in G labeled by uia from state q, Ωa contains all states that can be reached

by paths labeled by uia from q and the corresponding weights µ(uia)qq′ associated with the

paths. At steps 16-18, for each t ∈ Wa, any state q′ ∈ Q is included to q′obs if there exists a

pair (q′, τ) belonging to Ωa such that τ = t. If q′obs is not contained in Qobs (the current set

of states for Gobs), then it is added in Qobs, an arc labeled by (a, t) from node qobs to node

q′obs is defined, and q′obs is added in stack Queue. This process is repeated until stack Queue

becomes empty.

Note that each state qobs of Gobs is a non-empty subset of Q, i.e., qobs 6= ∅ ∧ qobs ⊆ Q.

Therefore, in the worst case, the number of states of Gobs is 2|Q| − 1, and Algorithm 4.1

always terminates. As a result, the computational complexity of constructing the observer

using Algorithm 4.1 is O(2|Q|). As usual for finite state automata, we extend the transition

function δobs : Qobs × Eobs → Qobs to strings δobs : Qobs × E∗obs → Qobs.

Example 4.2. Consider the unambiguous WA G in Fig. 4.1 and ⊗ = +. After applying
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Algorithm 4.1: Construction of the observer
Require: An unambiguous WA G = (Q, E, α, µ, β) over semiring S.
Ensure: The observer Gobs of G.

1: function ObserverG(G)
2: Let qi,obs = Qi, Eobs = ∅, Qobs = {qi,obs}
3: Enqueue qi,obs in Queue
4: while Queue 6= ∅ do
5: Dequeue qobs from Queue /∗ Note that qobs is a subset of Q ∗/
6: for each a ∈ Eo do
7: Let Wa = ∅, Ωa = ∅
8: for each q ∈ qobs do
9: for i = 0, 1, · · · , |Q| − 1 do

10: for each q′ s.t. µ(uia)qq′ 6= ε do

11: Wa = Wa ∪
{

µ(uia)qq′
}

12: Ωa = Ωa ∪
{
(q′, µ(uia)qq′)

}
13: end for
14: end for
15: end for
16: for each t ∈Wa do
17: Eobs = Eobs ∪ {(a, t)}
18: q′obs = {q′ ∈ Q | (q′, t) ∈ Ωa}
19: if q′obs ∈ Qobs then
20: δobs(qobs, (a, t)) = q′obs
21: else
22: Qobs = Qobs ∪

{
q′obs
}

23: δobs(qobs, (a, t)) = q′obs
24: Enqueue q′obs in Queue
25: end if
26: end for
27: end for
28: end while
29: return Gobs = (Qobs, Eobs, δobs, qi,obs)
30: end function

Algorithm 4.1, we obtain the observer Gobs shown in Fig. 4.2.

Let E∗obs be the set of strings over weighted alphabet Eobs including (ε, e) corresponding

to empty string ε and the identity weight value. The language generated by the observer

Gobs = (Qobs, Eobs, δobs, qi,obs) is defined as:

L(Gobs) = {ω ∈ E∗obs | ∃qobs ∈ Qobs : δobs(qi,obs, ω) = qobs}.

It should be noticed that the language generated by Gobs is a subset of E∗obs, i.e., L(Gobs) ⊆
E∗obs. While the language generated by G is a subset of (E×D)∗, i.e., L(G) ⊆ (E×D)∗.
For any observed weighted sequence σo = (a1, τ1)(a2, τ2) · · · (an, τn) ∈ P(L(G)), we define
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Figure 4.2 – Observer Gobs of G in Fig. 4.1

σelem
o = (a1, τ1)(a2, τ2 ⊗−1 τ1) · · · (ak, τk ⊗−1 τk−1) to denote its equivalent notation in E∗obs

where τk ⊗−1 τk−1 represents the weight 2 for the elementary transition according to ak,

k = 2, 3, · · · , n. Similarly, for any sequence ω = (a1, τ1)(a2, τ2) · · · (an, τn) ∈ L(Gobs), its

equivalent notation in (E×D)∗ can be defined by ωcum = (a1, τ1)(a2, τ′2) · · · (an, τ′n) where

τ′k = τ1 ⊗ · · · ⊗ τk, k = 2, 3, · · · , n, represents the cumulated weight for sequence a1a2 · · · ak.

We denote Lcum(Gobs) the equivalent notation of L(Gobs), that is,

Lcum(Gobs) = {σ ∈ (E×D)∗ | ∃ω ∈ L(Gobs) : ωcum = σ}.

Similarly, we define

P(L(G))elem = {σ ∈ (Eo ×D)∗ | ∃σo ∈ P(L(G)) : σelem
o = σ}.

The following proposition shows that for any observation generated by system G, its

consistent states can be determined by the observer Gobs.

Proposition 4.1. The set of consistent states in G after observing the weighted sequence

(a1, τ1)(a2, τ2) · · · (ak, τk) is given by δobs(qi,obs, (a1, τ1)(a2, τ2 ⊗−1 τ1) · · · (ak, τk ⊗−1 τk−1)),

where qi,obs and δobs are the initial state and transition function of observer Gobs.

Proof. We prove the proposition by induction on the length of the observed weighted

sequence.

(Base step.) The initial set of consistent states of G is given by C(ε) = qi,obs. Algorithm

2. Note that τk ⊗−1 τk−1 is defined as the value x ∈ D such that x⊗ τk−1 = τk, with τk and τk−1 ∈ D \ {ε}.
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4.1 states that qi,obs = Qi. That is, qi,obs is the set of states that can be reached from all initial

states when no label has occurred, which coincides with the definition of C(ε).

(Inductive step.) Let σo = (a1, τ1)(a2, τ2) · · · (an, τn) ∈ P(L(G)) be an observed weighted

sequence. Assume that C(σo) = δobs(qi,obs, σelem
o ) ∈ Qobs. We need to prove that if a new pair

(a, τ) is observed in continuation of σo, then C (σo · (a, τ)) = δobs(C(σo), (a, τ ⊗−1 τn)).

According to Algorithm 4.1, we have

δobs(C(σo), (a, τ ⊗−1 τn)) = {q ∈ Q | ∃q′ ∈ C(σo),

∃i ∈ {0, 1, · · · , |Q| − 1} : µ(uia)q′q = τ ⊗−1 τn}.

That is, δobs(C(σo), (a, τ ⊗−1 τn)) consists of all states that can be reached from a state in

C(σo) via a path labeled by uia, i ∈ {0, 1, · · · , | Q | −1}, and the weight associated with

the path is equal to τ ⊗−1 τn. From Definition 4.1 of consistent states, we know that C(σo)

contains all states that can be reached by some generated weighted sequences ending with

the last label in σo, and the projection of these generated weighted sequences is equal to

σo. By assumption, C(σo) = δobs(qi,obs, σelem
o ). Since G is assumed to be unambiguous ,

∀q ∈ C(σo) we have q′ ∈ C(σo · (a, τ)) iff ∃i ∈ N such that τ = τn ⊗ µ(uia)qq′ . Therefore,

δobs(C(σo), (a, τ ⊗−1 τn)) consists of all states q that can be reached by a weighted sequence

σ from an initial state such that E f (σ) = E f (σo · (a, τ)) = a and P(σ) = σo · (a, τ).

This coincides with the definition of C(σo · (a, τ)). That is, δobs(C(σo), (a, τ ⊗−1 τn)) =

C (σo · (a, τ)).

Proposition 4.1 indicates that observer Gobs can serve as the state estimator of WA G.

Besides, from Proposition 4.1, we can claim that

σo ∈ P(L(G))⇒ {∃ω ∈ E∗obs : δobs(qi,obs, ω) 6= ∅ ∧ωcum = σo}.

This leads to the following corollary.

Corollary 4.1. The projection of language L(G) generated by G is a subset of Lcum(Gobs), that

is, P(L(G)) ⊆ Lcum(Gobs).

Note that Lcum(Gobs) is the equivalent presentation of the generated language of Gobs

constructed by Algorithm 4.1.

The following lemma states the equivalence between the observed language generated

by G and the language generated by observer Gobs.
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Lemma 4.1. The projection of language L(G) generated by G coincides with Lcum(Gobs), that

is, P(L(G)) = Lcum(Gobs).

Proof. Using Corollary 4.1, it is sufficient to prove that Lcum(Gobs) ⊆ P(L(G)) or equivalently

that L(Gobs) ⊆ P(L(G))elem. Let ω = (a1, τ1)(a2, τ2) · · · (an, τn) ∈ E∗obs such that

δobs(qi,obs, ω) 6= ∅. According to Algorithm 4.1, there must exist q0 ∈ Qi, q1, q2, · · · , qn ∈
Q and i1, i2, · · · , in ∈ {0, 1, · · · , |Q| − 1} such that µ(ui1 a1)q0q1 = τ1, µ(ui2 a2)q1q2 =

τ2, · · · , µ(uin an)qn−1qn = τn. Defining π = (q0, ui1 a1, q1)(q1, ui2 a2, q2) · · · (qn−1, uin an, qn),

since automaton G is unambiguous, we have σ(π) = (ui1 a1, τ1)(ui2 a2, τ1⊗ τ2) · · · (uin an, τ1⊗
τ2 ⊗ · · · ⊗ τn). This implies that P(σ(π)) = (a1, τ1)(a2, τ1 ⊗ τ2) · · · (an, τ1 ⊗ τ2 ⊗ · · · ⊗ τn)

or equivalently that P(σ(π))elem = (a1, τ1)(a2, τ2) · · · (an, τn) = ω, i.e., ω ∈ P(L(G))elem.

Therefore L(Gobs) ⊆ P(L(G))elem holds.

Remark 4.1. From Proposition 4.1 and Lemma 4.1, it follows that the observer Gobs models

the observable evolution of system G. On the one hand, for any observed sequence σo of G,

all its consistent states can be characterised by the unique evolution labeled by σelem
o in Gobs.

On the other hand, for any sequence ω of Gobs, there must be at least one evolution in G

whose generated sequence coincides with ω. In addition, in the proof of Proposition 4.1 and

Lemma 4.1, it is required that for any path π = (q0, ui1 a1, q1)(q1, ui2 a2, q2) · · · (qn−1, uin an, qn)

with q0 ∈ Qi, we have σ(π) = (ui1 a1, τ1)(ui2 a2, τ1 ⊗ τ2) · · · (uin an, τ1 ⊗ τ2 ⊗ · · · ⊗ τn) where

τk = τk−1 ⊗ µ(uik ak)qk−1qk for k = 1, 2, · · · , n and τ0 = 0. Unambiguity of G is a sufficient

condition for this property. This justifies Assumption 4.1 in this chapter.

