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Abstract

Various kinds of manufacturing systems can be modeled and analyzed by Timed Event

Graphs (TEGs). These TEGs are a particular class of timed Discrete Event Systems (DESs),

whose dynamic behavior is characterized only by synchronization and saturation phenom-

ena. A major advantage of TEGs over many other timed DES models is that their earliest be-

havior can be described by linear equations in some tropical algebra structures called dioids.
This has led to a broad theory for linear systems over dioids where many concepts of stan-

dard systems theory were introduced for TEGs. For instance, with the (max,+)-algebra linear

state-space models for TEGs were established. These linear models provide an elegant way to

do performance evaluation for TEGs. Moreover, based on transfer functions in dioids several

control problems for TEGs were addressed. However, the properties of TEGs, and thus the

systems which can be described by TEGs, are limited. To enrich these properties, two main

extensions for TEGs were introduced. First, Weighted Timed Event Graphs (WTEGs) which,

in contrast to ordinary TEGs, exhibit event-variant behaviors. InWTEGs integer weights are

considered on the arcs whereas TEGs are restricted to unitary weights. For instance, these

integer weights make it straightforward to model a cutting process in a production line. Sec-

ond, a new kind of synchronization called partial synchronization (PS) was introduced for

TEGs. PS is useful to model systems where specific events can only occur in a particular

time window. For example, consider a crossroad controlled by a traffic light: the green phase

of the traffic light provides a time window in which a vehicle is allowed to cross. Clearly,

PS leads to time-variant behavior. As a consequence, WTEGs and TEGs under PS are not

(max,+)-linear anymore.

In this thesis, WTEGs and TEGs under PS are studied in a dioid structure. Based on these

dioid models for WTEGs a decomposition of the dynamic behavior into an event-variant and

an event-invariant part is proposed. Under some assumptions, it is shown that the event-

variant part is invertible. Hence, based on this model, optimal control and model reference

control, which are well known for ordinary TEGs, are generalized to WTEGs. Similarly, a

decomposition model is introduced for TEGs under PS in which the dynamic behavior is

decomposed into a time-variant and time-invariant part. Again, under some assumptions, it

is shown that the time-variant part is invertible. Subsequently, optimal control, as well as

model reference control for TEGs under PS is addressed.
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Zusammenfassung

Viele Produktions- und Fertigungsanlagen können mit Hilfe von Synchronisationsgra-

phen modelliert und analysiert werden. Diese Synchronisationsgraphen sind eine speziel-

le Klasse der zeitbehafteten Ereignisdiskreten Systemen, deren dynamisches Verhalten nur

durch Synchronisations- und Sättigungsphänomene gekennzeichnet ist. Ein Vorteil dieser

Synchronisationsgraphen gegenüber vielen anderenModellen besteht darin, dass ihr schnells-

tes Verhalten durch lineare Gleichungen in einigen "tropischen" Algebren, den sogenann-

ten Dioiden, beschrieben werden kann. Dies hat zu der Entwicklung einer umfangreichen

Theorie für lineare Systeme in Dioiden geführt, wobei viele Konzepte aus der Standard

Systemtheorie auf Synchronisationsgraphen übertragen wurden. Zum Beispiel die (max,+)

Algebra biete elegante Analyseverfahren und Reglerentwurfsverfahren für Synchronisati-

onsgraphen. Allerdings ist die Systemklasse, die mit Hilfe von Synchronisationsgraphen

beschrieben werden kann, eingeschränkt. Zum Beispiel lassen sich Fertigungsanlagen mit

Gruppierungs- oder Vereinzelungsschritten nicht mit Synchronisationsgraphenmodellieren.

Daher wurden einige Erweiterungen für Synchronisationsgraphen eingeführt. Zum einen

wurden die Kanten von Synchronisationsgraphen mit ganzzahligen Gewichten erweitert.

Diese gewichteten Synchronisationsgraphen weisen im Gegensatz zu gewöhnlichen Syn-

chronisationsgraphen ereignisvariantes Verhalten auf und ermöglichen es nunGruppierungs-

oder Vereinzelungsschritte zu beschreiben. Des Weiteren wurde eine neue Art der Synchro-

nisation namens partieller Synchronisation (PS) eingeführt. Diese PS ist nützlich für die Mo-

dellierung von zeitvarianten Systemen, bei denen bestimmte Ereignisse nur in einem be-

stimmten Zeitfenster auftreten können. Ein solches Verhalten tritt zum Beispiel an einer

Kreuzung mit Ampelsteuerung auf, die Grünphase der Ampeln beschreibt das Zeitfenster, in

dem ein Fahrzeug die Kreuzung überqueren darf.

Aufgrund ihres ereignisvarianten bzw. zeitvarianten Verhalten können gewichteten Syn-

chronisationsgraphen sowie Synchronisationsgraphen unter PS nichtmehrmit linearenGlei-

chungen in der (max,+) Algebra beschrieben werden. In dieser Arbeit werden gewichteten

Synchronisationsgraphen und Synchronisationsgraphen unter PS in Dioiden modelliert. Ba-

sierend auf dieser Modellierung wird eine Zerlegung des dynamischen Verhaltens von ge-

wichteten Synchronisationsgraphen in einen ereignisvarianten und einen ereignisinvarian-

ten Teil vorgestellt. Analog wird für Synchronisationsgraphen unter PS gezeigt, dass ihr dy-

namisches Verhalten in einem zeitvarianten und zeitinvarianten Teil zerlegt werden kann.

Unter speziellen Voraussetzungen wird gezeigt, dass dieser ereignisvarianten bzw. zeitvari-

anten Teile invertierbar ist. Dies ermöglicht die Übertragung von etablierten Analyse- und

Regelungsentwurfsverfahren von gewöhnlichen Synchronisationsgraphen auf die allgemei-

neren Klassen der gewichteten Synchronisationsgraphen und Synchronisationsgraphen un-

ter PS.
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Résumé

Denombreux systèmes de production peuvent êtremodélisés et analysés à l’aide de graphes

d’événements temporisés (GET). Les GET forment une classe de systèmes à événements dis-

crets temporisés (SEDT), dont la dynamique est définie uniquement par des phénomènes de

synchronisation et de saturation. Un avantage majeur des GET par rapport à d’autres classes

de SEDT est qu’ils admettent, sous certaines conditions, un modèle linéaire dans des espaces

algébriques particuliers : les dioïdes. Ceci a conduit au développement d’une théorie des sys-

tèmes linéaires dans les dioïdes, grâce à laquelle de nombreux concepts de l’automatique

classique ont été adaptés aux GET. Par exemple, l’algèbre (max,+) (i.e., le dioïde basé sur

les opérations (max,+)) offre des techniques élégantes pour l’analyse et le contrôle de GET.

Cependant, les conditions nécessaires pour modéliser un système à événements discrets par

un GET sont très restrictives. Pour élargir la classe de systèmes concernés, deux extensions

principales ont été développées. D’une part, les GET valués ont été introduits pour décrire

des phénomènes d’assemblage et de séparation dans les systèmes de production. Cette exten-

sion se traduit par l’association de coefficients entiers aux arrêtes d’un graphe d’événements.

Contrairement aux GET, ces systèmes ne sont pas invariants par rapport aux événements et

ne peuvent donc pas être décrits par des équations linéaires dans l’algèbre (max,+). D’autre

part, la synchronisation partielle (PS) a été introduite pour modéliser des systèmes dans les-

quels certains événements ne peuvent se produire que pendant des intervalles prédéfinis.

Par exemple, dans une intersection réglée par un feu tricolore, une voiture peut traverser

l’intersection lorsque le feu est vert. Contrairement aux GET, ces systèmes ne sont pas in-

variants dans le domaine temporel et ne peuvent donc pas être décrits par des équations

linéaires dans l’algèbre (max,+). Dans cette thèse, une modélisation des GET valués et des

GET avec PS dans des dioïdes adaptés est présentée. A l’aide de ces dioïdes, une décompos-

tion pour les GET valués (resp. GET avec PS) en un GET et une partie non-invariante dans

le domaine des événements (resp. dans le domaine temporel) est introduite. Sous certaines

conditions, la partie invariante est invertible. Dans ce cas, les modèles et contrôleurs pour le

GET valué ou le GET sous PS peuvent être directement dérivés des modèles et contrôleurs

obtenus pour le GET associé.
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1
Introduction

Discrete Event Systems (DESs), e.g.[9], are systems where the dynamic behaviors are de-

scribed by the occurrence of asynchronous discrete events. This class of systems is useful to

model man-made systems - such as complex manufacturing lines, computer networks, and

transportation networks - on a high level of abstraction. Typically, signals of such systems

take discrete values that mostly belong to countable sets; for instance, the state of a machine

could be busy, idle or broken. Furthermore, state changes are given by asynchronous events.

For example, an operator can start a working process when the machine state is idle. At this

particular time, the state of the machine changes from idle to busy. Many different model-

ing approaches have been introduced for DESs, among which are Petri nets and finite-state

automata. These models give a formal way to describe how events are related to each other.

Besides the logical order in which the events occur, in many applications, the time which

elapses between consecutive events is important. In this case, the dynamic behavior of the

system is described by timed DESs, e.g. by timed Petri nets or timed finite-state automata.

This thesis focuses on a particular class of timed DESs, where the dynamic behaviors

are only governed by synchronization phenomena. Synchronization is essential in many

systems; for instance, in public transportation networks, at a train station, the departure

of trains may be synchronized with the arrival of other trains. In manufacturing systems,

in order to start a task, the raw material is needed, and the required production machines

must be ready. In a computer system, to perform a computation, data and the processing

unit must be available. The time behavior of those systems can be naturally described by

a subclass of timed Petri nets called Timed Event Graphs (TEGs). More precisely, TEGs are

timed Petri nets where each place has exactly one upstream and one downstream transition

and all arcs have the weight 1. An advantage of TEGs over the more general class of timed

Petri nets is that the evolution of events can be described by recursive linear equations in

a tropical algebra called (max,+)-algebra [40], or more generally in dioids [1]. Within the

last decades, this has led to the development of a broad theory of linear systems in dioids,

including many methods for performance evaluation and controller synthesis. E.g. through-
put analysis for TEGs can be stated as an eigenvalue problem in the (max,+)-algebra. The

transfer function of a TEG is described by an ultimately cyclic series in a specific dioid called

pMax
in vγ, δw ,‘,bq [1]. Moreover, many control methods for linear systems in dioids have

been studied, among which are: optimal feedforward control [12, 51], state and output feed-

back control [25, 15, 47, 48, 34] as well as observer based control [33, 35]. Moreover, in

[59, 60], model predictive control for (max,+)-linear systems was introduced. It was also

1



1. Introduction

shown that the obtained results are suitable to handle scheduling problems in complex real-

world systems. For instance, in [7] dioid theory was applied to the modeling and the control

of high throughput screening systems. These systems are used in the field of drug discovery

of chemical and biological industries.

However, TEGs are quite restrictive in terms of their modeling capabilities. To enrich the

model properties it is reasonable to consider weights (values in N “ t1, 2, ̈ ̈ ̈ u) on the arcs

of TEGs. This leads to Weighted Timed Event Graphs (WTEGs), which have clearly more

expressiveness and allow us to describe a wider class of systems. The weights are suitable

to express batch (resp. split) processes; for instance, when several occurrences of events are

needed to induce a following event or when one event can result in several following events.

Clearly, such batch and split processes are quite common in many manufacturing systems;

for instance, when a workpiece is cut into several parts. Another example in the field of com-

puter science is provided by data streams in multirate digital signal processing. The weights

are suitable to model data flow caused by up- and down-sampling. Unlike TEGs, WTEGs

have an event-variant behavior and cannot be described by (min,+)-linear or (max,+)-linear

systems anymore [14]. Another restrictive property of TEGs is that they can only represent

time-invariant systems. In order to describe time-variant behavior, in [20], a new form of

synchronization, called partial synchronization (PS), has been introduced for TEGs. Such a

partial synchronization is useful to describe systems where particular events can only occur

in a specific time window. To motivate the practical relevance, let us consider an intersection

controlled by a traffic light. A vehicle which arrives at the traffic light can only cross when

the traffic light is green. If the vehicle arrives in the red phase, it has to wait for the next

green phase. Therefore, the vehicle is delayed by a time that depends on its time of arrival

at the intersection. The traffic light control causes a time-variant behavior which cannot be

modeled by an ordinary TEG. In this thesis, dioid theory is applied to study the behavior of

WTEGs as well as the behavior of TEGs under PS. Moreover, results for control synthesis of

TEGs are generalized to the more general classes of WTEGs and TEGs under PS.