4.3.2 Criteria for Verifying Strong and Weak Detectabilities

In this subsection, we propose necessary and sufficient conditions, inspired by those

presented in [Shu and Lin, 2011], to verify the four types of detectabilities for a UWA G.

Special attention must be paid to states belonging to elementary circuits because the

trajectories of observer Gobs = (Qobs, Eobs, δobs, qi,obs) can visit these states indefinitely. We

denote Sci the set of all elementary circuits of Gobs as:

Sci = {(qobs, s) ∈ Qobs × E∗obs | δobs (qobs, s) = qobs∧

|s| ≥ 1∧ (∀s′ ∈ Pr(s) s.t. s′ 6= s : δobs(qobs, s′) 6= qobs)}.

Besides, a state of Gobs is defined as a subset of Q, and if this subset is a singleton then the
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state belongs to Qsingle
obs , which is defined as:

Qsingle
obs = {qobs ∈ Qobs | |qobs| = 1} .

It should be noted that if a state in Qsingle
obs is reached in Gobs, then there is a single

consistent state for the corresponding observed weighted sequence. The following are the

necessary and sufficient conditions for verifying the detectabilities of UWA G = (Q, E, α, µ)

based on its observer Gobs = (Qobs, Eobs, δobs, qi,obs).

Theorem 4.1 (Criterion for Checking Strong Detectability). A UWA G is strongly detectable

with respect to projection P iff any state reachable from any elementary circuit in observer

Gobs belongs to Qsingle
obs , that is: (∀(qobs, s) ∈ Sci)(∀q′ ∈ Qobs s.t. ∃ω ∈ E∗obs, δobs(qobs, ω) =

q′)q′ ∈ Qsingle
obs .

Proof. (If) Assume that G is not strongly detectable with respect to projection P, namely,

(∀n ∈ N)(∃σ ∈ Lω(G))(∃σ′ ∈ Pr(σ))|P(σ′)| > n ∧ |C(P(σ′))| 6= 1.

Let n = |Qobs|. Consider σ, σ′ such that σ′ ∈ Pr(σ), |P(σ′)| > n and |C(P(σ′))| 6= 1.

Since |P(σ′)| > n = |Qobs|, the sequence P(σ′)elem ∈ E∗obs must visit at least one elementary

circuit (qobs, s) ∈ Sci in Gobs. Let v ∈ E∗obs such that δobs(qi,obs, v) = qobs and ω ∈ E∗obs

such that P(σ′)elem = vω. By Proposition 4.1, we have δobs(qobs, ω) = C(P(σ′)). By

assumption |C(P(σ′))| 6= 1, we know that δobs(qobs, ω) /∈ Qsingle
obs . Therefore, we can claim

that (∃(qobs, s) ∈ Sci)(∃q′ ∈ Qobs s.t. ∃ω ∈ E∗obs, δobs(qobs, ω) = q′)q′ /∈ Qsingle
obs .

(Only If) Assume (∃(qobs, s) ∈ Sci)(∃q′ ∈ Qobs s.t. ∃ω ∈ E∗obs, δobs(qobs, ω) = q′)q′ /∈
Qsingle

obs . Let v ∈ E∗obs such that δobs(qi,obs, v) = qobs. By assumption δobs(qobs, ω) /∈ Qsingle
obs ,

we have δobs(qi,obs, νsjω) /∈ Qsingle
obs for j ∈ N. Define σ′ such that P(σ′)elem = vsjω, by

Proposition 4.1 and Lemma 4.1, we have C(P(σ′)) 6= 1. Since j can be an arbitrary integer,

we can conclude that

(∀n ∈ N)(∃σ ∈ Lω(G))(∃σ′ ∈ Pr(σ))|P(σ′)| > n ∧ |C(P(σ′))| 6= 1.

That is, UWA G is not strongly detectable with respect to projection P.

Remark 4.2. Due to Assumption 4.2, the finite state automaton Gobs constructed by

Algorithm 4.1 is a (weakly connected) directed graph when ignoring the labels associated

with its transitions. There exist algorithms to enumerate all the elementary circuits of such
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a directed graph in the literature, for instance in [Johnson, 1975]. These can be used to check

whether any state in an elementary circuit of Gobs and any state reachable from such an

elementary circuit belongs to Qsingle
obs , that is to verify the strong detectability criterion stated

in Theorem 4.1.

Theorem 4.2 (Criterion for Checking Detectability). A UWA G is weakly detectable with

respect to projection P iff there is at least one elementary circuit composed of states which

all belong to Qsingle
obs in observer Gobs, that is: (∃(qobs, s) ∈ Sci)(∀ω ∈ Pr(s))δobs(qobs, ω) ∈

Qsingle
obs .

Proof. (If) We assume that (∃(qobs, s) ∈ Sci)(∀ω ∈ Pr(s))δobs(qobs, ω) ∈ Qsingle
obs . Let v ∈ E∗obs

such that δobs(qi,obs, v) = qobs. Define σ ∈ P(L(G)) such that P(σ)elem = vsj where j is an

arbitrary integer. By assumption δobs(qobs, ω) ∈ Qsingle
obs , we then have δobs(qi,obs, vsjω) ∈

Qsingle
obs . Let n = |v| ∈N, then by Proposition 4.1 and Lemma 4.1, we can claim that

(∃n ∈ N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pr(σ))|P(σ′)| > n ⇒ |C(P(σ′))| = 1.

That is, unambiguous automaton G is detectable with respect to projection P.

(Only If) Assume that G is detectable with respect to projection P, that is,

(∃n ∈ N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pr(σ))|P(σ′)| > n ⇒ |C(P(σ′))| = 1.

Since σ is an infinite sequence, then P(σ)elem must visit at least one elementary circuit

(qobs, s) ∈ Sci in Gobs infinitely often. Let v ∈ E∗obs such that δobs(qi,obs, v) = qobs. By

assumption |C(P(σ′))| = 1 and Proposition 4.1, we have (∀ω ∈ Pr(s))δobs(qi,obs, vω) ∈
Qsingle

obs , which is equivalent to (∀ω ∈ Pr(s))δobs(qobs, ω) ∈ Qsingle
obs . Therefore, (∃(qobs, s) ∈

Sci)(∀ω ∈ Pr(s))δobs(qobs, ω) ∈ Qsingle
obs .

Theorem 4.3 (Criterion for Checking Strong Periodic Detectability). A UWA G is strongly

periodically detectable with respect to projection P iff each elementary circuit of observer

Gobs contains at least one state belonging to Qsingle
obs , that is: (∀(qobs, s) ∈ Sci)(∃ω ∈

Pr(s))δobs(qobs, ω) ∈ Qsingle
obs .

Proof. (If) Assume that G is not strongly periodically detectable with respect to projection P,

namely,

(∀n ∈N)(∃σ ∈ Lω(G))(∃σ′ ∈ Pr(σ))(∀σ′′ ∈ (E×D)∗)

σ′σ′′ ∈ Pr(σ) ∧ |P(σ′′)| < n⇒ |C(P(σ′σ′′))| 6= 1.
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Let n = |Qobs| + 1 and |P(σ′′)| = |Qobs|. From the above assumption, we know that

P(σ)elem must visit at least one elementary circuit (qobs, s) ∈ Sci in Gobs such that it is the last

elementary circuit passed by P(σ′σ′′)elem. Since (∀σ′′ ∈ (E×D)∗)σ′σ′′ ∈ Pr(σ) ∧ |P(σ′′)| <
|Qobs| + 1 ⇒ |C(P(σ′σ′′))| 6= 1, by Proposition 4.1, we have (∀ω ∈ Pr(s))δobs(qobs, ω) /∈
Qsingle

obs . Therefore, (∃(qobs, s) ∈ Sci)(∀ω ∈ Pr(s))δobs(qobs, ω) /∈ Qsingle
obs .

(Only If) Assume that (∃(qobs, s) ∈ Sci)(∀ω ∈ Pr(s))δobs(qobs, ω) /∈ Qsingle
obs . Let v ∈ E∗obs

such that δobs(qi,obs, v) = qobs. Define σ such that P(σ)elem = vsj where j is an arbitrary

integer and σ′ such that P(σ′)elem = v. By assumption δobs(qobs, ω) /∈ Qsingle
obs , we then have

δobs(qi,obs, vsjω) /∈ Qsingle
obs . Therefore, by Proposition 4.1 and Lemma 4.1, we can conclude

that

(∀n ∈N)(∃σ ∈ Lω(G))(∃σ′ ∈ Pr(σ))(∀σ′′ ∈ (E×D)∗)

σ′σ′′ ∈ Pr(σ) ∧ |P(σ′′)| < n⇒ |C(P(σ′σ′′))| 6= 1.

That is, unambiguous automaton G is not strongly periodically detectable with respect to

projection P.

Theorem 4.4 (Criterion for Checking Periodic Detectability). A UWA G is weakly

periodically detectable with respect to projection P iff there is at least one elementary circuit

in observer Gobs which contains at least one state belonging to Qsingle
obs , that is: (∃(qobs, s) ∈

Sci)(∃ω ∈ Pr(s))δobs(qobs, ω) ∈ Qsingle
obs .

Proof. (If) Assume (∃(qobs, s) ∈ Sci)(∃ω ∈ Pr(s))δobs(qobs, ω) ∈ Qsingle
obs . Let v ∈ E∗obs such

that δobs(qi,obs, v) = qobs. Define σ such that P(σ)elem = vsj where j is an arbitrary integer.

By assumption δobs(qobs, ω) ∈ Qsingle
obs , we then have δobs(qi,obs, vsjω) ∈ Qsingle

obs . Let n = |vs|,
then according to Proposition 4.1 and Lemma 4.1, we have

(∃n ∈N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pr(σ))(∃σ′′ ∈ (E×D)∗)

σ′σ′′ ∈ Pr(σ) ∧ |P(σ′′)| < n ∧ |C(P(σ′σ′′))| = 1.

That is, unambiguous automaton G is periodically detectable with respect to projection P.

(Only If) Assume that G is periodically detectable with respect to projection P, that is,

(∃n ∈N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pr(σ))(∃σ′′ ∈ (E×D)∗)

σ′σ′′ ∈ Pr(σ) ∧ |P(σ′′)| < n ∧ |C(P(σ′σ′′))| = 1.

Given an infinite sequence σ satisfying the conditions in the above equation, then P(σ)elem



82 CHAPTER 4. CURRENT-STATE DETECTABILITY VERIFICATION FOR UWAS

must visit at least one elementary circuit (qobs, s) ∈ Sci of Gobs in which |C(P(σ′σ′′))| = 1

holds for any σ′ ∈ Pr(σ) and for some σ′′ ∈ (E×D)∗. Let v ∈ E∗obs such that δobs(qi,obs, v) =

qobs. According to Proposition 4.1, we have (∃ω ∈ Pr(s))δobs(qi,obs, vω) ∈ Qsingle
obs , which

is equivalent to (∃ω ∈ Pr(s))δobs(qobs, ω) ∈ Qsingle
obs . Therefore, (∃(qobs, s) ∈ Sci)(∃ω ∈

Pr(s))δobs(qobs, ω) ∈ Qsingle
obs .

Example 4.3. Consider the observer Gobs in Fig. 4.2 of UWA G in Fig. 4.1. By Theorem 4.1,

G is not strongly detectable since there exists one elementary circuit, i.e., {2, 3} (b,0.3)−→ {2, 3},
with a state not in Qsingle

obs . Because there are elementary circuits with all states in Qsingle
obs ,

by Theorem 4.2, system G is detectable. For example, circuit {3} (a,0.3)−→ {4} (b,0.5)−→ {3} has

all its states in Qsingle
obs . Because circuit {2, 3} (b,0.3)−→ {2, 3} has its state in Qobs \ Qsingle

obs , by

Theorem 4.3, G is not strongly periodically detectable. Because there are elementary circuits

in Gobs which include at least one state belonging to Qsingle
obs , by Theorem 4.4, automaton G is

periodically detectable.

Example 4.4. Consider the UWA G in Fig. 4.3. Its observer Gobs computed by Algorithm 4.1

is shown in Fig. 4.4. From Gobs, after applying the above theorems, one can conclude that

G is strongly detectable (hence, detectable, strongly periodically detectable and periodically

detectable) since all states reachable from any elementary circuit of Gobs are entirely within

Qsingle
obs .

1 2 3 4

e e

/ 0.2b / 0.3b

/ 0.3u / 0.2u/ 0.3d

/ 0.4c

Figure 4.3 – Unambiguous weighted automaton G

4.3.3 Computational Complexity Analysis

For a UWA G = (Q, E, α, µ), in order to verify its detectabilities using Theorems 1-4, we

have to construct its observer Gobs. From the construction procedure of Gobs, we know that,

in the worst case, the number of states of Gobs is 2|Q| − 1. As a result, the computational

complexity of detectability verification is exponential with respect to the number of states of

the studied UWA G.
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Figure 4.4 – Observer Gobs of automaton G in Fig. 4.3

The verification of detectabilities using observer-based criteria has a high computational

complexity. Therefore, it is important to search for more efficient approaches to check

detectabilities.

4.4 Detector-Based Approach

In this section, inspired by [Shu and Lin, 2011], the notion of detector is introduced for

UWAs in order to reduce the verification complexity.

4.4.1 Construction of the Detector

Detector Gdet is a finite state automaton whose structure relies on the observer Gobs =

(Qobs, Eobs, δobs, qi,obs). Each state of Gdet is a subset of states of G, with a cardinality equals

to one or two (except for the initial state). The detector is defined in the following way:

Gdet = (Y, Eobs, ξ , y0) = Ac(Y′, Eobs, ξ , y0)

where y0 is the unique initial state of detector Gdet, defined as y0 = qi,obs = Qi, Ac(·)
represents the accessible part, i.e., Ac(Y′, Eobs, ξ , y0) is the automaton obtained by removing

all the states that are not reachable from the initial state y0 as well as transitions associated

with such states in automaton (Y′, Eobs, ξ , y0), and Y′ is the set of subsets of Q that contains

at most two elements, completed with the initial state, that is,

Y′ =
{

y′ : y′ ⊆ Q ∧ |y′| ≤ 2
}
∪ {y0} .
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The transition function ξ : Y′ × Eobs → 2Y′ is defined, for y′ ∈ Y′ and a ∈ Eobs, based on the

transition function δobs of Gobs as follows:

ξ(y′, a) =


{δobs(y′, a)} , i f |δobs(y′, a)| = 1;

{y : y ⊆ δobs(y′, a) ∧ |y| = 2} , i f |δobs(y′, a)| ≥ 2;

undefined, i f |δobs(y′, a)| = 0.

(4.2)

From the above description, we know that Gdet may be nondeterministic since any state

in Gobs that contains more than two elements of Q is split into several states and each of these

states contains two elements of Q. Moreover, the complexity of building Gdet is polynomial

since, in the worst case, the number of states of Gdet is |Y′| = 1 + |Q|+ |Q|(|Q| − 1)/2.

Example 4.5. Consider the automaton in Fig. 4.5 whose observer Gobs is shown in Fig.4.6.

Its detector is depicted in Fig. 4.7.

1 2

34

/ 3, / 4b d / 4, / 7b c

/ 4, / 7b c / 7, / 5c d

/ 4d

/ 3a

/ 3a
/ 3a

/ 3b

/ 1u

e

e

e

e

Figure 4.5 – An unweighted automaton G.

Let E∗obs be the set of strings over weighted alphabet Eobs including (ε, e) corresponding

to empty string ε and the identity weight value. We extend the transition function ξ : Y ×
Eobs → 2Y to strings ξ : Y× E∗obs → 2Y in the usual way.

The following lemma states the relationship between observer Gobs and detector Gdet.

Lemma 4.2. The observer Gobs and detector Gdet have the following relation.

(1) For any ω ∈ E∗obs, if |δobs(qi,obs, ω)| = 1 then ξ(y0, ω) = {δobs(qi,obs, ω)}.
(2) For any ω ∈ E∗obs and any y ⊆ Q such that |y| = 2, y ∈ ξ(y0, ω)⇔ y ⊆ δobs(qi,obs, ω).

Proof. According to the definition of ξ in Eq. (4.2), for all y′ ∈ Y and all a ∈ Eobs, it holds that

(F1) If δobs(y′, a) satisfies |δobs(y′, a)| = 1, then ξ(y′, a) = {δobs(qi,obs, a)}.
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Figure 4.6 – The observer Gobs of automaton G in Fig. 4.5.

(F2) If δobs(y′, a) satisfies |δobs(y′, a)| ≥ 2, then for any state y ∈ Q such that |y| = 2,

y ∈ ξ(y′, a)⇔ y ⊆ δobs(y′, a).

We now prove this lemma by induction on the length |ω| of ω based on (F1) and (F2).

(Base step.) Consider |ω| = 1, that is, ω = a ∈ Eobs. Part (1) of the lemma can be proved

by letting y′ = y0 in (F1), and part (2) of the lemma can be proved by letting y′ = y0 = qi,obs

in (F2).

(Induction hypothesis (IH).) Suppose that Lemma 1 holds for any ω ∈ E∗obs such that |ω| ≤
n.

(Inductive step.) We now need to prove that Lemma 1 is true for any ωa ∈ E∗obs such that

|ωa| = n + 1. Considering that the cardinality of set δobs(qi,obs, ω) and δobs(qi,obs, ωa) may be

one or more than one, the following four possible cases need to be discussed.

Case 1: |δobs(qi,obs, ω)| = 1 and |δobs(qi,obs, ωa)| = 1. Since |δobs(qi,obs, ωa)| = 1, we need
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Figure 4.7 – The detector Gdet of automaton G in Fig. 4.5.

to prove ξ(y0, ωa) = {δobs(qi,obs, ωa)}, which can be done as follows.

ξ(y0, ωa) = ξ(ξ(y0, ω), a)

= {y ∈ Y | ∃y′ ∈ ξ(y0, ω) : y ∈ ξ(y′, a)}

= {y ∈ Y | ∃y′ ∈ {δobs(qi,obs, ω)} : y ∈ ξ(y′, a)}

(by IH and |δobs(qi,obs, ω)| = 1)

= {y ∈ Y | y ∈ ξ(δobs(qi,obs, ω), a)}

= {y ∈ Y | y ∈ {δobs(δobs(qi,obs, ω), a)}}

(by (F1) and |δobs(qi,obs, ωa)| = 1)

= {δobs(δobs(qi,obs, ω), a)}

= {δobs(qi,obs, ωa)}

Case 2: |δobs(qi,obs, ω)| ≥ 2 and |δobs(qi,obs, ωa)| = 1. Since |δobs(qi,obs, ωa)| = 1, we need
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to prove ξ(y0, ωa) = {δobs(qi,obs, ωa)}, which can be done as follows.

ξ(y0, ωa) = ξ(ξ(y0, ω), a)

= {y ∈ Y | ∃y′ ∈ ξ(y0, ω) : y ∈ ξ(y′, a)}

= {y ∈ Y | ∃y′ ⊆ δobs(qi,obs, ω) : y ∈ ξ(y′, a)}

(by IH and |δobs(qi,obs, ω)| ≥ 2)

= {y ∈ Y | ∃y′ ⊆ δobs(qi,obs, ω) : y ∈
{

δobs(y′, a)
}
}

(by (F1) and 3 |δobs(qi,obs, ωa)| = 1)

= {y ∈ Y | ∃y′ ⊆ δobs(qi,obs, ω) : y = δobs(y′, a)}

= {δobs(δobs(qi,obs, ω), a)}

= {δobs(qi,obs, ωa)}

Case 3: |δobs(qi,obs, ω)| = 1 and |δobs(qi,obs, ωa)| ≥ 2. Since |δobs(qi,obs, ωa)| ≥ 2, we need

to prove for any y ⊆ Q such that |y| = 2, y ∈ ξ(y0, ωa) ⇔ y ⊆ δobs(qi,obs, ωa), which can be

done as follows.

y ∈ ξ(y0, ωa)⇔ y ∈ ξ(ξ(y0, ω), a)

⇔ (∃y′ ∈ ξ(y0, ω))y ∈ ξ(y′, a)

⇔ (∃y′ ∈ δobs(qi,obs, ω))y ∈ ξ(y′, a)

(by IH and |δobs(qi,obs, ω)| = 1)

⇔ (∃y′ = δobs(qi,obs, ω))y ∈ ξ(y′, a)

⇔ y ∈ ξ(δobs(qi,obs, ω), a)

⇔ y ⊆ δobs(δobs(qi,obs, ω), a)

(by (F2) and |δobs(qi,obs, ωa)| ≥ 2

⇔ y ⊆ δobs(qi,obs, ωa)

Case 4: |δobs(qi,obs, ω)| ≥ 2 and |δobs(qi,obs, ωa)| ≥ 2. Since |δobs(qi,obs, ωa)| ≥ 2, we need

to prove for any y ⊆ Q such that |y| = 2, y ∈ ξ(y0, ωa) ⇔ y ⊆ δobs(qi,obs, ωa), which can be

3. Since |δobs(qi,obs, ω)| ≥ 2 and |δobs(qi,obs, ωa)| = 1, then there exists y′ ⊆ δobs(qi,obs, ω) such that
|δobs(y′, a)| = 1. Moreover, for any y′ ⊆ δobs(qi,obs, ω), we have |δobs(y′, a)| = 1 or |δobs(y′, a)| = 0.
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done as follows.

y ∈ ξ(y0, ωa)⇔ y ∈ ξ(ξ(y0, ω), a)

⇔ (∃y′ ∈ ξ(y0, ω))y ∈ ξ(y′, a)

⇔ (∃y′ ⊆ δobs(qi,obs, ω))y ∈ ξ(y′, a)

(by IH and |δobs(qi,obs, ω)| ≥ 2)

⇔ (∃y′ ⊆ δobs(qi,obs, ω))y ⊆ δobs(y′, a)

(by (F2) and 4 |δobs(qi,obs, ωa)| ≥ 2)

⇔ y ⊆ δobs(δobs(qi,obs, ω), a)

⇔ y ⊆ δobs(qi,obs, ωa)

Therefore, Lemma 4.2 is established.