Motivation

ATEG can be convenientlymodeled as a linear system over some dioids. For this, a counter

function x : Z Ñ Zmin, withZmin “ ZYt̆8u, is associated with each transition giving the

accumulated number of firings up to a time t. Using the particular dioid pMax
in vγ, δw ,‘,bq,

it is straightforward to obtain transfer functions for TEGs. E.g., the earliest firing relation

between an input transition and an output transition of a TEG is modeled by an ultimately

cyclic series h P Max
in vγ, δw. This transfer function h maps an input counter function into

an output counter function, which are respectively associated with the input transition and

output transition of the TEG. The dioid pMax
in vγ, δw ,‘,bq was formally introduced in [1,

12] and is based on the event-shift operator γν
and time-shift operator δτ with τ, ν P Z.
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These operators map counter functions to counter functions in the following way:

pγνxq ptq “ xptq ̀ ν and pδτxq ptq “ xpt ́ τq. (1.1)

Time-shift operators model holding times associated with places and event-shift operators

model initial markings of the places. For instance, see Figure 1.1, where x1 and x2 are asso-

ciated with transition t1 and t2.

t1 t2p1

2

t1 t2p1

x1ptq

x2ptq “ δ2px1qptq

t

xptq

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7

x1ptq

x2ptq “ γ3px1qptq

t

xptq

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8

Figure 1.1. – Manipulation of the counter function x1 by the δ2 and γ3
operators. The δ2 and γ3

operator model the earliest behavior between input transition t1 and output transition

t2 in the TEGs above. The holding time of two time units is modeled by the δ2 operator

and the three initial tokens by the γ3
operator.

Moreover, by considering sums and compositions of these operators it is possible to de-

scribe the complete dynamic behavior of an ordinary TEG. As in conventional systems the-

ory, transfer functions are convenient to solve some control problems. For instance, model

reference control introduced for TEGs in [46, 15, 47] and [34] needs such an input-output

representation in the dioid pMax
in vγ, δw ,‘,bq. Usually, the reference model describes the

desired behavior and is as well specified in the dioid pMax
in vγ, δw ,‘,bq. To enforce this

behavior, a controller is computed such that the closed-loop behavior follows the behavior

of the reference model as close as possible, but is not slower than the reference. Therefore,

it is also known as a model matching control problem. This control method is of practical

interest for manufacturing systems. For instance, we can specify the desired throughput be-

havior of a production line in a reference model. The controller obtained from this reference

optimizes the production process under the "just-in-time" criterion while guaranteeing the

specified throughput. Thus, materials spend the minimum required time in the production

line, which leads to a reduction of internal stocks.

The aim of this thesis is to describe the transfer behavior of extended TEGs, namely

WTEGs and TEGs under PS, with a similar set of operators. This is necessary to extend the

result for model reference control to the more general classes of WTEGs and TEGs under

PS. In order to model the weights on the arcs in WTEGs, two new operators are considered,

3



1. Introduction

namely µm (event duplication) and βb (event division). These operators are given by, for

m,b P N,

̀

µmpxq
̆

ptq “ m ̂ xptq and

̀

βbpxq
̆

ptq “

Yxptq

b

]

.

See Figure 1.2, for an example of how these operators can be used to manipulate a counter

function. The dynamic behavior of aWTEG can then be described by sums and compositions

2

t1 t2
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3
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p1
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Figure 1.2. – Manipulation of the counter function x1 by the µ2 and β3 operators. The µ2 and β3

operator model the earliest behavior between input transition t1 and output transition

t2 in the WTEGs above.

of the operators tγν, δτ, µm, βbu in a dioid called pErrδss,‘,bq.

To model the behavior of TEGs under PS, it is more convenient to associate dater functions

instead of counter functions, with transitions. A dater function is a function x : Z Ñ Zmax,

with Zmax “ Z Y t̆8u, with xpkq is the time when the transition fires for the pk ̀ 1qst

time. To model periodic time-variant phenomena with dater functions, a new operator is

introduced, i.e., for ω P N

p∆ω|ωxqpkq “ rxpkq{ωsω.

Observe that this operator models a synchronization of the dater function with times t P

tωk |k P Zmaxu. For instance, see Figure 1.3 where the operator ∆3|3 is applied to a dater

function x1, thus the values∆3|3px1qpkq P t3k |k P Zmaxu. Therefore, with the∆3|3 operator,

we can model the earliest functioning of the TEG under PS given in Figure 1.4, where the PS

of transition t2 is given by a signal S2 : Z Ñ t0, 1u where S2ptq “ 1 for t P t3k |k P Zu and

0 otherwise. This signal enables the firing of transition t2 at time t P Z where S2ptq “ 1.

The dynamic behavior of a subclass of TEGs under PS, i.e. the class where PS of transitions
are given by periodic signals, can be modeled by sums and compositions of the operators

tγν, δτ, ∆ω|ωu in a dioid called pT rrγss,‘,bq.
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Figure 1.3. – Manipulation of the dater function x1 by the ∆3|3 operator.

S2

t1 t2p1

Figure 1.4. – Simple TEG under PS.

Related Work

Weighted Timed Event Graph

For manufacturing systems and embedded applications, buffer size, throughput, and la-

tency times are key features which can be analyzed and optimized. In general, we want

to maximize the production rate (or data throughput) while keeping buffer size as small

as possible. This kind of optimization problems have been widely studied in the context of

WTEGs. Note thatWTEGs are also referred to as TimedWeightedMarkedGraphs and Timed

Weighted Event Graphs in literature. In [53, 55], an important subclass of WTEGs, which we

will call consistent WTEGs, is studied. For this class of WTEGs, it is possible to define a fir-

ing sequence which involves all transitions in the WTEG, and if it occurs from markingM,

it leaves M invariant. In other words, these WTEGs exhibit T-semiflows. In [53] and [55],

a transformation of a consistent WTEG to an "equivalent" TEG was established, which is in

particular useful for the performance analysis of the original WTEG. However, in general,

this transformation significantly increases the number of transitions in the corresponding

TEG and therefore does not scale very well when increasing the size of the original WTEG.

In [55], it is shown that the computational complexity of this transformation is polynomial

with respect to the 1-norm of the T-semiflow of the original WTEG.

In [50], complexity results for cyclic scheduling problems for WTEGs are provided. This

includes, for instance, throughput computation and buffer minimization with respect to

throughput constraints, also often referred to as marking optimization. In this work, it is

implicitly assumed that the successive firings of a transition in the WTEG do not overlap.

More precisely, holding times are only modeled with transitions, and a self-loop at each tran-
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sition with one place and one token in the place is implicitly assumed. As a consequence,

the considered models are a subclass of WTEGs, where it is assumed that a transition can

potentially fire infinitely often concurrently.

Marking optimization for WTEGs are studied in [58, 64, 37, 38, 39]. One main problem is

to determine a minimal admissible marking for a given WTEG such that a given throughput

is guaranteed. In the context of manufacturing systems, for instance, this yields a minimiza-

tion of internal buffer sizes in an assembly line. In [64], the problem is addressed based on a

branch and bound algorithm. In [58] and [37], heuristic methods are presented. In [38], the

heuristic methods are compared to the optimal approach which is based on the transforma-

tion given in [55] and has high complexity.

Dioid models of WTEG

For ordinary TEGs, it is known that their behavior can be described by linear equations

over some dioids (or idempotent semirings) [1, 40]. In [14] and [16], dioids based on a spe-

cific set of operators are introduced to describe the dynamic behavior of WTEGs. In [14],

a fluid version of WTEGs is investigated for which recurrent equations are obtained. Fluid

WTEGs can be seen as continuous approximations of the WTEGs discussed in this thesis. A

linearization is introduced for fluid WTEGs. Therefore, the behavior of a fluid WTEG can be

analyzed by a (min,+)-linear system and approximate results can be obtained for the original

WTEG. However, in some cases, the results obtained for the fluid WTEG are quite far from

the original WTEG, for instance, a WTEG which is blocking may have a fluid approximation

which is alive. In [31, 30], "just-in-time" control for WTEGs are studied in a similar dioid

of operators, called pDmin vδw ,‘,bq. In [16, 17], a slightly different dioid is introduced to

describe the dynamic behavior of WTEGs. This dioid is denoted pErrδss,‘,bq and based on

the operators tγν, δτ, µm, βbu. In these works, an important subclass of WTEGs - the class

of WTEGs where parallel paths have balanced weights - are studied. This class is therefore

called Weight-Balanced Timed Event Graphs (WBTEGs). It is shown that the input-output

behavior of WBTEGs can be described by ultimately cyclic series in this dioid. Subsequently,

based on these series an interpretation of the impulse response for WBTEGs is given [17]

and some model matching control problems for WBTEGs are addressed [16, 65].

Synchronous Data-Flow (SDF) Graphs

In the field of computer science, an equivalent graphical representation for WTEGs is

known as SDF Graphs [61]. In this model, edges are associated with places, actors are asso-

ciated with transitions and data exchange between actors are associated with tokens. These

graphs were introduced in [44, 43] to model data flow in digital signal processing applica-

tions. They are useful tools to obtain, optimize and verify scheduling algorithms for parallel

processing [26]. Moreover, SDF Graphs are suitable to obtain performance bounds for the

underlying systems. Clearly, an important performance indicator is the throughput of a sys-
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tem, i.e., the maximal rate at which a system produces an output. Unsurprisingly, lots of

research focuses on throughput analysis of SDF Graphs. In [28, 62], an algorithm is intro-

duced to explore the state space of an SDF Graph. The basic idea is to obtain the throughput

based on the simulation of the SDF Graph. In [23], an approach is presented based on the

(max,+)-algebra. Buffer size minimization, with respect to throughput constraints, for SDF

Graphs have been studied in [27]. Clearly, minimizing buffer size is important for embedded

systems due to the high costs for memory.

Time-variant Timed Event Graphs

Time-varying DESs have been studied in [5, 6, 10, 42]. The models considered in these

works are TEGs in which holding times of places change periodically based on event se-

quences. Therefore, these systems can describe event-variant time behaviors. For these

TEGs, places must respect a first-in-first-out (FIFO) behavior, in other words, tokens must

not overtake each other. In [42], optimal feedforward control problems for these systems are

studied. In [17], it is shown that the input-output behavior of these systems can be repre-

sented by WTEGs. Another class of time-variant DESs has been discussed in [20, 19]. There,

TEGs are extended by allowing a weaker form of synchronization, called partial synchro-

nization (PS). PS of a transition means that the transition can only fire when it is enabled

by an external signal S : Z Ñ t0, 1u. S enables the firing of the transition at times t P Z
where Sptq “ 1. Such time-variant behaviors occurring in TEG under PS can be modeled

as a (max,+)-linear systems under additional constraints [21]. In the case where such signals

are predefined and ultimately periodic, it is possible to obtain transfer functions for TEGs

under PS [21, 19]. Moreover, some control problems for TEGs under PS have been tack-

led in [21, 22]. A similar extension was introduced in [60], where TEGs with hard and soft

synchronization are studied.

Contribution

The main contribution of this work relates to modeling and control of extended TEGs,

namely Weighted Timed Event Graphs (WTEGs) and Periodic Time-variant Event Graphs

(PTEGs), in dioids. First based on dioid theory, a decomposition model for consistentWTEGs

is introduced, in which the event-variant and the event-invariant parts are separated. It is

shown that the event-variant part is invertible, thus many tools developed for analysis and

control of ordinary TEGs can be directly applied to the more general class of consistent

WTEGs. In particular, based on this model decomposition, optimal feedforward control and

model matching control for TEGs are generalized to WTEGs. Second, to describe the time-

variant behavior of some DESs, Periodic Time-variant Event Graphs (PTEGs) are introduced.