4.5 Creteria for Verifying Strong Detectabilities

In this section, we first show that strong detectability and strong periodic detectability

of a UWA G can be efficiently checked by using its detector Gdet. We then illustrate that

the conditions stated for the observer for weak detectability and weak periodic detectability

cannot be transposed to the detector.

We denote by ECdet the set of all elementary circuits of detector Gdet, which is defined as:

ECdet = {(y, s) ∈ Y× E∗obs | y ∈ ξ(y, s) ∧ |s| ≥ 1

∧ (∀s′ ∈ Pr(s) s.t. s′ 6= s : y /∈ ξ(y, s′))}.

Besides, we denote by Ysingle the set of singleton states of Gdet, that is,

Ysingle = {y ∈ Y | |y| = 1}.

Theorem 4.5 (Criterion for Checking Strong Periodic Detectability). A UWA G is strongly

periodically detectable with respect to projection P iff each elementary circuit of observer

Gdet contains at least one state belonging to Ysingle, that is: (∀(y, s) ∈ ECdet)(∃ω ∈
Pr(s))ξ(y, ω) ⊆ Ysingle.

Proof. We have to prove that (∀(x, s) ∈ Sci)(∃ω ∈ Pr(s))δobs(x, ω) ∈ Qsingle
obs iff (∀(y, s) ∈

4. More precisely, since y ∈ ξ(y′, a) and |y| ≥ 2, according to the definition of ξ, then |δobs(y′, a)| ≥ 2. By
(F2), we have y ∈ ξ(y′, a)⇔ y ⊆ δobs(y′, a).
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ECdet)(∃ω ∈ Pr(s))ξ(y, ω) ⊆ Ysingle.

(Only If) Assume (∀(x, s) ∈ Sci)(∃ω ∈ Pr(s))δobs(x, ω) ∈ Qsingle
obs , then any elementary

circuit contains at least one state δobs(x, ω) ∈ Qsingle
obs . Such a singleton state δobs(x, ω) will

not be split in Gdet. Formally, for any (x, s) ∈ Sci, let v be any string that leads to x from the

initial state, that is, δobs(qi,obs, v) = x. By Lemma 1, ξ(y0, vω) = {δobs(qi,obs, vω)}. According

to the construction procedure of Gdet, although Gdet may have more elementary circuits than

Gobs, all the elementary circuits in Gdet must contain at least one singleton state. Therefore, if

(∀(x, s) ∈ Sci)(∃ω ∈ Pr(s))δobs(x, ω) ∈ Qsingle
obs then (∀(y, s) ∈ ECdet)(∃ω ∈ Pr(s))ξ(y, ω) ⊆

Ysingle.

(If) Assume that (∀(x, s) ∈ Sci)(∃ω ∈ Pr(s))δobs(x, ω) ∈ Qsingle
obs is not true, i.e., (∃(x, s) ∈

ECobs)(∀w ∈ Pr(s))δobs(x, w) /∈ Qsingle
obs . Then we have the following path in Gobs.

x1
a1−→ x2

a2−→ x3 · · ·
an−2−−→ xn−1

an−1−−→ xn

where a1, a2, · · · , an−1 ∈ Eobs, n ∈N is a large enough number, and xi = δobs(xi−1, ai−1), i = 2, 3, · · · , n;

|xi| ≥ 2, i = 1, 2, · · · , n.

Note that x1 can be any state that belongs to elementary circuit (x, s). Let x′n be a sub-state

of xn of cardinality two, that is, x′n ⊆ xn and |x′n| = 2. For x′n and an−1, according to the

construction procedure of Gobs, we can find x′n−1 ⊆ xn−1 such that x′n ⊆ δobs(x′n−1, ai−1) and

|x′n−1| = 2. By the same way, we can find x′n−2 ⊆ xn−2, x′n−3 ⊆ xn−3, · · · , x′1 ⊆ x1 such that

 x′i ⊆ δobs(x′i−1, ai−1), i = 2, 3, · · · , n− 1;

|x′i| = 2, i = 1, 2, · · · , n− 2.

According to the construction procedure of Gdet, we have a path in Gdet as

x′1
a1−→ x′2

a2−→ x′3 · · ·
an−2−−→ x′n−1

an−1−−→ x′n.

Since n is large enough and Gdet is finite, then there must be an elementary circuit in the

above path such that each node consists of two states of the original system G. That is,

(∃(y, s) ∈ ECdet)(∀w ∈ Pr(s))ξ(y, w) * Ysingle.

Theorem 4.6 (Criterion for Checking Strong Detectability). A UWA G is strongly detectable

with respect to projection P iff any state reachable from any elementary circuit in observer
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Gobs belongs to Ysingle, that is, (∀(y, s) ∈ ECdet)(∀y′ ∈ Y s.t. ∃ω ∈ E∗obs, y′ ∈ ξ(y, ω))y′ ∈
Ysingle.

Proof. We have to prove that (∀(x, s) ∈ ECobs)(∀x′ ∈ X s.t. ∃ω ∈ E∗obs, x′ = δobs(x, ω))x′ ∈
Qsingle

obs iff (∀(y, s) ∈ ECdet)(∀y′ ∈ Y s.t. ∃ω ∈ E∗obs, y′ ∈ ξ(y, ω))y′ ∈ Ysingle.

(Only If) Assume (∀(x, s) ∈ ECobs)(∀x′ ∈ X s.t. ∃ω ∈ E∗obs, x′ = δobs(x, ω))x′ ∈ Qsingle
obs ,

then in particular, each state in any elementary circuit of Gobs belongs to Qsingle
obs , that is,

(∀(x, s) ∈ ECobs)x ∈ Qsingle
obs . According to the construction of Gdet, all these states will not

be split in Gdet. Formally, for any (x, s) ∈ ECobs, let v be any string that leads to x from

the initial state of Gobs, that is, δobs(qi,obs, v) = x. By Lemma 4.2, ξ(y0, v) = {δobs(qi,obs, v)}.
Since (∀x′ ∈ X s.t. ∃ω ∈ E∗obs, x′ = δobs(x, ω))x′ ∈ Qsingle

obs , let y = x, and by Lemma 4.2, we

get (∀y′ ∈ Y s.t. ∃ω ∈ E∗obs, y′ ∈ ξ(y, ω))y′ ∈ Ysingle. Therefore, if (∀(x, s) ∈ ECobs)(∀x′ ∈
X s.t. ∃ω ∈ E∗obs, x′ = δobs(x, ω))x′ ∈ Qsingle

obs is true, then (∀(y, s) ∈ ECdet)(∀y′ ∈ Y s.t. ∃ω ∈
E∗obs, y′ ∈ ξ(y, ω))y′ ∈ Ysingle.

(If) Assume (∀(x, s) ∈ ECobs)(∀x′ ∈ X s.t. ∃ω ∈ E∗obs, x′ = δobs(x, ω))x′ ∈ Qsingle
obs is not

true, i.e., (∃(x, s) ∈ ECobs)(∃x′ ∈ X s.t. ∃ω ∈ E∗obs, x′ = δobs(x, ω))x′ /∈ Qsingle
obs . Now we need

to prove (∃(y, s) ∈ ECdet)(∃y′ ∈ Y s.t. ∃ω ∈ E∗obs, y′ ∈ ξ(y, ω))y′ /∈ Ysingle, which can be done

by discussing the following cases.

Case 1: State x′ belongs to (x, s) and (x, s) contains at least one state belongs to Qsingle
obs .

According to the construction procedure of Gdet, there must exist a circuit in Gdet containing

a state that does not belong to Ysingle which is obtained by splitting state x′.

Case 2: State x′ belongs to (x, s) and all states in (x, s) do not belong to Qsingle
obs . According

to the (If) part of Theorem 4.5, there exists a circuit in Gdet containing a state that does not

belong to Ysingle.

Case 3: State x′ does not belong to (x, s) and all states in (x, s) belong to Qsingle
obs . Let

y = x, then according to the construction procedure of Gdet, there is a circuit (y, s) with all

its states belonging to Ysingle in Gdet. Besides, since x′ /∈ Qsingle
obs , by Lemma 4.2, we have

(∃y′ ∈ Y s.t. ∃ω ∈ E∗obs, y′ ∈ ξ(y, ω))y′ /∈ Ysingle (y′ is obtained by splitting state x′).

Example 4.6. Consider again the WA G in Fig. 4.5. Its detector Gdet is depicted in Fig.

4.7. Because there is elementary circuit, e.g., {1, 3} (d,4)−→ {1, 4} (b,3)−→ {1, 3}, with all its states

belonging to Y \Ysingle in Gdet, according to Theorems 4.5 and 4.6, G is not strongly detectable

and not strongly periodically detectable.

In Section 4.3.2, it is proved that a UWA G is weakly detectable iff there is at least one

elementary circuit composed of states that all belong to Qsingle
obs in its observer Gobs, and
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is weakly periodically detectable iff there is at least one elementary circuit in Gobs which

contains at least one state belonging to Qsingle
obs . However, we cannot use the same conditions

stated for detector Gdet to check weak detectability and weak periodic detectability. The

following example illustrates this.

Example 4.7. Consider the UWA G in Fig. 4.8. Its observer Gobs calculated by Algorithm

4.1 is depicted in Fig. 4.9. Its detector Gdet is depicted in Fig. 4.10. According to Gobs, G

is not weakly detectable as well as not weakly periodically detectable since each state of all

elementary circuits belongs to X \ Qsingle
obs . However, in Gdet, there exists elementary circuit

{7} (c,1)−→ {9}
( f ,2)−→ {7} that has all its states in Ysingle. Therefore, the fact that there exists a

circuit with all its states in Ysingle is neither sufficient nor necessary for weak detectability

and weak periodic detectability.
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Figure 4.8 – An unambiguous weighted automaton G.
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Figure 4.9 – The observer Gobs of G in Fig. 4.8.