PTEGs are an alternative model to TEGs under PS to describe periodic time-variant behav-

iors. In PTEGs, holding times of places depending on the firing times of their upstream

transitions. More precisely, the holding timeHptq is time-variant and immediately periodic,
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i.e. Hpt ̀ ωq “ Hptq. The current delay is then determined by the firing time t of the

corresponding upstream transition. In contrast to FIFO TEGs considered in [42], which are

event-variant, PTEGs have a time-variant behavior. However, in PTEGs places must respect

a FIFO behavior as well which implies a constraint on holding time values. A comparison

between TEGs under PS and PTEGs is provided. The input-output behavior of PTEGs can

be described by ultimately cyclic series in a new dioid denoted pT rrγss,‘,bq. Similarly, it is

shown how TEGs under periodic PS can be modeled in this dioid pT rrγss,‘,bq.

As for consistent WTEGs with a dioid model in pErrδss,‘,bq, a decomposition for series

in T rrγss is introduced, where the time-invariant part can be separated from the time-variant

part. The time-variant part is invertible, therefore many problems concerning performance

analysis and control synthesis for PTEGs (resp. TEGs under periodic PS) can be reduced

to the case of an ordinary TEG, and solved efficiently by applying the already established

tools for TEGs. Especially, optimal feedforward control and model reference control for

PTEGs (resp. TEGs under periodic PS) are studied. Based on the dioids pErrδss,‘,bq and

pT rrγss,‘,bq similarities between WTEGs and PTEGs (resp. TEGs under periodic PS) are

investigated. Finally, the results for WTEGs and PTEGs (resp. TEGs under periodic PS) can

be combined, so that a class of periodic time-variant and event-variant TEGs can be handled

in a new dioid structure. These TEGs can model synchronization, time delay, batch/split and

also some periodic time-variant behavior which, for instance, arises in traffic light control.

Outline

This thesis is structured in two parts, Chapter 2, Chapter 3, Chapter 4 and Chapter 5,

introducing the dioids pMax
in vγ, δw ,‘,bq, pErrδss,‘,bq, pT rrγss,‘,bq and pET ,‘,bq, re-

spectively. In Chapter 6 and Chapter 7, these dioids are then applied to the modeling and the

control of WTEGs, TEGs under PS and PTEGs.

Part 1 Algebraic Tools

Chapter 2 summarizes fundamentals of dioids and residuation theory. The chapter begins

with explaining the general properties of dioids and recalls the (max,+)- and (min,+)-algebra.

Then more sophisticated dioid structures such as dioids of formal power series are given.

Moreover, residuation theory is introduced to give an approximate inverse of somemappings

defined over complete dioids. Finally, the particular dioid pMax
in vγ, δw ,‘,bq is recalled,

which is useful to analyze TEGs and plays a key role in this thesis.

Chapter 3 introduces the dioid pErrδss,‘,bq. This dioid is based on the operators tγν, δτ,

µm, βbu. Moreover, in Section 3.3, it is shown that under some conditions all relevant opera-

tions p‘,b, z̋, {̋q on elements in Errδss can be reduced to operations on matrices with entries

inMax
in vγ, δw.
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Chapter 4 introduces the dioid pT rrγss,‘,bq. This dioid is comprised of the basic oper-

ators tγν, δτ, ∆ω|ωu. This dioid is used to model the time-variant behavior of PTEGs, and

TEGs under PS. As for the dioid pErrδss,‘,bq, it is shown that under some conditions all rel-

evant operations p‘,b, z̋, {̋q on elements in T rrγss can be reduced to operations on matrices

with entries in Max
in vγ, δw.

Chapter 5 combines the results obtained in Chapter 3 and Chapter 4. The dioid pET ,‘,bq

is introduced, which can be seen as the combination of the dioids pErrδss,‘,bq and

pT rrγss,‘,bq. This permits the description of event-variant and time-variant behaviors in

the same dioid structure. Therefore, it is applicable for themodeling and the control ofWTEG

under PS.

Part 2 Modeling and Control

Chapter 6 shows how the earliest behavior of TEGs, WTEGs, PTEGs, and TEGs under PS

can be modeled in a dioid structure. In particular, the input-output behavior of a WTEG can

be modeled by a matrix where the entries are ultimately cyclic series in Errδss. These transfer

functionmatrices are used to compute the output for a given input of a system. Subsequently,

the relation between the transfer function and the impulse response of a system is elaborated.

Similar to WTEGs, the input-output behavior of PTEGs and TEGs under PS are modeled by

ultimately cyclic series in T rrγss. Moreover, an interpretation of the impulse response is

given for these systems. In the last part of this chapter, the modeling of WTEGs under PS in

the dioid pET ,‘,bq is addressed.

Chapter 7 generalizes some control approaches already introduced for ordinary TEGs to

the more general classes of WTEGs, PTEGs, and TEGs under PS. The control problems are

stated in a dioid framework and are efficiently solved by applying residuation theory. In

particular, optimal control and model reference control are investigated.
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2
Mathematical Preliminaries

This chapter introduces the basic mathematical concepts needed to understand this thesis.

In particular, dioid and residuation theory are recalled. Dioids are suitable to obtain linear

models for particular DESs where dynamic behaviors are only governed by synchronization

and saturation phenomena. Furthermore, residuation theory has an application in the con-

troller design process and the performance evaluation of DESs modeled in a dioid setting.

Most of the following results are taken from the literature, especially from [1]. For a broader

overview on dioids and residuation theory, see [1, 4, 11, 12, 40].

2.1. Dioid Theory

Definition 1 (Monoid). A monoid is a set M endowed with a binary associative operation ̀

and an identity element 0 such that @a P M, a ̀ 0 “ 0 ̀ a “ a. A monoid is denoted by
pM,̀, 0q.

A monoid pM,̀, 0q is said to be commutative if the binary operation ̀ is commutative.

And a commutative monoid is said to be idempotent if̀ is idempotent, i.e., @a P M, àa “

a.

Definition 2 (Dioid). A dioid is a setD endowed with two binary operations, denoted ‘ (called
addition) and b (called multiplication), such that

— ‘ is associative, commutative and idempotent, i.e. @a P D, a ‘ a “ a, moreover ‘

admits a neutral element denoted ε.
— b is associative, distributive over ‘ and b admits a neutral element denoted e.
— ε is absorbing for b, i.e., @a P D, a b ε “ ε b a “ ε.

Moreover, ε is called the zero element and e is called the unit element of D. A dioid is denoted
by pD,‘,bq.

Clearly, let pD,‘,bq be a dioid, then pD,‘, εq is a commutative idempotent monoid and

pD,b, eq is a monoid. If multiplication b is commutative, then dioid pD,‘,bq is said to

be commutative. Note that, as in conventional algebra, the multiplication symbol b is often

omitted.

Example 1 ((max,+)-algebra pZmax,‘,bq). The (max,+)-algebra is the set Zmax :“ Z Y

t́8u endowed withmax as addition ‘ and ̀ as multiplication b, e.g., 5b 4‘ 7 “ maxp5̀

4, 7q “ 9. Moreover, the zero element is ε “ ́8 and the unit element is e “ 0, respectively.
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Example 2 ((min,+)-algebra pZmin,‘,bq). Conversely, the (min,+)-algebra is the setZmin :“
Z Y t8u endowed with min as addition ‘ and ̀ as multiplication b, e.g., 5 b 4 ‘ 7 “

minp5 ̀ 4, 7q “ 7. The zero element is ε “ 8 and the unit element is e “ 0, respectively.

Example 3 (Boolean Dioid pB,‘,bq). The set B “ tε, eu, consisting of the zero and the unit
element, with the two binary operations addition ‘ and multiplication b constitute the Boolean
dioid. Since the zero element ε is absorbing for b and neutral for ‘, the operations ‘ and b

are defined by ε b e “ e b ε “ ε and ε ‘ e “ e ‘ ε “ e.

Definition 3 (D-Semimodule [56]). Let pD,‘,bq be a dioid with unit element e and zero
element ε. A D-semimodule is a commutative monoid pM,̀, 0q with an external operation
̈ : D̂M Ñ M, pa, xq ÞÑ äx, called scalar-multiplication, such that the following conditions
hold @a, b P D and @x, y P M

pa b bq ̈ x “ a ̈ pb ̈ xq,

a ̈ px ̀ yq “ pa ̈ xq ̀ pa ̈ yq,

pa ‘ bq ̈ x “ pa ̈ xq ̀ pa ̈ yq,

ε ̈ x “ a ̈ 0 “ 0,

e ̈ x “ x.

Subdioids

Definition 4 (Subdioid). Let pD,‘,bq be a dioid with unit element e and zero element ε,
then a subset S of D is a subdioid of pD,‘,bq if e, ε P S and S is closed for b and ‘, that is
@a, b P S, a ‘ b P S and a b b P S .

Example 4. Consider the dioid pZmax,‘,bq, the dioid pNmax,‘,bq withNmax “ N0Ý8,
is a subdioid of pZmax,‘,bq.

2.1.1. Order Relation in Dioids

An order relation ĺ on a set S is a binary relation which is reflexive, i.e., @a P S, a ĺ a,

transitive, i.e., @a, b, c P S, a ĺ b and b ĺ c ñ a ĺ c and anti-symmetric, i.e., @a, b P

S, a ĺ b and b ĺ a ñ a “ b. A set S is called totally ordered if for every pair of elements

a, b P S we can either write a ľ b or a ĺ b. Moreover, if a pair of elements a, b P S exists,

for which a ń b, a ł b, the set S is called partially ordered.
The idempotent characteristic of the addition induces a canonical order relation on dioids.

Let pD,‘,bq be a dioid, then @a, b P D, the relation ĺ defined by

@a, b P D, a ‘ b “ b ô a ĺ b, (2.1)

is an order relation. In general in a dioid pD,‘,bq with a, b P D, the sum a ‘ b is not

equal to either a or b. Thus, general dioids are only partially ordered, i.e., a ń b, a ł b.
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However, the sum a‘b P D gives a natural upper bound for the set ta, bu. Therefore, with

ε as bottom element, i.e. @a P D, a ľ ε a dioid is an ordered set.

Complete Dioids

Definition 5 (Complete Dioid). A dioid pD,‘,bq is said to be complete if it is closed for
infinite sums and if b distributes over infinite sums, i.e., for all subsets S of D and for all
a P D,

a b

̃

à

bPS
b

̧

“
à

bPS
pa b bq,

̃

à

bPS
b

̧

b a “
à

bPS
pb b aq.

Remark 1. Similarly, an idempotent commutative monoid pM,‘, εq is said to be complete if
it is closed for infinite sums.

A complete dioid pD,‘,bq admits a top element J “
À

aPD a P D which is given by the

sum over all elements in the dioid. Furthermore, in a complete dioid the infimum operator

is defined as, a, b P D,

a ^ b “
à

tx P D|x ‘ a ĺ a, x ‘ b ĺ bu.

The ^ operator is associative, commutative, idempotent and admits J as neutral element,

i.e., @a P D, a ^ J “ J. Then, for complete dioids the ^ operation defines a lower bound

for the set ta, bu. Thus for a complete dioid pD,‘,bq with a, b P D,

a ľ b ô a “ a ‘ b ô b “ a ^ b.

One can show that a complete dioid equipped with ^ and J is a complete lattice, for a more

exhaustive description see [1, 3].

Note that in general for a partially ordered dioid pD,‘,bq multiplication is not distribu-

tive over ^, but one can show that for a, b, c P D,

cpa ^ bq ĺ ca ^ cb and pa ^ bqc ĺ ac ^ bc. (2.2)

Furthermore, distributivity of ^ with respect to ‘ and conversely ‘ with respect to ^ is not

given either. However, for a, b, c P D, the following inequalities are satisfied,

pa ^ bq ‘ c ĺ pa ‘ cq ^ pb ‘ cq,

pa ‘ bq ^ c ľ pa ^ cq ‘ pb ^ cq.

Example 5. The (max,+)-algebra extended with the top element J “ 8 is a complete dioid.
Since the zero element ε is absorbing for multiplication one has, J b ε “ ε or differently
́8 b 8 “ ́8. This dioid is denoted by (Zmax,‘,b), with Zmax “ Z Y t́8,̀8u.
Conversely, the (min,+)-algebra with J “ ́8 is a complete dioid, denoted by (Zmin,‘,b),
with Zmin “ Z Y t́8,̀8u.

Example 6. The Boolean dioid pB,‘,bq is a complete dioid where the top element is equal to
the unit element, i.e., J “ e.
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Kleene Star

Definition 6. Let pD,‘,bq be a complete dioid, the Kleene star of an element a P D is defined
as,

å “

8
à

i“0

ai, where a0 “ e and aì1 “ a b ai .

Theorem 2.1 ([1]). In a complete dioid pD,‘,bq with a, b P D, x “ åb is the least solution
of the implicit equation x “ ax ‘ b.

The Kleene Star satisfies the following relations, for a complete dioid pD,‘,bqwitha, b P

D

påq̊ “ å, (2.3)

åå “ å, (2.4)

apbaq̊ “ pabq̊a, (2.5)

pa ‘ bq̊ “ påbq̊å “ b̊pab̊q̊, (2.6)

pab̊q̊ “ e ‘ apa ‘ bq̊. (2.7)

Furthermore, for a commutative complete dioid pD,‘,bq, with a, b P D, ab “ ba,

pa ‘ bq̊ “ åb̊. (2.8)

For the proofs of these relations see [1].

Rational Closure

Definition 7 (Rational closure). Let S be a subset of a complete dioid pD,‘,bq, such that
S contains the zero and unit elements ε and e. The rational closure of S , denoted by S̊, is
the least subdioid of pD,‘,bq containing all finite combinations of sums, products, and Kleene
stars over S . The subset S is rationally closed if S “ S̊.

2.1.2. Matrix Dioids

Addition ‘ and multiplication b can be extended to matrices with entries in a dioid

pD,‘,bq. For matrices A,B P Dm̂n, C P Dn̂q
and a scalar λ P D, matrix addition

and multiplication are defined by

pA ‘ Bqi,j :“ pAqi,j ‘ pBqi,j, (2.9)

pA b Cqi,j :“
n
à

k“1

̀

pAqi,k b pCqk,j
̆

, (2.10)

pλ b Aqi,j :“ λ b pAqi,j.

14
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The order relation in the matrix case coincides with the element-wise order, i.e., for A,B P

Dm̂n
, A ľ B iff @i, j pAqi,j ľ pBqi,j. The identity matrix, denoted by I, is a square matrix

with e on the diagonal and ε elsewhere. The zero matrix, denoted by ε, has only ε entries.

Proposition 1 ([1]). The set of squarematrices, denotedDn̂n, with entries in a dioid pD,‘,bq,
endowed with (2.9) as addition and (2.10) as multiplication is a dioid denoted by pDn̂n,‘,bq.
The unit and zero element is I and ε, respectively. Moreover, if pD,‘,bq is complete then
pDn̂n,‘,bq is complete.

Remark 2. Note that non-square matrices can be included by adding additional rows (resp.
columns) with ε.

Furthermore, if we assume that pD,‘,bq is a complete dioid the Kleene star can be ex-

tended to square matrices A P Dn̂n
. For this, A P Dn̂n

is partitioned into sub-matrices

as follows,

A “

«

B C

D E

ff

,

where B P Dn1̂n1
, C P Dn1̂n2

,D P Dn2̂n1
and E P Dn2̂n2

and n “ n1 ̀n2. ThenÅ

can be written as

Å “

«

B̊ ‘ B̊CpDB̊C ‘ Eq̊DB̊ B̊CpDB̊C ‘ Eq̊

pDB̊C ‘ Eq̊DB̊ pDB̊C ‘ Eq̊

ff

. (2.11)

Clearly, if we assumeA P D2̂2
, then B,C,D, and E are scalars in D and the Kleene star of

the matrixA is obtained by sum, product, and Kleene star operations between scalars. Thus

for a square matrix A P Dn̂n
with arbitrary dimension, the star Å

can be obtained in a

recursive way.

Additionally, for pD,‘,bq a complete dioid the infimum operation is extended tomatrices

as follows, for A,B P Dm̂n
,

pA ^ Bqi,j “ pAqi,j ^ pBqi,j. (2.12)

2.1.3. Quotient Dioids

Definition 8 (Congruence [1]). A congruence relation in a dioid pD,‘,bq is an equivalence
relationR which satisfies @a, b, c P D,

aRb ñ

$

’

’

’

&

’

’

’

%

pa ‘ cqRpb ‘ cq,

pa b cqRpb b cq,

pc b aqRpc b bq.

15
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For a dioid pD,‘,bq with an equivalence relation R the equivalence class of a P D is

defined by rasR :“ tb P D|aRbu.

Proposition 2 ([1]). The quotient of a dioid pD,‘,bq by a congruence relation R is again a
dioid, denoted by pDR,‘,bq, with addition and multiplication given by,

rasR ‘ rbsR “ ra ‘ bsR and rasR b rbsR “ ra b bsR.

The zero element ε and unit element e in DR correspond to the equivalence classes rεsR and
resR of D.

Remark 3. Let pD,‘,bq be a complete (resp. commutative) dioid, then pDR,‘,bq is a com-
plete (resp. commutative) dioid.

2.1.4. Dioid of Formal Power Series

Definition 9 (Formal Power Series [1](Chap. 4.7)). A formal power series in p commutative
variables with coefficients in a dioid pD,‘,bq is a mapping from Zp into D, i.e., s : Zp Ñ D.
The variables are denoted by z1, ̈ ̈ ̈ , zp and @k “ pk1, . . . , kpq P Zp, spkq represents the
coefficient of zk11 . . . z

kp
p . An equivalent compact representation of s is

s “
à

kPZp

spkqzk11 . . . z
kp
p .

Definition 10 (Support, Degree, and Valuation). Support (supp), degree (deg) and valuation
(val) of a formal power series s are defined as

— supppsq “ tk P Zp|spkq ‰ εu,
— degpsq is the least upper bound of supppsq,
— valpsq is the greatest lower bound of supppsq.

A polynomial (resp. monomial) is a formal power series with finite support (resp. the support is
reduced to only one element).

The set of formal power serieswith coefficients in a dioid pD,‘,bq and variables z1, ̈ ̈ ̈ , zp
is denoted byD vz1, ̈ ̈ ̈ , zpw. On this set addition ‘ is defined as, for s1, s2 P D vz1, ̈ ̈ ̈ , zpw,

@k P Zp, ps1 ‘ s2qpkq “ s1pkq ‘ s2pkq. (2.13)

Additionally, multiplication b is defined by the Cauchy product, thus

@k P Zp, ps1 b s2qpkq “
à

ìj“k

s1piq b s2pjq. (2.14)

Proposition 3 ([1]). Let pD,‘,bq be a complete dioid, then the set D vz1, ̈ ̈ ̈ , zpw, endowed
with addition and multiplication defined by (2.13) and (2.14) is a complete dioid.
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In [1] it is shown that in general Prop. 3 holds only for complete dioids since the defi-

nition of the product (2.14) includes infinite sums. In the dioid pD vz1, ̈ ̈ ̈ , zpw ,‘,bq the

zero element εpkq is defined by, @k P Zp, εpkq “ ε. Likewise, the unit element epkq in

D vz1, ̈ ̈ ̈ , zpw is defined as

epkq “

$

&

%

e for k “ 0 (the zero vector),

ε otherwise.

The top element Jpkq in D vz1, ̈ ̈ ̈ , zpw is defined by Jpkq “ J, @k P Zp
.

Since pD vz1, ̈ ̈ ̈ , zpw ,‘,bq is a complete dioid the greatest lower bound of two series

s1, s2 P D vz1, ̈ ̈ ̈ , zpw is given by

@k P Zp, ps1 ^ s2qpkq “ s1pkq ^ s2pkq.

Moreover, if the dioid pD,‘,bq is commutative and the variables z1, ̈ ̈ ̈ , zp also commute,

then the dioid pD vz1, ̈ ̈ ̈ , zpw ,‘,bq is commutative as well.

Proposition 4 ([19]). Let pS,‘,bq be a complete subdioid of a complete dioid pD,‘,bq, then
pS vz1, ̈ ̈ ̈ , zpw ,‘,bq is a complete subdioid of pD vz1, ̈ ̈ ̈ , zpw ,‘,bq.

2.1.5. Mappings over Dioids

Definition 11. On a dioid pD,‘,bq the identity mapping, denoted by IdD , is a mapping from
D into itself defined as,

@a P D, IdDpaq “ a.

Definition 12. Let f : D Ñ C be a mapping from a dioid pD,‘,bq into a dioid pC,‘,bq,
then f is a ‘-morphism if

@a, b P D, fpa ‘ bq “ fpaq ‘ fpbq and fpεq “ ε.

Definition 13. Let f : D Ñ C be a mapping from a dioid pD,‘,bq into a dioid pC,‘,bq,
then f is a b-morphism if

@a, b P D, fpa b bq “ fpaq b fpbq and fpeq “ e.

Amapping f is said to be a homomorphism if it is both a ‘-morphism and a b-morphism.

A homomorphism f : D Ñ D is called an endomorphism. Furthermore, if f is a homo-

morphism and the inverse of f is defined and itself a homomorphism then f is called an

isomorphism.

Definition 14 (Isotony). A mapping f from a complete dioid pD,‘,bq into a complete dioid
pC,‘,bq is called isotone (or order preserving) if

@a, b P D, a ľ b ñ fpaq ľ fpbq.
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Definition 15 (Antitony). Amapping f from a complete dioid pD,‘,bq into a complete dioid
pC,‘,bq is called antitone (or order reversing) if

@a, b P D, a ľ b ñ fpaq ĺ fpbq.

Definition 16 (Lower semi-continuity). A mapping f from a complete dioid pD,‘,bq into a
complete dioid pC,‘,bq is called lower semi-continuous if

@S Ď D, f

̃

à

aPS
a

̧

“
à

aPS
fpaq.

Definition 17 (Upper semi-continuity). A mapping f from a complete dioid pD,‘,bq into a
complete dioid pC,‘,bq is called upper semi-continuous if

@S Ď D, f

̃

ľ

aPS
a

̧

“
ľ

aPS
fpaq.

A mapping f which is both, upper semi-continuous and lower semi-continuous is called

continuous. A lower semi-continuous mapping f such that fpεq “ ε is a ‘-morphism. More-

over, f is a ‘-morphism implies that f is an isotone mapping. Note that in general the op-

posite is not true, however, an isotone mapping f : D Ñ C satisfies @a, b P D, fpa ‘ bq ľ

fpaq ‘ fpbq. In the particular case where f : D Ñ C is an isotone mapping and the dioid

pD,‘,bq is a totally ordered set, i.e., for a, b P D the sum a ‘ b is either equal to a or b, f

is a ‘-morphism.

In analogy with the definition of endomorphism for dioids one can define endomorphism

for a monoid pM,‘, εq and lower semi-continuity for complete monoids.

Definition 18. A mapping f : M Ñ M, from a monoid pM,‘, εq into itself, is called an
endomorphism if,

@a, b P M, fpa ‘ bq “ fpaq ‘ fpbq and fpεq “ ε.

Definition 19. A mapping f : M Ñ M, from a complete monoid pM,‘, εq into itself, is
called lower semi-continuous if,

@S Ď M, f

̃

à

aPS
a

̧

“
à

aPS
fpaq.

Proposition 5 ([52]). Let pM,‘, εq be a commutative monoid and S be the set of its endo-
morphisms. The set S endowed with addition and multiplication defined by

f1, f2 P S, @x P M : pf1 ‘ f2qpxq “ f1pxq ‘ f2pxq,

f1, f2 P S, @x P M : pf1 b f2qpxq “ f1
̀

f2pxq
̆

,

is a dioid. The zero and unit element are given by the mappings @x P M, εpxq “ ε and
@x P M, epxq “ x, respectively.

18



2.2. Residuation Theory

2.2. Residuation Theory

In general, the product b in a dioid is not invertible. However, since a compete dioid

is a complete lattice, then residuation theory, see e.g. [4, 11], is applicable to define an ap-

proximate mapping inverse for particular mappings defined between compete dioids. More

precisely this theory yields the greatest solution of the inequality fpaq ĺ b, with a, b are el-

ements in a complete dioid. By defining the product b in a complete dioid as a mapping, i.e.,
Ra : x ÞÑ a b x, residuation theory is in particular useful to obtain an approximate inverse

of the product. In other words, we can determine the greatest solution for x of the inequality

a b x ĺ b (note that a solution always exists, ε at least). In this section, we give the condi-

tions under which mappings between complete dioids are residuated and recall some useful

properties of residuation theory.