4.6 Conclusion

In this chapter, we deal with the current-state detectability problem for UWAs under

partial event observation. An algorithm is proposed to build a DFA, called observer,

having the ability to estimate the current states of the studied system for any infinite or
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Figure 4.10 – The detector Gdet of G in Fig. 4.8.

finite observation. Inspired by the work in [Shu and Lin, 2011], criteria are proposed for

checking four types of detectabilities. A disadvantage of the observer-based approach is

that the verification complexity is very high since the observer’s state number is exponential

with respect to the number of states of the original system. In order to overcome this

shortcoming, a computational complexity reduced approach is proposed to deal with strong

detectabilities. Instead of using observer, this approach relies on the concept of detector

whose size is polynomial with respect to the number of states of the original UWA. The

complexity of checking strong detectability and strong periodic detectability by using a

detector is of polynomial time.

Part of the work in this chapter has been submitted as follows:

A. Lai, S. Lahaye and A. Giua. “Verification of detectability for unambiguous weighted

automata”, IEEE Transaction on Automatic Control (submitted), 2019 [Lai et al., 2019c].



5
I-Detectability and I-Opacity Verification

for UWAs

This chapter focuses on the verification of initial-state detectability (I-detectability) and

initial-state opacity (I-opacity) for unambiguous weighted automata (UWAs).
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5.1 Introduction

In Chapter 4, we investigate the verification of current-state detectability for UWAs.

Current-state detectability requires that system’s current state can be uniquely determined.

However, in some applications, instead of determining the current state of the system, one

may be interested in knowing which initial states the system may start from. This is referred

to as the initial-state estimation problem. In this chapter, this problem is investigated in

terms of I-detectability, characterizing whether one can uniquely determine the initial state

of a system after a finite number of observations. On the other hand, we study the I-opacity

of UWAs, which characterizes by whether an intruder can infer that the evolution of the

system has started from a secret initial state.

This chapter is structured as follows. Section 5.2 formally defines the problem of

I-detectability and gives the definitions of two types of I-detectabilities, i.e., strong I-

Detectability and Weak I-Detectability. Then, the problem of I-opacity is also defined. In

Subsection 5.3.1, given a UWA G, we detail the process of constructing the I-observer, i.e.,

initial-state estimator, of G. In Subsection 5.3.2, necessary and sufficient conditions based on

the constructed I-observer are introduced to verify the I-detectabilities of a UWA. Subsection

5.3.3 presents a necessary and sufficient condition for verifying I-opacity. In Subsection 5.3.4,

we analyse the complexity of verification of I-detectability and I-opacity using our approach.

Finally, conclusions are drawn in Section 5.4.

5.2 Problem Formulation

In this chapter, we assume that the studied WA G = (Q, E, α, µ) have identity initial

weights and that all unobservable labels are represented by symbol u, i.e., E = Eo ∪ {u}.
We use PEo : E∗ → E∗o to denote the natural projection from E∗ to E∗o . In addition, the

assumptions in Chapter 4 are needed when dealing with the verification of I-detectability

and I-opacity, i.e.,

• G is unambiguous;

• G is deadlock free, that is, for any state of the system, there exists at least one output

transition: (∀q ∈ Q)(∃a ∈ E, q′ ∈ Q)µ(a)qq′ 6= ε;

• There is no circuit labeled only by unobservable labels in G.
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5.2.1 I-Detectability

Definition 5.1. Given a UWA G, the set of possible initial states after observing σo ∈ P(L(G))

is defined as

I(σo) = {q ∈ Qi | ∃q′ ∈ Q, ∃σ ∈ L(G) : P(σ) = σo, q σ
 q′}. (5.1)

In simple words, I(σo) consists of all initial states from which there exist generated

weighted sequences such that their projections coincide with the observation.

Lemma 5.1. Let

I′(σo) = {q ∈ Qi | ∃q′ ∈ Q, ∃σ ∈ L(G) : P(σ) = σo, q σ
 q′, E f (σ) = E f (σo)}. (5.2)

Then I(σo) = I′(σo).

Proof. Let qi be an initial state with qi ∈ I′(σo). According to Eqs. (5.1) and (5.2),

qi ∈ I(σo). On the other hand, consider an initial state q0 ∈ I(σo). According to

Eq. (5.1), there must exist a path π from q0 and ending with E f (σo) or an unobservable

label such that P(σ(π)) = σo. If π ends with E f (σo), then it is trivial that q0 ∈
I′(σo). When π ends with an unobservable label, we assume that it can be represented

as π = (q0, uj1e1, q1) · · · (qn−1, ujn en, qn)(qn, u, qn+1), where j1, · · · , jn ∈ N. Let π′ =

(q0, uj1e1, q1) · · · (qn−1, ujn en, qn). Then π′ satisfies Eq. (5.2). Hence, q0 belongs to I′(σo).

The set of all possible trajectories of a WA is denoted by Lω(G). For an arbitrary finite or

infinite sequence σ that can be generated by G, we denote by Pr(σ) the set of all its prefixes.

Inspired by [Shu and Lin, 2013] where I-detectability is investigated for NFAs, we define

strong I-detectability and weak I-detectability for UWAs as follows.

Definition 5.2 (Strong I-Detectability). A UWA G is strongly I-detectable with respect to

projection P if, for all trajectories, the set of possible initial states shrinks to a singleton after

a finite number of observations, i.e.,

(∃n ∈ N)(∀σ ∈ Lω(G))(∀σ′ ∈ Pr(σ))|P(σ′)| > n ⇒ |I(P(σ′))| = 1.

Definition 5.3 (Weak I-Detectability). A UWA G is weakly I-detectable with respect to

projection P if, for some trajectories, the set of possible initial states shrinks to a singleton
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after a finite number of observations, i.e.,

(∃n ∈ N)(∃σ ∈ Lω(G))(∀σ′ ∈ Pr(σ))|P(σ′)| > n ⇒ |I(P(σ′))| = 1.

From the above definitions, we know that if a UWA is strongly I-detectable, then it is

weakly I-detectable.

Problem 5.1. Check, in a systematic way, if a given UWA G = (Q, E, α, µ) is strongly I-

detectable (resp. weekly I-detectable).

5.2.2 I-Opacity

The generated weighted language of a UWA G = (Q, E, α, µ) from a given initial state

qi ∈ Qi is defined as

L(G, qi) = {σ ∈ (E×D)∗ | ∃q ∈ Q, ∃ω ∈ E∗, ∃π ∈ qi
ω
 q : σ(π) = σ}. (5.3)

In addition, given a subset of the initial state set X ⊆ Qi, we define the weighted language

generated from X as

L(G, X) =
⋃

qi∈X
L(G, qi).

Due to unambiguity, if Qi is divided into two disjoint subsets: Q1
i and Q2

i , then the generated

weighted language of G can be represented by

L(G) =
⋃

qi∈Qi

L(G, qi) = L(G, Q1
i ) ∪ L(G, Q2

i ),

and we have

P(L(G)) = P(L(G, Q1
i )) ∪ P(L(G, Q2

i )).

Given a UWA G = (Q, E, α, µ) with generated weighted language L(G), the intruder can

only observe the projected weighted sequences, i.e., P(L(G)). Assume that the intruder has

full knowledge of the structure of G, and that the secret is described by an arbitrary subset

of Q. A system is said to be initial-state opaque with respect to the secret if the intruder can

never infer that the initial state of the system is within the secret. The I-opacity property of

a UWA is formally defined as follows.

Definition 5.4 (Initial-state opacity). Given a UWA G = (Q, E, α, µ), projection P : E∗ → E∗o ,

and a set of secret states Qs ⊆ Q, G is initial-state opaque with respect to Qs and P, if for
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all q ∈ Qi ∩ Qs and for all σ ∈ L(G, q), there exist q′ ∈ Qi \ Qs and σ′ ∈ L(G, q′) such that

P(σ′) = P(σ), that is, P(L(G, Qi ∩ Qs)) ⊆ P(L(G, Qi \ Qs)), or equivalently, P(L(G)) =

P(L(G, Qi \Qs)).

Problem 5.2. Check, in a systematic way, if a given UWA G = (Q, E, α, µ) is initial-state

opaque with respect to a secret Qs ⊆ Q.

The following example illustrates the notion of I-detectability and I-opacity.

Example 5.1. Consider the UWA G in Fig. 5.1 with the set of initial states Qi = {1, 4} and

⊗ = +. We assume that the set of secret states is Qs = {3, 4}, and u is the only unobservable

label.

Detectability analysis: Initially, the system can be in state 1 and/or state 4. When

weighted sequence (b, 7) has been observed, there are two paths that are consistent with

this observed weighted sequence, that is, (1, u, 2)(2, b, 3) and (4, u, 5)(5, u, 6)(6, b, 3). Both

states 1 and 4 are then in I((b, 7)), and the same goes for the infinite weighted sequence

(b, 7)(c, 9)(c, 11) · · · . Therefore, G is not strongly I-detectable. However, we can observe

that for weighted sequence (d, 4) and infinite weighted sequence (d, 4)(c, 6)(c, 8) · · · , the set

of possible initial states, i.e., I((d, 4)(c, 6)(c, 8) · · · ) contains only state 4 and we can conclude

that G is weakly I-detectable.

Opacity analysis: Consider the secret initial state 4 and σ = (u, 2)(d, 4) ∈ L(G, 4).

No weighted sequence can be generated by G from non-secret initial state 1 such that its

projection is equal to P(σ). Therefore G is not initial-state opaque with respective to secret

S.
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Figure 5.1 – An unambiguous weighted automaton G.

5.3 Verification of I-Detectability and I-Opacity

Inspired by the work in [Shu and Lin, 2013; Saboori and Hadjicostis, 2013b], we propose

a formal procedure to solve Problems 5.1 and 5.2, that is, to check whether a UWA G
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is strongly (or weakly) I-detectable, and whether G is initial-state opaque. A two-step

approach is first proposed to construct the initial-state estimator for G, called I-observer.

Then, based on the constructed I-observer, necessary and sufficient conditions are proposed

to check I-detectability and I-opacity of system G.

5.3.1 Construction of the I-Observer

First, we build the augmented UWA for G by extending its states to state pairs. Then, we

construct the current-state estimator of the augmented automaton, which can be used as the

initial-state estimator of G.

Construction of the Augmented Automaton

We extend UWA G = (Q, E, α, µ) into its augmented version

Gaug =
(
Qaug, E, taug, Qaug

i , $aug)
where Qaug ⊆ Q × Qi is the set of states; taug : Qaug × E × Qaug → D is the transition

function; Qaug
i ⊆ Qaug is the set of initial states; $aug : Qaug

i → D is the function of initial

weights. It should be noted that each state qaug ∈ Qaug is a pair (qc, qi), reflecting that state

qc can be reached in G from initial state qi. In particular, the set of initial states of Gaug is

defined as:

Qaug
i = {(qi, qi) | qi ∈ Qi} .

For automaton G = (Q, E, α, µ), we denote by R(q, a) the set of reachable states for label

a ∈ E from state q, i.e., R(q, a) =
{

q′ ∈ Q | µ(a)qq′ 6= ε
}

. From a given state (qc, qi) in Gaug,

the occurrence of a label a ∈ E from state qc in G is modeled in Gaug by transitions to states

(q′c, qi) with q′c ∈ R(qc, a). That is, the set of reachable states for a ∈ E from state (qc, qi) in

Gaug is defined as:

Raug((qc, qi), a) =
{
(q′c, qi) | q′c ∈ R(qc, a)

}
.

Algorithm 5.1 details the process of constructing such an augmented automaton for G.

Steps 2–5 calculate the set of initial states Qaug
i and specify the function of initial weights

for Gaug. These initial states are first stored in the stack Queue. Then, for each pair (qc, qi)

belonging to Queue, we calculate all the reachable states for the occurrence of any label, i.e.,

Raug((qc, qi), a), for all a ∈ E. If an element (q′c, qi) ∈ Raug((qc, qi), a) has not been defined,

then it is added in Qaug and in the stack. Besides, an arc labeled by a/µ(a)qcq′c from node
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Algorithm 5.1: Construction of augmented automaton Gaug

Require: A UWA G = (Q, E, α, µ).
Ensure: An augmented automaton Gaug for G.

1: Let Qaug
i = ∅, Queue = ∅

2: for each q ∈ Qi do
3: Qaug

i = Qaug
i ∪ {(q, q)}, $aug((q, q)) = αq

4: Enqueue (q, q) in Queue
5: end for
6: Let Qaug = Qaug

i
7: while Queue 6= ∅ do
8: Dequeue (qc, qi) from Queue
9: for each a ∈ E do

10: Raug((qc, qi), a) = {(q′c, qi) | q′c ∈ R(qc, a)}
11: for each (q′c, qi) ∈ Raug((qc, qi), a) do
12: if (q′c, qi) /∈ Qaug then
13: Qaug = Qaug ∪ {(q′c, qi)}
14: Enqueue (q′c, qi) in Queue
15: end if
16: taug((qc, qi), a, (q′c, qi)) = µ(a)qcq′c
17: end for
18: end for
19: end while
20: Return Gaug =

(
Qaug, E, taug, Qaug

i , $aug)

(qc, qi) to node (q′c, qi) is also defined. Repeat this procedure until stack Queue becomes

empty, then the augmented automaton Gaug is constructed.

Remark 5.1. In the worst case, the number of states of Gaug is |Qaug| = |Q|2. As a result, the

computational complexity of constructing the augmented automaton Gaug using Algorithm

5.1 is polynomial with respect to the number of states of G.

Example 5.2. Consider again the automaton G in Fig. 5.1 with ⊗ = +. After applying

Algorithm 5.1, we obtain the augmented automaton of G shown in Fig. 5.2.

/ 1u / 6b

/ 2u / 1u

/ 2c

/ 2c

/ 4b

/ 2c/ 2d

 1,1  2,1  3,1

 4,4  5,4  6,4  3,4

 7,4

e

e

Figure 5.2 – Augmented automaton Gaug of G in Fig. 5.1.
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The following lemma indicates that the augmented automaton retains the unambiguity

property.

Lemma 5.2. The augmented automaton Gaug of G constructed by Algorithm 5.1 is

unambiguous.

Proof. Assume that Gaug is not unambiguous. Then, there is more than one path labeled

by a string, e.g. e1e2 · · · ei, from the initial states leading to a state (qc, qi) in Gaug where

qi ∈ Qi and qc is reachable from qi. Using Algorithm 5.1, this situation occurs if there exists

more than one path from the initial states to state qc labeled by string e1e2 · · · ei in G. This

contradicts the unambiguity of G. Therefore, Gaug is unambiguous.

Lemma 5.3. The weighted language generated by the augmented automaton Gaug is equal

to the weighted language generated by UWA G, i.e., L(Gaug) = L(G).

Proof. We have to prove that for any weighted sequence σ ∈ (E×R)∗, σ ∈ L(Gaug) if and

only if σ ∈ L(G).

First, consider a weighted sequence σ = (e1, τ1)(e2, τ2) · · · (en, τn) ∈ L(G). Suppose that

π = (q0, e1, q1)(q1, e2, q2) · · · (qk−1, ek, qk) is a path from initial state q0 such that the weighted

sequence it generates is equal to σ. Since G is unambiguous and has identity initial weights,

we have τ1 = µ(e1)q0q1 , τk = τk−1 ⊗ µ(ek)qk−1qk for k = 2, 3, · · · , n. According to Algorithm

5.1, there must be the following path in Gaug:

π′ = ((q0, q0), e1, (q1, q0))((q1, q0), e2, (q2, q0)) · · · ((qk−1, q0), ek, (qk, q0))

along which the weights of transitions are equal to the weights of the corresponding transi-

tions in π. Since Gaug is unambiguous, σ(π′) = (e1, µ(e1))(e2, µ(e1)⊗ µ(e2)) · · · (en, µ(e1)⊗
· · · ⊗ µ(en)) = (e1, τ1)(e2, τ2) · · · (en, τn). That is, σ is generated by π′, i.e., σ ∈ L(Gaug).

Hence, ∀σ ∈ L(G), σ ∈ L(Gaug).

Second, for a sequence σ = (e1, τ1)(e2, τ2) · · · (en, τn) ∈ L(Gaug), we assume that it is

generated by the following path

π = ((q0, q0), e1, (q1, q0))((q1, q0), e2, (q2, q0)) · · · ((qn−1, q0), en, (qn, q0))

with (q0, q0) being an initial state of Gaug, and τ1 = µ(e1)(q0,q0)(q1,q0), . . . , τk = τk−1 ⊗
µ(ek)(qk−1,q0)(qk ,q0) for k = 2, 3, · · · , n. According to Algorithm 5.1, there must exist the

path π′ = (q0, e1, q1)(q1, e2, q2) · · · (qk−1, ek, qk) in G with q0 ∈ Qi. Besides, the weights

of transitions in π′ are µ(ei)qi−1qi = µ(ei)(qi−1,q0)(qi ,q0), for i = 1, 2, · · · , n. Since G is
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unambiguous, we know that σ(π′) = (e1, τ1)(e2, τ2) · · · (en, τn). That is, σ is generated by

π′, i.e., σ ∈ L(G). Therefore, for all σ ∈ L(Gaug), we have σ ∈ L(G).

I-observer

Let Gaug = (Qaug, E, αaug, µaug) be the equivalent representation of augmented

automaton Gaug =
(
Qaug, E, taug, Qaug

i , $aug) as defined in Def. 2.16.

We first adopt Algorithm 4.1 to construct the observer of Gaug = (Qaug, E, αaug, µaug),

denoted by Gaug
obs = (Qaug

obs , Eaug
obs , δ

aug
obs , qaug

i,obs). Then we prove that Gaug
obs can serve as the initial-

state estimator, called I-observer, of the original system G.

Remark 5.2. Note that Algorithm 4.1 is presented in Subsection 4.3.1 for constructing the

current-state estimator Gobs = (Qobs, Eobs, δobs, qi,obs) of a given WA G = (Q, E, α, µ) to deal

with the verification of current-state detectability.

The I-observer Gaug
obs is a DFA over a weighted alphabet Eaug

obs ⊆ Eo × D. That is, Gaug
obs

has only one initial state, and from a given state no two transitions of Gaug
obs are labeled by

the same weighted label (a, ta) ∈ Eaug
obs . It should be noted that from a state in Gaug

obs there

may exist several output transitions labeled by the same label a ∈ Eo but with different

weights ta. In this case, the external agent can distinguish the transitions from the different

associated weights.

Example 5.3. Consider the UWA G in Fig. 5.1 whose augmented automaton Gaug is

visualized in Fig. 5.2. Its I-observer Gaug
obs computed by applying Algorithm 4.1 to Gaug is

shown in Fig. 5.3.

    1,1 , 4,4

    3,1 , 3,4

  7,4

 ,7b

 ,4d

 ,2c

 ,2c

 ,e

Figure 5.3 – I-observer Gaug
obs of the automaton G in Fig. 5.1.

Let (Eaug
obs )

∗
be the set of all the finite strings over weighted alphabet Eaug

obs including (ε, e)

corresponding to empty string ε and identity weight. The language generated by the I-
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observer Gaug
obs = (Qaug

obs , Eaug
obs , δ

aug
obs , qaug

i,obs) is defined as:

L(Gaug
obs ) = {ω ∈ (Eaug

obs )
∗ | ∃qaug

obs ∈ Qaug
obs : δ

aug
obs (q

aug
i,obs, ω) = qaug

obs }.

Note that the language generated by Gaug
obs is a subset of (Eaug

obs )
∗
, i.e., L(Gaug

obs ) ⊆ (Eaug
obs )

∗
.

While the language generated by G = (Q, E, α, µ) is a subset of (E×D)∗, i.e., L(G) ⊆
(E×D)∗. For any sequence ω = (a1, τ1)(a2, τ2) · · · (an, τn) ∈ L(Gaug

obs ), its equivalent

notation in (E×D)∗ can be defined by ωcum = (a1, τ1)(a2, τ′2) · · · (an, τ′n) where τ′k =

τ1 ⊗ · · · ⊗ τk, k = 2, 3, · · · , n, represents the cumulated weight for sequence a1a2 · · · ak. We

denote by Lcum(Gaug
obs ) the equivalent notation of L(Gaug

obs ), that is,

Lcum(Gaug
obs ) = {σ ∈ (E×D)∗ | ∃ω ∈ L(Gaug

obs ) : ωcum = σ}.

The following lemma states the relationship between the observed language generated

by G and the language generated by I-observer Gaug
obs .

Lemma 5.4. The projection of language L(G) generated by G coincides with Lcum(Gaug
obs ), that

is, P(L(G)) = Lcum(Gaug
obs ).