Definition 20 (Residuated Mapping). A mapping f : D Ñ C, with pD,‘,bq and pC,‘,bq

complete dioids, is said to be residuated if

1. f is isotone and,

2. for all y P C, the inequality fpxq ĺ y has a greatest solution in D.

Theorem 2.2 ([1, 11]). Let f : D Ñ C be a residuated mapping from a complete dioid
pD,‘,bq into a complete dioid pC,‘,bq then, there exists a unique mapping f7 from C into
D which satisfies,

f ̋ f7 ĺ IdC (IdC identity mapping in pC,‘,bq), (2.15)

f7 ̋ f ľ IdD (IdD identity mapping in pD,‘,bq). (2.16)

The mapping f7 : C Ñ D is called the residual of f.

Remark 4. From (2.15) and (2.16) it follows that @x P D and @y P C,

x ĺ f7
̀

fpxq
̆

, y ľ f
̀

f7pyq
̆

, (2.17)

fpxq “ f
́

f7
̀

fpxq
̆

̄

, f7pyq “ f7
́

f
̀

f7pyq
̆

̄

. (2.18)

Conversely, one can define dual residuation which yields the least solution of the inequal-

ity fpaq ľ b, where a, b are elements in a complete dioid.

Definition 21 (Dually Residuated Mapping). A mapping f : D Ñ C, with pD,‘,bq and
pC,‘,bq complete dioids, is said to be dually residuated if

1. f is isotone and,

2. for all y P C, the inequality fpxq ľ y has a least solution in D.

19
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Theorem 2.3 ([1]). Let f : D Ñ C be a dually residuated mapping from a complete dioid
pD,‘,bq into a complete dioid pC,‘,bq then, there exists a unique mapping f5 from C into
D which satisfies,

f ̋ f5 ľ IdC (IdC identity mapping in pC,‘,bq), (2.19)

f5 ̋ f ĺ IdD (IdD identity mapping in pD,‘,bq). (2.20)

The mapping f5 : C Ñ D is called the dual residual of f.

Remark 5. From (2.19) and (2.20) it follows that @x P D and @y P C,

x ľ f5
̀

fpxq
̆

, y ĺ f
̀

f5pyq
̆

, (2.21)

fpxq “ f
́

f5
̀

fpxq
̆

̄

, f5pyq “ f5
́

f
̀

f5pyq
̆

̄

. (2.22)

The following theorems give a link between the lower (rep. upper) semi-continuous prop-

erty and the residuated (rep. dually residuated) property of a mapping.

Theorem 2.4 ([1]). A mapping f : D Ñ C, with pD,‘,bq and pC,‘,bq complete dioids, is
residuated, iff fpεq “ ε and f is lower semi-continuous. Furthermore, the corresponding residual
f7 is upper semi-continuous.

Theorem 2.5 ([1]). A mapping f : D Ñ C, with pD,‘,bq and pC,‘,bq complete dioids, is
dually residuated iff fpJq “ J and f is upper semi-continuous. Furthermore, the corresponding
dual residual f5 is lower semi-continuous.

Clearly, Theorem 2.4 and Theorem 2.5 implies that the residual f7
of a mapping f is dually

residuated and thus pf7q5 “ f. Conversely, the dual residual g5
of a mapping g is residuated

and thus pg5q7 “ g.

Residuation of Multiplication

On a complete dioid the mappings Ra : x ÞÑ xa, (right multiplication by a) and La :
x ÞÑ ax (left multiplication by a) are lower semi-continuous and therefore residuated. The

residual mappings are denoted R
7
apbq “ b{̋a “

À

tx|xa ĺ bu (right division by a) and

L
7
apbq “ a z̋b “

À

tx|ax ĺ bu (left division by a). An alternative notation for the left and

right division by a are
b
a and

b
a , respectively.

The following two relations give some useful properties of left and right division in com-

bination with the Kleene star.

a “ å ô a “ a z̋a “ pa z̋aq̊ a “ å ô a “ a{̋a “ pa{̋aq̊
(2.23)
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Additionally, for pD,‘,bq a complete dioid left-division and right-division are extended to

matrices as follows, for A P Dm̂n,B P Dm̂q, C P Dn̂q
,

pA z̋Bqi,j “

m
ľ

k“1

pAqk,i z̋pBqk,j, pB{̋Cqi,j “

q
ľ

k“1

pBqi,k{̋pCqj,k. (2.24)

In Appendix A we provide a list with some basic relations of left and right division in com-

plete dioids. A more detailed representation can be found in [1].

In general, in a complete dioid pD,‘,bq, left and right division do not distribute over ‘,

however for a, b, x P D
x z̋pa ‘ bq ľ x z̋a ‘ x z̋b, pa ‘ bq{̋x ľ a{̋x ‘ b{̋x,

see [1]. Moreover, when we deal with dioids of power series the following proposition pro-

vides a useful result for division between power series.

Proposition 6 ([1], Remark 4.95). Let pD vzw ,‘,bq be a complete dioid of formal power series
in one variable z and exponents in Z, see Prop. 3. Let fpmqzm be a monomial and

À

i hpiqzi be
a series in D vzw, then

À

i hpiqzi

fpmqzm
“
à

i

hpiq

fpmq
zím,

À

i hpiqzi

fpmqzm
“
à

i

hpiq

fpmq
zím.

Residuation of the Canonical Injection

Definition 22. Let pS,‘,bq be a complete subdioid of a complete dioid pD,‘,bq. The canon-
ical injection, from pS,‘,bq into pD,‘,bq is a mapping defined by,

Inj : S Ñ D, @x P S, Injpxq “ x.

Clearly, the canonical injection is lower-semi continuous and therefore it is residuated.

Proposition 7. ([1]) The canonical injection Inj : S Ñ D, as defined in Definition 22, is
residuated. The corresponding residual Inj7 : D Ñ S is a projection and satisfies the following
conditions:

1. Inj7 ̋ Inj7 “ Inj7,
2. Inj7 ĺ IdD ,
3. x P S ô Inj7pxq “ x.

Conversely, if pS,‘,bq and pD,‘,bq have the same top element J the canonical injec-

tion Inj : S Ñ D is dually residuated. Moreover, for the dual residual Inj5 the following

conditions hold

1. Inj5 ̋ Inj5 “ Inj5,

2. Inj5 ľ IdD ,

3. x P S ô Inj5pxq “ x.
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2.3. Dioid of two Dimensional Power Series Max
in vγ, δw

The dioid pMax
in vγ, δw ,‘,bq is useful for modeling and control of someDESs, e.g. [1], and

plays a major role in this thesis. Here we briefly introduce the dioid pMax
in vγ, δw ,‘,bq and

we give some basic results. These results are mainly based on [1]. For a more comprehensive

representation, the reader is invited to consult [1, 12].

pMax
in vγ, δw ,‘,bq is a quotient dioid of formal power series in two variables γ and δ

and Boolean coefficients. We first introduce the dioid pB vγ, δw ,‘,bq and then develop

pMax
in vγ, δw ,‘,bq by introducing a congruence relation on pB vγ, δw ,‘,bq.

Definition 23 (Dioid pB vγ, δw ,‘,bq). We denote by pB vγ, δw ,‘,bq the dioid of formal
power series in the two commutative variables γ and δ with Boolean coefficients, i.e., B “ te, εu

and exponents in Z. An element s P B vγ, δw is represented as s “
À

ν,τPZ spν, τqγνδτ, with
spν, τq P te, εu. The zero element is ε “

À

ν,τPZ εγ
νδτ and the unit element e “ eγ0δ0.

Moreover, we write only the elements of a series s “
À

ν,τPZ spν, τqγνδτ, for which

spν, τq “ e, therefore a monomial m P B vγ, δw is represented as γν1δτ1 . Since, pB,‘,bq

is a complete dioid and due to Prop. 3 the dioid pB vγ, δw ,‘,bq is complete as well. More-

over, since the variable γ and δ commute and pB,‘,bq is a commutative dioid, the dioid

pB vγ, δw ,‘,bq is a commutative dioid.

Example 7. A series s P B vγ, δw has a natural graphical representation in the Z2-plane. For
instance, the series s “ γ1δ1 ‘ γ2δ3 ‘ γ3δ4 is shown in Figure 2.1.

γ

δ

1 2 3 4 5

1

2

3

4

5

Figure 2.1. – Graphical illustration of s “ γ1δ1 ‘ γ2δ3 ‘ γ3δ4 P B vγ, δw.

Definition 24 (Dioid pMax
in vγ, δw ,‘,bq). pMax

in vγ, δw ,‘,bq is the quotient dioid of
pB vγ, δw ,‘,bq induced by the equivalence relation, for a, b P B vγ, δw,

aRb ô γ̊
̀

δ́1
̆̊
a “ γ̊

̀

δ́1
̆̊
b.

The zero and unit element inMax
in vγ, δw are equal to the zero and unit element inB vγ, δw,

and thus ε “
À

ν,τPZ εγ
νδτ and e “ eγ0δ0, respectively. Due to Remark 3 the dioid

pMax
in vγ, δw ,‘,bq inherits the commutative and completeness properties from the dioid

pB vγ, δw ,‘,bq.
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Two series s1, s2 P Max
in vγ, δw belong to the same equivalence class if γ̊

̀

δ́1
̆̊
s1 “

γ̊
̀

δ́1
̆̊
s2. A canonical representative of an equivalence class is defined to the series of

the class with minimal support. Differently speaking the series in the equivalence class with

the minimal number of elements is the canonical representative of the equivalence class. For

instance consider the following two series s1, s2 P Max
in vγ, δw

s1 “ γ1δ1 ‘ γ2δ3,

s2 “ γ1δ1 ‘ γ2δ3 ‘ γ3δ1,

both series belong to the same equivalence class but s1 is the canonical representative of the

class since s1 has minimal support. This equivalence relation has a graphical interpretation

in the Z2
-plane, unlike to B vγ, δw where a monomial represents a point in the Z2

-plane, a

monomial in Max
in vγ, δw represents the south-est cone of a point in the Z2

-plane. Respec-

tively, a series in Max
in vγ, δw represents the union of the south-est cones of its elements. If

two series cover the same area in the Z2
-plane, then they belong to the same equivalence

class. For instance, the series s1 and s2, shown in Figure 2.2, cover the same area. Note that

s1

s2

γ

δ

1 2 3 4 5

1

2

3

4

5

Figure 2.2. – Graphical illustration of the equivalence class represented by s1 “ γ1δ1 ‘ γ2δ3 P Max
in vγ, δw.

The series s2 “ γ1δ1 ‘ γ2δ3 ‘ γ3δ1 belongs to the same equivalence class, since both series

s1, s2 cover the same area in the Z2
-plane.

γ2δ3 dominates γ3δ1, since

γ2δ3pγ1q̊pδ́1q̊ “γ2δ3 ‘ γ3δ3 ‘ γ4δ3 ‘ ̈ ̈ ̈

‘ γ2δ2 ‘ γ3δ2 ‘ γ4δ2 ‘ ̈ ̈ ̈

‘ γ2δ1 ‘ γ3δ1 ‘ γ4δ1 ‘ ̈ ̈ ̈

̈ ̈ ̈

Therefore, this equivalence relation leads to the following simplification rules for monomials

inMax
in vγ, δw,

δτ1 ‘ δτ2 “ δmaxpτ1,τ2q, (2.25)

γν1 ‘ γν2 “ γminpν1,ν2q. (2.26)
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The order relation on the dioid pMax
in vγ, δw ,‘,bq, induced by the ‘ operation, is partial.

This can be illustrated onmonomial. Let γν1δτ1 , γν2δτ2 P Max
in vγ, δw then γν1δτ1 ľ γν2δτ2

if and only if τ1 ě τ2 and ν1 ď ν2. For instance, consider the monomials γ1δ1, γ2δ3, γ3δ1 P

Max
in vγ, δw, γ1δ1 ľ γ3δ1, and γ2δ3 ľ γ3δ1 but γ1δ1 ń γ2δ3 and γ1δ1 ł γ2δ3. Moreover,

multiplicationb, addition‘, and the infimumoperation^ betweenmonomial inMax
in vγ, δw

satisfy the following relations

γν1δτ1 b γν2δτ2 “ γν1̀ν2δτ1̀τ2 , (2.27)

γνδτ1 ‘ γνδτ2 “ γνδmaxpτ1,τ2q, (2.28)

γν1δτ ‘ γν2δτ “ γminpν1,ν2qδτ, (2.29)

γν1δτ1 ^ γν2δτ2 “ γmaxpν1,ν2qδminpτ1,τ2q. (2.30)

Recall that a polynomial is a series with finite support, i.e., a polynomial in Max
in vγ, δw can

be written as a finite sum

ÀI
i“0 γ

νiδτi , with I P N.