Proof. Lemma 5.3 states that L(Gaug) = L(G). Besides, by Lemma 4.1 1, we have

P(L(Gaug)) = Lcum(Gaug
obs ). Therefore P(L(G)) = Lcum(Gaug

obs ) holds.

Lemma 5.5. The possible initial states of UWA G after observing weighted sequence σo =

(a1, τ1)(a2, τ2) · · · (ak, τk) ∈ P(L(G)) can be calculated by

I(σo) = {qi ∈ Qi | ∃qc ∈ Q : (qc, qi) ∈

δ
aug
obs (q

aug
i,obs, (a1, τ1)(a2, τ2 ⊗−1 τ1) · · · (ak, τk ⊗−1 τk−1))}

where τk ⊗−1 τk−1 is defined as the value x ∈ D such that x ⊗ τk−1 = τk, with τk and

τk−1 ∈ D \ {ε}.

Proof. According to Algorithm 5.1, for all qi ∈ Qi, qc ∈ Q and σ ∈ L(G), we have

qi
σ
 qc ⇔ (qi, qi)

σ
 (qc, qi).

1. The projection of language L(G) generated by G coincides with Lcum(Gobs), i.e., P(L(G)) = Lcum(Gobs),
where Lcum(Gobs) = {σ ∈ (E×D)∗ | ∃ω ∈ L(Gobs) : ωcum = σ}.
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Therefore, for any σo = (a1, τ1)(a2, τ2) · · · (ak, τk) ∈ P(L(G)), we have

I(σo)

= {qi ∈ Qi | ∃qc ∈ Q, ∃σ ∈ L(G) : P(σ) = σo, qi
σ
 qc}

(by the definition of I(σo) in Eq. (5.1))

= {qi ∈ Qi | ∃qc ∈ Q, ∃σ ∈ L(G) : P(σ) = σo, qi
σ
 qc,

E f (σ) = E f (σo)}

(by Lemma 5.1)

= {qi ∈ Qi | ∃qc ∈ Q, ∃σ ∈ L(Gaug) :

P(σ) = σo, (qi, qi)
σ
 (qc, qi), E f (σ) = E f (σo)}

(by Algorithm 5.1)

= {qi ∈ Qi | ∃qc ∈ Q : (qc, qi) ∈

δ
aug
obs (q

aug
i,obs, (a1, τ1)(a2, τ2 ⊗−1 τ1) · · · (ak, τk ⊗−1 τk−1))}

(by Proposition 4.1 2)

Therefore, Lemma 5.5 is established.

5.3.2 Criteria for Verifying I-Detectability

This subsection focuses on Problem 5.1, that is, the verification of I-detectability. I-

detectability problem can be rephrased as follows. If no observable label has been observed,

we consider that all the states in Qi are possible initial states. Afterwards, from the

successive observations, we may be able to restrict the set of possible initial states. The I-

detectability problem is to determine if this set can shrink to a singleton after a finite number

of observations, and then, to identify the only possible initial state. Necessary and sufficient

conditions for checking strong I-detectability and weak I-detectability for UWA G based on

its I-observer Gaug
obs are presented.

We denote by Sci the set of all elementary circuits of Gaug
obs as:

Sci = {(q
aug
obs , s) ∈ Qaug

obs × (Eaug
obs )

∗ | δ
aug
obs (q

aug
obs , s) = qaug

obs

∧ |s| ≥ 1∧ (∀s′ ∈ Pr(s) s.t. s′ 6= s : δ
aug
obs (q

aug
obs , s′) 6= qaug

obs )}.

2. The set of possible current states of G after observing the weighted sequence (a1, τ1)(a2, τ2) · · · (ak , τk)
is given by δobs(qi,obs, (a1, τ1)(a2, τ2 ⊗−1 τ1) · · · (ak , τk ⊗−1 τk−1)), where δobs is the transition function of the
current-state estimator Gobs = (Qobs, Eobs, δobs, qi,obs) of UWA G = (Q, E, α, µ).
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Let Qaug
I,obs be a subset of Qaug

obs composed of states with the same second element (initial

state of G), that is,

Qaug
I,obs = {q

aug
obs ∈ Qaug

obs | ∃q ∈ Qi, ∀(qc, qi) ∈ qaug
obs : qi = q}.

Remark 5.3. Since G is deadlock free and I-observer Gaug
obs is finite, there must exist at least

one circuit in Gaug
obs .

Remark 5.4. If an observed weighted sequence from G leads to a state in Qaug
I,obs, then the

set of possible initial states is a singleton and this remains true for any continuation of the

observed weighted sequence. Therefore, if there are circuits in Gaug
obs , then all nodes of a

circuit belong to either Qaug
I,obs or Qaug

obs \Qaug
I,obs.

Theorem 5.1 (Criterion for Checking Strong I-Detectability). A UWA G is strongly I-

detectable with respect to projection P iff (∀(qaug
obs , s) ∈ Sci)(∀ω ∈ Pr(s))δaug

obs (q
aug
obs , ω) ∈

Qaug
I,obs, that is, all the elementary circuits in Gaug

obs have their nodes in Qaug
I,obs.

Proof. (If) If (∀(qaug
obs , s) ∈ Sci)(∀ω ∈ Pr(s))δaug

obs (q
aug
obs , ω) ∈ Qaug

I,obs, then the system will

eventually reach a state in Qaug
I,obs after a finite number of observations for all possible

trajectories of the system. According to Remark 5.4, the set of possible initial states is a

singleton for all possible continuations, that is, the system is strongly I-detectable.

(Only If) Assume (∃(qaug
obs , s) ∈ Sci)(∀ω ∈ Pr(s))δaug

obs (q
aug
obs , ω) ∈ Qaug

obs \ Qaug
I,obs, i.e., there

exist elementary circuits in Gaug
obs whose nodes all belong to Qaug

obs \ Qaug
I,obs. Then a possible

evolution of the system can iterate indefinitely such a circuit. That is, we cannot determine

the initial state of G for some trajectories forever. Hence, the system is not strongly I-

detectable.

Theorem 5.2 (Criterion for Checking Weak I-Detectability). A UWA G is weakly I-detectable

with respect to P iff Qaug
I,obs 6= ∅.

Proof. (If) If Qaug
I,obs is not empty, then the system can reach a state in Qaug

I,obs after a finite

number of observations for some trajectories of the system. As pointed out in Remark 5.4,

we can determine the only possible initial state of the system G for trajectories corresponding

to continuations of these observations. Hence, the system is weakly I-detectable.

(Only If) If Qaug
I,obs = ∅, then the set of possible initial states does not shrink to a singleton

whatever is the trajectory. Hence, the system is not weakly I-detectable.

Example 5.4. Consider the I-observer Gaug
obs in Fig. 5.3 of UWA G in Fig. 5.1. There are three

states in Gaug
obs , i.e., {(1, 1), (4, 4)}, {(3, 1), (3, 4)}, {(7, 4)}, and we have Qaug

I,obs = {{(7, 4)}}.
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By Theorem 5.1, G is weakly I-detectable since Qaug
I,obs is not empty. On the other hand, G is

not strongly I-detectable since not all elementary circuits have all their nodes within Qaug
I,obs.

For instance, elementary circuit {(3, 1), (3, 4)} (c,2)−→ {(3, 1), (3, 4)} has its node belongs to

Qaug
obs \Qaug

I,obs.

Example 5.5. Consider the UWA G in Fig. 5.4 with ⊗ = +. Its augmented automaton Gaug

computed by Algorithm 5.1 is shown in Fig. 5.5. After applying Algorithm 4.1 to Gaug, we

obtain the I-observer Gaug
obs shown in Fig. 5.6. It can be checked that all elementary circuits

have all their nodes in Qaug
I,obs. Therefore, by Theorem 5.1, G is strongly I-detectable (hence

weakly I-detectable).

1 2

34

/ 2u

/ 1b/ 2b

/ 2c

/ 1d

e

e

Figure 5.4 – An unambiguous automaton G

 4,4

 1,4  2,4

 3,4

 2,2

 3,2 4,2

 1,2

/ 2c/ 2c

/ 2b/ 2b
/ 1b/ 1b / 1d/ 1d

/ 2u / 2u

e

e

Figure 5.5 – Augmented automaton Gaug of G in Fig. 5.4.

5.3.3 Criteria for Verifying I-Opacity

In this section, we focus on Problem 5.2, that is, the verification of I-opacity for a UWA

G = (Q, E, α, µ). The secret, denoted by Qs, is defined as an arbitrary subset of Q, i.e.,

Qs ⊆ Q. The set of initial states Qi of G is divided into two disjoint parts by the secret Qs:

Qi ∩Qs and Qi \Qs.

Lemma 5.6. Given a UWA G = (Q, E, α, µ), projection P : E∗ → E∗o , and a set of secret states

Qs ⊆ Q, G is initial-state opaque with respect to Qs and P iff for all σo ∈ P(L(G)), I(σo) * Qs

holds, where I(σo) is the set of possible initial states for the observation σo.
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    2, 2 , 4, 4
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  3, 4  1, 4
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Figure 5.6 – I-observer Gaug
obs of G in Fig. 5.4.

Proof.

(∀σo ∈ P(L(G)))I(σo) * Qs

⇔ (∀σo ∈ P(L(G)))(∃q′ ∈ I(σo))q′ /∈ Qs

⇔ (∀σo ∈ P(L(G)))(∃q′ ∈ Qi \Qs)(∃q ∈ Q)

(∃σ′ ∈ L(G))P(σ′) = σo ∧ q′ σ′
 q

(by the definition of I(σo) in Eq. (5.1))

⇔ (∀σo ∈ P(L(G)))(∃q′ ∈ Qi \Qs)(∃σ′ ∈ L(G, q′))

P(σ′) = σo

(according to Eq. (5.3))

⇔ (∀σo ∈ P(L(G, Qi ∩Qs)))(∃q′ ∈ Qi \Qs)

(∃σ′ ∈ L(G, q′))P(σ′) = σo

(by P(L(G)) = P(L(G, Qi ∩Qs)) ∪ P(L(G, Qi \Qs))
3)

⇔ (∀q ∈ Qi ∩Qs)(∀σ ∈ L(G, q))(∃q′ ∈ Qi \Qs)

(∃σ′ ∈ L(G, q′))P(σ′) = P(σ)

which is consistent with Definition 5.4 of I-opacity. Hence the proof is completed.

3. More precisely, (⇒) holds simply because P(L(G, Qi ∩Qs)) ⊆ P(L(G)). In order to prove the correctness
of (⇐), we have to prove that ∀σo ∈ P(L(G, Qi \Qs)), ∃q′ ∈ Qi \Qs, ∃σ′ ∈ L(G, q′) : P(σ′) = σo, which is self-
evident.
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For any qaug
obs ∈ Qaug

obs , we define I(qaug
obs ) =

{
qi ∈ Qi | ∃(qc, qi) ∈ qaug

obs

}
as the initial states

of automaton G that it contains. The following theorem illustrates that the I-observer Gaug
obs

can be used to verify the I-opacity for UWA G.