Definition 25 (Ultimately Cyclic Series). A series s “
À

i γ
νiδτi P Max

in vγ, δw is called
ultimately cyclic if s can be written as s “ p ‘ qpγνδτq̊, where p and q are polynomials in
Max

in vγ, δw and ν, τ P N. The asymptotic slope of s is defined by σpsq “ τ{ν. The polynomial
p (resp. q) is called transient (resp. cyclic-pattern) and the monomial pγνδτq is called growing-
term.

Example 8. Consider the following ultimately cyclic series s “ pe‘ γ1δ1 ‘ γ2δ3q ‘ pγ4δ4 ‘

γ5δ6qpγ2δ3q̊ in Max
in vγ, δw. The asymptotic slope σpsq “ 3{2, the transient part is given by

pe ‘ γ1δ1 ‘ γ2δ3q and the cyclic-pattern is pγ4δ4 ‘ γ5δ6q, which is repeated by a shift of 2
units in the γ-domain and 3 units in the δ-domain.

cyclic pattern

transient

γ

δ

1 2 3 4 5 6 7 8 9 10

1

2

3
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8

9

10

Figure 2.3. – Ultimately cyclic series s “ pe ‘ γ1δ1 ‘ γ2δ3q ‘ pγ4δ4 ‘ γ5δ6qpγ2δ3q
̊
inMax

in vγ, δw.

In the following theorem, we give the basic results for calculations with ultimately cyclic

series inMax
in vγ, δw.
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2.3. Dioid of two Dimensional Power SeriesMax
in vγ, δw

Theorem 2.6 ([1]). Let s1 “ p1 ‘ q1pγν1δτ1q̊ and s2 “ p2 ‘ q2pγν2δτ2q̊ be two ulti-
mately cyclic series in Max

in vγ, δw, where p1, q1, p2, q2 are polynomials in Max
in vγ, δw and

ν1, ν2, τ1, τ2 P N. Furthermore, s1 ‰ ε, s2 ‰ ε and the asymptotic slope of s1 is defined by
σps1q “ τ1{ν1 (resp. σps2q “ τ2{ν2 ), then
— s1 ‘ s2 is an ultimately cyclic series such that σps1 ‘ s2q “ maxpσps1q, σps2qq.
— s1 b s2 is an ultimately cyclic series such that σps1 b s2q “ maxpσps1q, σps2qq.
— ps1q̊ is an ultimately cyclic series.
— s1 ^ s2 is an ultimately cyclic series such that σps1 ^ s2q “ minpσps1q, σps2qq.
— s2 z̋s1 (resp. s1{̋s2 ) is an ultimately cyclic series such that s2 z̋s1 “ s1{̋s2 “ ε if σps1q ă

σps2q and σps2 z̋s1q “ σps1{̋s2q “ σps1q otherwise.

Definition 26 (Causal Series in Max
in vγ, δw [1], [7]). A series s P Max

in vγ, δw is said to be
causal if s P ε or both valγpsq ě 0 and s ľ γvalγpsqδ0, where valγpsq refers to the valuation
in γ of series s. The set of causal series, denoted by Max̀

in vγ, δw, is a complete subdioid of
pMax

in vγ, δw ,‘,bq denoted by pMax̀
in vγ, δw ,‘,bq.

Remark 6 ([7]). The canonical injection Inj : Max̀
in vγ, δw Ñ Max

in vγ, δw is residuated and
its residual is called causal projection, which is denoted by Pr

̀ : Max
in vγ, δw Ñ Max̀

in vγ, δw.
Therefore, Pr̀psq is the greatest causal series less than or equal to s P Max

in vγ, δw.

Example 9. Consider the series s “ γ́3δ́4 ‘ γ́2δ1 ‘ γ3δ4 P Max
in vγ, δw, then the causal

projection Pr
̀psq “ γ0δ1 ‘ γ3δ4 P Max̀

in vγ, δw. In Figure 2.4a and Figure 2.4b the causal
projection of this series s is illustrated.

γ

δ

́3́2́1 1 2 3 4 5
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́1
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(a) s “ γ́3δ́4
‘ γ́2δ1 ‘ γ3δ4

γ

δ

́3́2́1 1 2 3 4 5

́3

́2

́1

1

2

3

4

5

(b) Pr
̀

psq “ γ0δ1 ‘ γ3δ4

Figure 2.4. – Illustration of the causal projection Pr
̀

pγ́3δ́4
‘ γ́2δ1 ‘ γ3δ4q.

Remark 7. In [7] a different definition of causality for series in Max
in vγ, δw was given. These

series are called transfer series.
A transfer series s P Max

in vγ, δw is called causal if s P ε or if s ľ γvalγpsq, i.e., the expo-
nents of δ of s are greater than or equal to zero. The set of causal transfer series, denoted by
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2. Mathematical Preliminaries

Max̄
in vγ, δw, is a complete subdioid of pMax

in vγ, δw ,‘,bq denoted by pMax̄
in vγ, δw ,‘,bq

[7].
This definition allows negative exponents for the variable γ and is motivated by expressing

negative tokens in TEGs. Subsequently, Pr̄
caus : Max

in vγ, δw Ñ Max̄
in vγ, δw is a projection

from Max
in vγ, δw into Max̄

in vγ, δw, with Pr
̄
causpsq is the greatest causal transfer series less

than or equal to s P Max
in vγ, δw.
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3
Dioids pE ,‘,bq and pErrδss,‘,bq

In the first part of this chapter, Section 3.1, the dioid pErrδss,‘,bq is recalled. It was intro-

duced in [16] and is useful to model Weighted Timed Event Graphs (WTEGs). In particular,

the transfer function of a single-input and single-output (SISO)WTEG corresponds to an ulti-

mately cyclic series s P Errδss. In Section 3.2 it is shown that the dioid pMax
in vγ, δw ,‘,bq in-

troduced in Section 2.3 is a subdioid of pErrδss,‘,bq. Moreover, particularmappings between

Errδss andMax
in vγ, δw are studied - which have an application in optimal control of WTEGs.

Some first results of this section have been published in [66]. In the third part of this chap-

ter, Section 3.3, it is shown that under some conditions all relevant operations p‘,b, z̋, {̋q

on Errδss can be reduced to operations between matrices with entries in Max
in vγ, δw, some

results of this section have previously appeared in [65].

3.1. Dioid pErrδss,‘,bq

The firings of a transition in a WTEG can be naturally described by a counter function

x : Z Ñ Zmin, with xptq is the accumulated number of firings up to a time t. Let us recall

that the order in Zmin is reverse to the natural order, i.e., let x1, x2 P Zmin, then x1 ľ x2 ô

x1 ď x2. Subsequently, counter functions are antitone mappings. In the following the dioid

pErrδss,‘,bq is defined as a set of operators on counter functions.

The set of antitone mappings from Z into Zmin is denoted by Σ. On this set addition is

defined to be the pointwise addition in the dioid (Zmin,‘,b), thus for x1, x2 P Σ,

@t P Z,
̀

x1 ‘ x2
̆

ptq :“ x1ptq ‘ x2ptq “ minpx1ptq, x2ptqq. (3.1)

Moreover, scalar multiplication is defined as, for λ P Zmin,

@t P Z,
̀

λ b x1
̆

ptq :“ λ ̀ x1ptq. (3.2)

The zero and top mappings on Σ, denoted by ε̃ resp. ̃J, are defined by

@t, ε̃ptq :“ ε (recall that in Zmin, ε “ 8 ),

@t, ̃Jptq :“ J (recall that in Zmin, J “ ́8 ).

Note that equipped with the operation ‘ and the scalar multiplication b the set Σ is a Zmin-

semimodule (see Definition 3), where pΣ,‘, ε̃q is an idempotent commutativemonoid. More-

over, by including the top mapping
̃J, pΣ,‘, ε̃q is a complete monoid.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

The order relation on Σ, naturally induced by ‘, is the order in the dioid pZmin,‘,bq,

i.e., @x1, x2 P Σ,

x1 ĺ x2 ô x1 ‘ x2 “ x2, (3.3)

ô x1ptq ‘ x2ptq “ x2ptq, @t P Z,
ô min

̀

x1ptq, x2ptq
̆

“ x2ptq, @t P Z,
ô x1ptq ě x2ptq, @t P Z.

The infimum (^ operator) on the set Σ is defined by

@t P Z, px1 ^ x2qptq :“ x1ptq ^ x2ptq “ maxpx1ptq, x2ptqq.

Definition 27 (Operator). An operator is a lower semi-continuous mapping f : Σ Ñ Σ from
the set Σ into itself, such that fpε̃q “ ε̃. Including the property fpε̃q “ ε̃ implies that f is an
endomorphism. The set of these operators is denoted by O.

Proposition 8 ([16]). The set of operators O, equipped with multiplication and addition as
follows,

f1, f2 P O, @x P Σ
̀

f1 ‘ f2
̆

pxq :“ f1pxq ‘ f2pxq, (3.4)

f1, f2 P O, @x P Σ
̀

f1 b f2
̆

pxq :“ f1
̀

f2pxq
̆

, (3.5)

is a complete dioid.

Proof. This proof is based on a slightly different version given in [1][Chap. 4, Lemma 4.46]

and [19][Chap. 2, Proposition 5]. There, the set of lower semi-continuous mappings from a

complete dioid into itself is studied.

First, due to Prop. 5 the set of endomorphisms S over the monoid pΣ,‘, ε̃q is a dioid with

the zero mapping and unit mapping given by @x P Σ,

ε̂pxq :“ ε̃, êpxq :“ x. (3.6)

Furthermore, the set of operators O (lower semi-continuous mapping over Σ), such that

@f P O, fpε̃q “ ε̃, is a subset of S which contains the zero and unit mapping. We have

to show that pO,‘,bq is a complete subdioid of pS,‘,bq. O is closed for addition and

multiplication, since the lower semi-continuous property is preserved for both operations,

i.e., for f1, f2 P O and X Ď Σ, for addition:

pf1 ‘ f2q
̀à

xPX
x
̆

“ f1
̀à

xPX
x
̆

‘ f2
̀à

xPX
x
̆

due to (3.4)

“
à

xPX
f1pxq ‘

à

xPX
f2pxq f1, f2 are lower semi-continuous

“
à

xPX
pf1 ‘ f2qpxq again due to (3.4).
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3.1. Dioid pErrδss,‘,bq

Multiplication:

pf1 b f2q
̀à

xPX
x
̆

“ f1
̀

f2
̀à

xPX
x
̆̆

due to (3.5)

“ f1
̀
à

xPX
f2
̀

x
̆̆

f2 is lower semi-continuous

“
à

xPX
f1
̀

f2pxq
̆

f1 is lower semi-continuous

“
à

xPX
pf1 b f2qpxq again due to (3.5).

For completeness it remains to show that O is closed for infinite sums and left (resp. right)

multiplication distributes over infinite sums. Clearly, the set Σ is closed for infinite sums,

therefore @X Ď Σ and F Ď O,

à

fPF

̀

fp
à

xPX
xq
̆

“
à

fPF

à

xPX
fpxq “

à

xPX

à

fPF
fpxq “

à

xPX
gpxq, with gpxq “

à

fPF
fpxq,

and thus the dioid (O,‘,b) is closed for infinite sums as well. Right multiplication dis-

tributes over addition due to the definition of ‘ and b, i.e., for F Ď O,@g P O, @x P Σ,
̀̀à

fPF
f
̆

b g
̆

pxq “
à

fPF
f
̀

gpxq
̆

“
à

fPF

̀

f b g
̆

pxq.

Distributivity of left multiplication is given, since we consider lower semi-continuous map-

pings, i.e., for F Ď O,@g P O, @x P Σ,
̀

g b
̀à

fPF
f
̆̆

pxq “ g
̀à

fPF
fpxq

̆

“
à

fPF

̀

g b f
̆

pxq.