Theorem 5.3. Given a UWA G = (Q, E, α, µ), projection P : E∗ → E∗o , and a set of secret

states Qs ⊆ Q, G is initial-state opaque with respect to Qs and P iff

(∀qaug
obs ∈ Qaug

obs )I(qaug
obs ) * Qs

where Qaug
obs is the set of states in I-observer Gaug

obs of G.

Proof. It follows from Lemmas 5.5 and 5.6.

Example 5.6. Consider the I-observer Gaug
obs in Fig. 5.3 of UWA G in Fig. 5.1. There are

three states in Gaug
obs , i.e., {(1, 1), (4, 4)}, {(3, 1), (3, 4)} and {(7, 4)}. Assume that the secret

is Qs = {3, 4}. Since I({(7, 4)}) = 4 ⊆ Qs, according to Theorem 5.3, G is not initial-

state opaque with respect to Qs and P. If now the secret is Qs = {1, 3}, then G is initial-

state opaque since I({(1, 1), (4, 4)}) = {1, 4} * Qs, I({(3, 1), (3, 4)}) = {1, 4} * Qs and

I({(7, 4)}) = 4 * Qs.

Example 5.7. Consider the I-observer Gaug
obs in Fig. 5.6 of UWA G in Fig. 5.4 where Qi =

{2, 4}. It can be checked that G is always non-opaque with respect to P and an arbitrary

secret Qs so long as Qs ∩ Qi 6= ∅. In fact, among the states of Gaug
obs , we have I({1, 4}) =

I({4, 4}) = I({3, 4}) = {4} and I({4, 2}) = I({3, 2}) = I({1, 2}) = {2}. Therefore, for a

secret Qs containing initial state 2 and/or 4, there must exist one state qaug
obs ∈ Qaug

obs such that

I(qaug
obs ) ⊆ Qs.

Remark 5.5. Note that the UWA whose transition weights are associated with a time

interpretation are strongly related to real-time automata. Unlike in [Wang et al., 2018]

where the verification of I-opacity in real-time automata has been investigated by solving

the inclusion problem of regular languages, in this work, the I-opacity problem of a UWA is

solved by the construction of its initial-state estimator.

5.3.4 Computational Complexity Analysis

Given a UWA G = (Q, E, α, µ), in the worst case, the number of states of its augmented

automaton Gaug obtained by using Algorithm 5.1 is |Qaug| = |Q|2. As a result, the

computational complexity of constructing Gaug using Algorithm 5.1 is polynomial with

respect to the number of states of G.
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Checking I-detectability and I-opacity for UWA G using Theorems 1-3 requires the

construction of an I-observer. Since the augmented automaton has at most |Q|2 states,

where |Q| is the number of states of G, in the worst case, I-observer Gaug
obs has 2|Q|

2
− 1 states.

Therefore, verifying the I-detectability and I-opacity using Gaug
obs is of exponential complexity.

5.4 Conclusion

This chapter addresses the verification of I-detectability and I-opacity for UWAs under

partial event observation. Given a UWA G, an algorithm is first proposed to construct its

augmented version Gaug. It should be noted that each state qaug in Gaug is a pair (qc, qi) of

states from G, implying that state qc can be reached from initial state qi in system G. Then the

initial-state estimator, I-observer, of G is obtained by constructing the current state estimator

of the augmented automaton Gaug. Finally, necessary and sufficient conditions are derived

to verify strong I-detectability, weak I-detectability and I-opacity based on the constructed

I-observer.

The work in this chapter has been submitted as follows:

A. Lai, S. Lahaye and Z. Li. “Initial-state detectability and initial-state opacity of

unambiguous weighted automata”, Automatica (submitted), 2019 [Lai et al., 2019d].



6
Conclusion and Future Work

In this chapter, we draw some conclusions on the general results presented in this thesis

and discuss possible directions for future research.

6.1 Concluding Remarks

State estimation and verification of detectability and opacity are important problems in

systems and control theory. These problems have been widely investigated for classical

automata and Petri nets (PNs), two important models of discrete event systems (DESs). In

addition to automata and PNs, weighted automata (WAs) represent a well studied class

of DES models, which are a quantitative extension of nondeterministic finite automata

(NFAs). WAs have spurred much interest in Computer Science due to their elegant and

sound algebraic framework as well as their relevance in current practical applications, such

as natural language processing, speech recognition and digital image compression. From a

different perspective, in this thesis, we use WAs as DES models to deal with state estimation,

fault diagnosis, detectability and opacity verification problems, which are core problems

within the control community. The main contribution of this thesis is briefly described

below.

• We formally define the state estimation problem for WAs. Given a WA where only

a subset of the labels are observable, state estimation aims at calculating all possible

109
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states the system can be in according to the observation. Algorithms are proposed

in Chapter 3 for tackling this problem for WAs. The proposed approach is based

on the analysis of the state vector, and all paths consistent with the observation are

enumerated so as to capture the possible current states.

• We deal with the fault diagnosis problem of WAs considering that failures are

modeled by some unobservable labels. For a given WA, we first construct its

augmented automaton with respect to a fault class, in which states are partitioned

as fault states and non-fault states. Then the state estimation technique can be used

to determine whether some fault labels have occurred or not given the observation.

• The verification of current-state detectability is investigated for unambiguous

weighted automata (UWAs). A WA is said to be unambiguous if for any state and

any string, there is at most one path labeled by this string leading from an initial state

to that state. We define strong detectabilities (i.e., strong detectability and strong

periodic detectability) and weak detectabilities (i.e., weak detectability and weak

periodic detectability) for UWAs. Current-state detectability requires that the current

state of the system can always be determined uniquely/unambiguously within a

finite number of observations. An observer-based approach whose computational

complexity is exponential with respect to the number of states of the studied UWA

is proposed to verify the strong detectabilities and weak detectabilities. Besides, we

show that the complexity of verification of strong detectabilities can be reduced by

introducing the concept of detector whose size is polynomial with respect to the state

cardinality of the original UWA.

• We study the verification of initial-state detectability (I-detectability) and initial-

state opacity (I-opacity) of UWAs. Strong I-detectability, weak I-detectability, and

I-opacity are defined for UWAs. I-detectability requires that the initial state of the

system can always be determined uniquely/unambiguously within a finite number

of observations. I-opacity requires that the intruder can never be sure that the

system’s evolution started from a secret state for all trajectories of the system. Note

that the secret in this thesis is modeled as a set of secret states. Algorithms are

proposed to build the I-observer of a UWA so as to derive necessary and sufficient

conditions for verifying strong I-detectability, weak I-detectability and I-opacity.
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6.2 Future Work

In this section, we point out several possible directions for future research related to the

work in this thesis.

• In this thesis, a fault is defined as “the occurrence of a faulty label”, as in logical

models. However, weighted automata allow one to consider a more general class of

faults associated to other quantitative information. For example, if we assume that a

fault is “the occurrence of a transition with a delay”, can we detect this type of fault?

On the other hand, we will consider the problem of diagnosability of fault using WAs.

The diagnosability characterizes whether one can always determine the occurrence of

a fault within a limited number of delays, e.g., a finite number of label observations

and a finite number of time units.

• All the results we have presented on verifying current-state detectability and I-

detectability as well as I-opacity of WAs require the unambiguity assumption. This

assumption limits the contribution of our research. As a future work, we plan to

relax this assumption when dealing with these problems.

• In addition to state-based opacity, language-based opacity is another important class

of opacity properties, where the secret is defined as a language, i.e., a set of event

sequences. A system is said to be language opaque if the intruder can never infer

if the evolution of the system belongs to the secret. Our future work will focus on

current-state opacity and language opacity in the framework of WAs.

• The opacity verification problem is to determine whether a system is opaque with

respect to a given secret or not. Another issue related to opacity verification

is the problem of opacity enforcement. Given a system that is not opaque, the

opacity enforcement problem is to make the system opaque. Our future work will

explore techniques to deal with I-opacity enforcement and language-based opacity

enforcement for UWAs. As in automata and PNs, such techniques may rely on

supervisory control, dynamically changing the observability of labels, or inserting

spurious labels into the output sequence generated by system.
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Titre : ESTIMATION D'ÉTAT ET VÉRIFICATION DE LA DÉTECTABILITÉ ET DE 
L'OPACITÉ DANS LES AUTOMATES PONDÉRÉS.  

 

Mots clés: Système à événements discrets, automates pondérés, estimation d'état, 
diagnostic d'erreur, détectabilité, opacité. 

 

Résumé: Cette thèse porte sur l'estimation 
d'état, le diagnostic d'erreur et la vérification de 
la détectabilité de l'état actuel, de la détectabilité 
de l'état initial et de l'opacité de l'état initial dans 
le cadre des automates pondérés. Le travail 
principal de cette thèse est le suivant. (1) Une 
procédure en ligne est proposée pour traiter le 
problème de l'estimation d'état pour les 
automates pondérés. (2) L'approche 
d'estimation d'état est étendue pour résoudre le  

problème du diagnostic de panne. (3) Soit un 
automate pondéré non ambigu, une procédure 
formelle à complexité exponentielle (resp. 
Complexité polynomiale) basée sur la la 
construction d’un observateur (ou d’un 
détecteur) est introduite pour vérifier sa 
détectabilité à l’état actuel. (4) Étant donné un 
automate pondéré non ambigu, une approche 
est proposée pour vérifier sa détectabilité à 
l'état initial et son opacité initiale. 

 

Title : State Estimation and Verification of Detectability and Opacity in Weighted Automata. 

 

Keywords: Discrete event system, weighted automata, state estimation, fault diagnosis, detectability, 
opacity. 
 
 
Abstract : This thesis focuses on the state 
estimation, fault diagnosis, and verification of 
current state detectability, initial state 
detectability and initial-state opacity in the 
framework of weighted automata. The main 
work of this thesis is as follows. (1) An online 
procedure is proposed to deal with the problem 
of state estimation for weighted automata. (2) 
The state estimation approach is extended to 

tackle the fault diagnosis problem. (3) Given an 
unambiguous weighted automaton, a formal 
procedure with exponential complexity (resp. 
polynomial complexity) based on the 
construction of observer (resp. detector) is 
introduced to verify its current-state detectability. 
(4) Given an unambiguous weighted automaton, 
an approach is proposed to verify its initial-state 
detectability and initialstate opacity. 
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