To simplify notation we sometimes omit the multiplication symbol b, e.g., for f1, f2 P

O, x P Σ, f1pf2pxqq “ pf1 b f2qpxq we write f1f2pxq. Moreover, for f P O, x P Σ we

sometimes write fx instead of fpxq. Due to (2.1) the ‘ operation induces a partial order

relation on O, defined by

f1 ľ f2 ô f1 ‘ f2 “ f1,

ô
̀

f1x
̆

ptq ‘
̀

f2x
̆

ptq “
̀

f1x
̆

ptq, @x P Σ, @t P Z,

ô min

́

̀

f1x
̆

ptq,
̀

f2x
̆

ptq
̄

“
̀

f1x
̆

ptq @x P Σ, @t P Z. (3.7)

Subsequently, two operators f1, f2 P O are equal iff @x P Σ, @t P Z: pf1xqptq “ pf2xqptq .

Since pO,‘,bq is a complete dioid the top mapping is given by, @x P Σ,

Ĵpxq “

$

&

%

ε̃ for x “ ε̃,

̃J otherwise,

(3.8)
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

and the infimum is defined as, for f1, f2 P O,

f1 ^ f2 “
à

tf3 P O|f3 ‘ f1 ĺ f1, f3 ‘ f2 ĺ f2u.

Proposition 9. The following operators are both endomorphisms and lower semi-continuous
mappings, and thus operators in O.

m P N µm : @x P Σ, t P Z
̀

µmpxq
̆

ptq “ m ̂ xptq, (3.9)

b P N βb : @x P Σ, t P Z
̀

βbpxq
̆

ptq “

Yxptq

b

]

, (3.10)

ν P Z γν : @x P Σ, t P Z
̀

γνpxq
̆

ptq “ ν ̀ xptq. (3.11)

Note that tau denotes the greatest integer smaller than or equal to a.

Proof. The mapping µm is an endomorphism, first, recall that @t P Z, ε̃ptq “ 8 andm P N
is a finite positive integer, therefore, @t P Z, pµmpε̃qqptq “ m ̂ ε̃ptq “ m ̂ 8 “ 8, and

thus pµmpε̃qqptq “ ε̃ptq. Second @t P Z:
́

µm

̀

x1 ‘ x2
̆

̄

ptq “ m ̂
̀

x1 ‘ x2
̆

ptq, due to (3.9)

“ m ̂ min

̀

x1ptq, x2ptq
̆

, due to (3.1)

“ min

̀

m ̂ x1ptq,m ̂ x2ptq
̆

,

“ min

́

̀

µmpx1q
̆

ptq,
̀

µmpx2q
̆

ptq
̄

, due to (3.9)

“

́

µm

̀

x1
̆

̄

ptq ‘

́

µm

̀

x2
̆

̄

ptq, again due to (3.1).

Of course, this extends to all finite and infinite subsets X Ď Σ, i.e.,
́

µm

̀à

xPX
x
̆

̄

ptq “ m ̂
̀
à

xPX
x
̆

ptq “ m ̂ min

xPX

̀

xptq
̆

,

“ min

xPX

̀

m ̂ xptq
̆

“ min

xPX

́

̀

µmpxq
̆

ptq
̄

,

“

́

à

xPX
µmpxq

̄

ptq,

which shows that µm is lower semi-continuous. For the mapping

̀

βbpxq
̆

ptq, again b P N
is a finite positive integer, therefore @t P Z,

̀

βbpε̃q
̆

ptq “ tε̃ptq{bu “ t8{bu “ 8, thus
̀

βbpε̃q
̆

ptq “ ε̃ptq. Moreover, for all finite and infinite subsets X Ď Σ,

́

βb

̀à

xPX
x
̆

̄

ptq “

Y

̀
À

xPX x
̆

ptq

b

]

“

Y

minxPX
̀

xptq
̆

b

]

,

“ min

xPX

́Yxptq

b

]̄

“ min

xPX

́

̀

βbpxq
̆

ptq
̄

,

“

́

à

xPX
βbpxq

̄

ptq,
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3.1. Dioid pErrδss,‘,bq

which proves that βb is lower semi-continuous. For the proof of γν
, since ν P Z is an integer

then @t P Z,
̀

γνpε̃q
̆

ptq “ ν̀ ε̃ptq “ ν̀ 8 “ 8, thus

̀

γνpε̃q
̆

ptq “ ε̃ptq. To prove lower

semi-continuity of γν
we have for all finite and infinite subsets X Ď Σ,

́

γν
̀
à

xPX
x
̆

̄

ptq “ ν ̀

́

à

xPX
x
̄

ptq “ ν ̀ min

xPX

̀

xptq
̆

“ min

xPX

̀

ν ̀ xptq
̆

“

́

à

xPX
γνpxq

̄

ptq.

Proposition 10 ([16]). The operators γν, µm andβb introduced in Prop. 9 satisfy the following
relations,

γνγν 1

“ γν̀ν 1

, γν ‘ γν 1

“ γminpν,ν 1q, (3.12)

µmγ
n “ γn̂mµm, γnβb “ βbγ

n̂b. (3.13)

Proof. For the proof of (3.12), recall (3.5) and (3.11), then @x P Σ,@t P Z,

pγνγν 1

xqptq “
̀

γνpγν 1

xq
̆

ptq “ ν ̀ pγν 1

xqptq “ ν ̀ ν 1 ̀ xptq “
̀

γν̀ν 1

x
̆

ptq,

and since (3.4), (3.1) and (3.11), then @x P Σ,@t P Z,
̀

pγν ‘ γν 1

qx
̆

ptq “
̀

γνx ‘ γν 1

x
̆

ptq “ min

̀

pγνxqptq, pγν 1

xqptq
̆

,

“ min

̀

ν ̀ xptq, ν 1 ̀ xptq
̆

“ minpν, ν 1q ̀ xptq,

“
̀

γminpν,ν 1qx
̆

ptq.

For the proof of (3.13), since (3.9) and (3.11), then @x P Σ,@t P Z,
̀

pµmγ
nqx

̆

ptq “ m ̂
̀

n ̀ xptq
̆

“ mn ̀ m ̂ xptq “
̀

pγn̂mµmqx
̆

ptq,

and, since (3.10) and (3.11), then @x P Σ,@t P Z,

̀

pγnβbqx
̆

ptq “ n ̀

Yxptq

b

]

“

Yxptq ̀ nb

b

]

“
̀

pβbγ
n̂bqx

̆

ptq.

3.1.1. Dioid of Event Operators

Definition 28 (Dioid of Event Operators, [16]). The dioid of event operators, denoted by
pE ,‘,bq, is defined by sums and compositions over the set tê, ε̂, µm, βb, γ

ν, Ĵuwithm,b P N,
ν P Z, equipped with addition and multiplication defined in (3.4) and (3.5), respectively.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

An elementw P E is called E-operator (E for event) in the sequel. The dioid pE ,‘,bq is a

complete subdioid of pO,‘,bq [16]. Note that the dioid pE ,‘,bq is not commutative, i.e.,
in general for w1, w2 P E , w1w2 ‰ w2w1. For instance, consider the operators µ2 and γ1

,

according to (3.9) and (3.11), pµ2γ
1xqptq “ 2 ̂ p1 ̀ xptqq and pγ1µ2xqptq “ 1 ̀ 2 ̂ xptq,

these two expressions are clearly not equal for arbitrary x P Σ.

Again, the ‘ operation induces a partial order relation on E , defined by

w1 ľ w2 ô w1 ‘ w2 “ w1,

ô
̀

w1x
̆

ptq ‘
̀

w2x
̆

ptq “
̀

w1x
̆

ptq, @x P Σ, @t P Z,

ô min

́

̀

w1x
̆

ptq,
̀

w2x
̆

ptq
̄

“
̀

w1x
̆

ptq @x P Σ, @t P Z. (3.14)

Note that operators in E only manipulate values of the mapping x P Σ, therefore an E-

operator can be equally described by a function F : Zmin Ñ Zmin. The value xptq is called

counter-value. And the function associated with an operator w P E is called C/C (counter-

value to counter-value) function, see the following definition.

Definition 29 ((C/C)-Function [16]). The function Fw : Zmin Ñ Zmin, ki ÞÑ ko maps
counter-value to counter-value and is defined by an E-operator w P E such that

@ki P Zmin, Fwpkiq :“
̀

wpxq
̆

ptq, for xptq “ ki and x P Σ.

In other words xptq is replaced by ki in the expression pwpxqqptq.

There is an isomorphism between the set of E-operators and the set of (C/C)-functions.

Thus, the order relation over the dioid pE ,‘,bq, see (3.14), corresponds to the order induced

by the min operation on (C/C)-functions, @w1, w2 P E ,

w1 ľ w2 ô w1 ‘ w2 “ w1,

ô Fw1
pkq ľ Fw2

pkq, @k P Zmin,

ô min

́

Fw1
pkq,Fw2

pkq

̄

“ Fw1
pkq, @k P Zmin,

ô Fw1
pkq ď Fw2

pkq, @k P Zmin. (3.15)

Note that the order in Zmin is the reverse of the natural order. The (C/C)-functions provide

a graphical representation of E-operators in Z2
min, which is useful to compare E-operators.

In this graphical representation the horizontal axis is labeled by I-count and the vertical

axis is labeled by O-count, which stand for input counter-value and output counter-value,

respectively.

Example 10. Let us consider the following operator γ3µ2β3γ
1‘γ2µ2β2γ

1 with a correspond-
ing (C/C)-function

Fγ3µ2β3γ1‘γ2µ2β2γ1pkq “ min

́

3 ̀ 2
Yk ̀ 1

3

]

, 2 ̀ 2
Yk ̀ 1

2

]̄

.
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3.1. Dioid pErrδss,‘,bq

This function is shown in Figure 3.1b and is the minimum of the functions Fγ3µ2β3γ1 and
Fγ2µ2β2γ1 , see Figure 3.1a. In Figure 3.1b the operators γ7µ2β2 and γ3µ2β3γ

1 ‘ γ2µ2β2γ
1

are compared. The gray area in Figure 3.1b corresponds to the domain of (C/C)-functions less
than or equal to Fγ3µ2β3γ1‘γ2µ2β2γ1 or equivalently to operators w P E less than or equal to
γ3µ2β3γ

1 ‘ γ2µ2β2γ
1.

Fγ3µ2β3γ1

Fγ2µ2β2γ1

I-count

O-count

-4 -2 2 4 6 8
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2

4

6

8

10

12

(a) The (C/C)-functions Fγ3µ2β3γ1 and

Fγ2µ2β2γ1 .

Fγ2µ2β2γ1‘γ3µ2β3γ1

Fγ7µ2β2

I-count

O-count

-4 -2 2 4 6 8

-2

2
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8
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12

(b) The (C/C)-functions Fγ7µ2β2
and

Fγ3µ2β3γ1‘γ2µ2β2γ1 .

Figure 3.1. – In (a) minpFγ3µ2β3γ1 ,Fγ2µ2β2γ1q is equal to the function Fγ3µ2β3γ1‘γ2µ2β2γ1

given in (b). In (b) the (C/C)-function Fγ7µ2β2
lies in the gray area shaped by the

Fγ3µ2β3γ1‘γ2µ2β2γ1 function, thus Fγ7µ2β2
ą Fγ3µ2β3γ1‘γ2µ2β2γ1 , in (min,+)

Fγ7µ2β2
ă Fγ3µ2β3γ1‘γ2µ2β2γ1 and thus γ7µ2β2 ă γ3µ2β3γ

1 ‘ γ2µ2β2γ
1
.

Periodic E-operators

Definition 30. An E-operator w P E is said to be pm,bq-periodic if Dm,b P N such that,
@x P Σ, @t P Z, pwpb b xqqptq “ m b pwpxqqptq. The set of pm,bq-periodic E-operators is
denoted by Em|b.

Definition 31. A (C/C)-function F is said to be quasi pm,bq-periodic if Dm,b P N such that
Fpk b bq “ m b Fpkq, @k P Zmin, (Fpk ̀ bq “ m ̀ Fpkq, @k P Zmin).

Recall that the b operation in the dioid pZmin,‘,bq corresponds to the standard ̀ op-

eration. In the sequel, both representations are used.

Remark 8. Since the periodic property does only depend on the value xptq we can neglect the
time t for examining the periodic property of an E-operator. Therefore, an E-operator w P E is
pm,bq-periodic if and only if the corresponding (C/C)-function Fw is quasi pm,bq-periodic.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

Definition 32. The gain of an pm,bq-periodic operatorw P Em|b, denoted by Γpwq, is defined
by the ratio Γpwq “ m{b.

Example 11. The γν operator, with ν P Z is p1, 1q-periodic, since @k P Zmin, Fγνpkq “ k̀ν

and therefore, Fγνpk ̀ 1q “ pk ̀ 1q ̀ ν “ 1 ̀ Fγνpkq. The γ2β3γ
1µ2 operator is p2, 3q-

periodic, for which the corresponding (C/C)-function is illustrated in Figure 3.2. In contrast, the
γ3µ2β3γ

1 ‘ γ2µ2β2γ
1 operator, shown in Figure 3.1b, is not periodic.
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Figure 3.2. – (2,3)-periodic (C/C)-function Fγ2β3γ1µ2
.

In the following E-operators of the form

ÀI
i“1 γ

νiµmβbγ
ν 1
i are studied. Recall that

γmµmβb “ µmβbγ
b
(3.13), thus γνµmβbγ

ν 1

can be written such that 0 ď ν 1 ă b. This

form is particularly useful to check the ordering of E-operators. Given two E-operators

γν1µmβbγ
ν 1
1 , γν2µmβbγ

ν 1
2 P Em|b, with 0 ď ν 1

1, ν
1
2 ă b, then

γν1µmβbγ
ν 1
1 ľ γν2µmβbγ

ν 1
2 ô

$

&

%

ν1 ď ν2 and ν 1
1 ď ν 1

2,

or ν1 ́ m ď ν2.
(3.16)

Proposition 11 ([16]). A periodic E-operatorw P Em|b has a canonical form, which is a finite
sum w “

ÀI
i“1 γ

νiµmβbγ
ν 1
i such that 0 ď ν 1

i ă b, νi P Z and I ď minpm,bq.

Proof. Let us define an operator w̃ “
Àb́1

i“0 w̃i, with w̃i “ γFwpiqµmβbγ
b́1́i

. Then, first

we show that any pm,bq-periodic operator w P Em|b can be expressed by w̃ P Em|b, i.e.,
w “ w̃. Recall the isomorphism between an E-operator and the (C/C)-function thus it is

equivalent to show that Fw “ Fw̃. The (C/C)-function to w̃i is Fw̃i
“

Y

k̀pb́1q́i
b

]

m ̀

Fwpiq and therefore the (C/C)-function Fw̃pkq can be written as

Fw̃ “ min

́Yk ̀ pb ́ 1q

b

]

m ̀ Fwp0q,
Yk ̀ pb ́ 2q

b

]

m̀Fwp1q, ̈ ̈ ̈

,
Yk

b

]

m ̀ Fwpb ́ 1q

̄

.
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3.1. Dioid pErrδss,‘,bq

Let us recall that Fw is an isotone function and satisfies

Fwp0q ď Fwp1q ď ̈ ̈ ̈ ď Fwpb ́ 1q ď m ̀ Fwp0q ď ̈ ̈ ̈ . (3.17)

Since Fw and Fw̃ are quasi pm,bq-periodic functions it is sufficient to show that Fwpkq “

Fw̃pkq for all k P t0, ̈ ̈ ̈ , b ́ 1u. We now evaluate Fw̃pkq for k “ 0,

Fw̃p0q “ min

́Y

pb ́ 1q

b

]

m ̀ Fwp0q,
Y

pb ́ 2q

b

]

m ̀ Fwp1q, ̈ ̈ ̈

,
Y 0

b

]

m ̀ Fwpb ́ 1q

̄

,

“ min

́

Fwp0q,Fwp1q, ̈ ̈ ̈ ,Fwpb ́ 1q

̄

“ Fwp0q, since Fw is isotone, see (3.17).

Similarly we can show that for k P t1, ̈ ̈ ̈ , b ́ 1u,

Fw̃p1q “ min

́Yb

b

]

m ̀ Fwp0q,
Yb ́ 1

b

]

m ̀ Fwp1q, ̈ ̈ ̈ ,
Y 1

b

]

m ̀ Fwpb ́ 1q

̄

,

“ min

́

m ̀ Fwp0q,Fwp1q, ̈ ̈ ̈ ,Fwpb ́ 1q

̄

“ Fwp1q, see (3.17),

̈ ̈ ̈

Fw̃pb ́ 1q “ min

́

m ̀ Fwp0q, ̈ ̈ ̈ ,m ̀ Fwpb ́ 2q,Fwpb ́ 1q

̄

“ Fwpb ́ 1q.

The canonical form can then be obtained by removing redundant terms according to (3.16).

Example 12. Consider the γ2β3γ
1µ2 operator with a (C/C)-function shown in Figure 3.2. This

operator is p2, 3q-periodic. Moreover, the (C/C)-function Fγ2β3γ1µ2
evaluated on t leads to,

Fγ2β3γ1µ2
p0q “ 2,

Fγ2β3γ1µ2
p1q “ 3,

Fγ2β3γ1µ2
p2q “ 3,

Fγ2β3γ1µ2
p3q “ Fγ2β3γ1µ2

p0q ̀ 2 “ 4,

Fγ2β3γ1µ2
p4q “ Fγ2β3γ1µ2

p1q ̀ 2 “ 5,

̈ ̈ ̈

Therefore, the operator γ2β3γ
1µ2 can be written as,

γ2µ2β3γ
2 ‘ γ3µ2β3γ

1 ‘ γ3µ2β3γ
0.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

Since, γ3µ2β3γ
1 ‘ γ3µ2β3γ

0 “ γ3µ2β3pγ1 ‘ γ0q “ γ3µ2β3γ
0, this expression is simplified

to

γ2µ2β3γ
2 ‘ γ3µ2β3γ

0,

which is the canonical representation ofγ2β3γ
1µ2. Figure 3.3 shows the (C/C)-functionsFγ3µ2β3

and Fγ2µ2β3γ2 of the operators γ3µ2β3 and γ2µ2β3γ
2, respectively. The intersection of the

area beneathFγ3µ2β3
andFγ2µ2β3γ2 is equal to the area beneath the (C/C)-functionFγ2β3γ1µ2

shown in Figure 3.2. Thus, minpFγ3µ2β3
,Fγ2µ2β3γ2q “ Fγ3µ2β3‘γ2µ2β3γ2 “ Fγ2β3γ1µ2

.

Fγ2µ2β3γ2

Fγ3µ2β3
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Figure 3.3. – (2,3)-periodic (C/C)-functions Fγ3µ2β3
and Fγ2µ2β3γ2 . One has

minpFγ3µ2β3
,Fγ2µ2β3γ2q “ Fγ3µ2β3‘γ2µ2β3γ2 . Or in other words, the inter-

section of the area beneath Fγ3µ2β3
and Fγ2µ2β3γ2 is equal to the area beneath

Fγ2β3γ1µ2
“ Fγ3µ2β3‘γ2µ2β3γ2 .

Remark 9. Clearly an pm,bq-periodic operator is also pnm,nbq-periodic. Thus, an pm,bq-
periodic operator w P Em|b can be represented in a pnm,nbq-periodic form given by

w “

nb́1
à

i“0

γFwpiqµnmβnbγ
nb́1́i.

Proposition 12 ([16]). The pm,bq-periodic µmβb operator can be expressed in the following
pnm,nbq-periodic form

µmβb “

ń1
à

i“0

γimµnmβnbγ
pń1́iqb. (3.18)

Proof. Recall that the (C/C)-function of the µmβb operator is given by Fµmβb
“ tk{bum.
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3.1. Dioid pErrδss,‘,bq

F
µ3β6γ4

F
γ1µ3β6γ2

F
γ2µ3β6

I-count

O-count
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1
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3

4
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6

Figure 3.4. – Fµ1β2
is equal to minpFµ3β6γ4 ,Fγ1µ3β6γ2 ,Fγ2µ3β6

q.

Due to Remark 9 the pnm,nbq-periodic representation of this operator is given by

µmβb “

nb́1
à

k“0

γtk{bumµnmβnbγ
nb́1́k,

“

ń1
à

i“0

b́1
à

j“0

γtpib̀jq{bumµnmβnbγ
nb́1́pib̀jq, with k “ ib ̀ j,

“

ń1
à

i“0

b́1
à

j“0

γimµnmβnbγ
nb́1́pib̀jq, since for j P t0, ̈ ̈ ̈ , b ́ 1u, tpib ̀ jq{bu “ i.

Due to the order relation for monomials in E , see (3.16), we have
b́1
à

j“0

γimµnmβnbγ
nb́1́pib̀jq “ γimµnmβnbγ

nb́1́pib̀b́1q “ γimµnmβnbγ
pń1́iqb

and thus

µmβb “

ń1
à

i“0

γimµnmβnbγ
pń1́iqb.

Example 13. For instance, with n “ 3, the operator µ1β2 can be written as µ3β6γ
4 ‘

γ1µ3β6γ
2 ‘ γ2µ3β6. Clearly µ1β2 P E1|2 and µ1β2 P E3|6 as well. Figure 3.4 illustrates

this extension of the µ1β2 operator.

Definition 33. The minimal representative of a periodic operatorw P Em|brrδss is defined such
that w is expressed in a canonical form and the period pm,bq is minimal.

In the algorithm 1 we show how to obtain this form. In this algorithm, we check for all

common divisors n of m and b if an pm,bq-periodic operator w P Em|brrδss can be repre-

sented in an pm{n, b{nq-periodic form.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

Input: Operator w P Em|brrδss

Output: Minimal form of w P Em|brrδss

Calculate the set S :“ tn P N|m{n P N and b{n P Nu of all common divisors of

pm,bq. Store the set S in a vector k in descending order.

j “ 0;

do
mt “ m{krjs ;

bt “ b{krjs ;
a “

Àbt́1
i“0 γFwpiqµmtβbtγ

bt́1́i
;

j “ j ̀ 1;
while w ‰ a;

return a;
Algorithm 1:Minimal representative of a periodic operator w P Em|brrδss.

Proposition 13. Given two periodic operators w1 P Em1|b1 , w2 P Em2|b2 such that w1 ‰

ε, w2 ‰ ε and m1
b1

ą
m2
b2

. Then, w1 and w2 are not ordered, i.e., w1 ń w2 and w1 ł w2.

Proof. Due to Remark 9 and by choosing
̄b “ lcmpb1, b2q we can represent w1 P Em̄1|̄b as

an pm̄1, ̄bq-periodic operator and w2 P Em̄2|̄b as an pm̄2, ̄bq-periodic operator with corre-

sponding quasi periodic (C/C)-functions

Fw1
pk ̀ ̄bq “ Fw1

pkq ̀ m̄1, Fw2
pk ̀ ̄bq “ Fw2

pkq ̀ m̄2.

Then by evaluating the functions for k “ j̄b, j P Z we obtain

Fw1
pj̄bq “ Fw1

p0q ̀ jm̄1, Fw2
pj̄bq “ Fw2

p0q ̀ jm̄2.

Since Fw1
p0q and Fw2

p0q are finite and m̄1 ą m̄2 there exists a positive integer j such

that Fw1
pj̄bq ą Fw2

pj̄bq and a negative integer j such that Fw1
pj̄bq ă Fw2

pj̄bq. Thus, the

operators w1 and w2 are not ordered.

Example 14. Consider the p2, 3q-periodic operator γ3µ2β3γ
1 and the p2, 2q-periodic opera-

tor γ2µ2β2γ
1. In the graphical representation of the corresponding (C/C)-function, Figure 3.5,

one can see that these two operators are not ordered, for instance, for all k ă 0 one has
Fγ2µ2β2γ1pkq ă Fγ3µ2β3γ1pkq and for all k ą 3 one has Fγ2µ2β2γ1pkq ą Fγ3µ2β3γ1pkq.

3.1.2. Dioid of Formal Power Series pErrδss,‘,bq

Besides E-operators introduced in the last section, we now define the time-shift operator

δτ as a mapping over Σ as follows

τ P Z δτ : @x P Σ, t P Z
̀

δτx
̆

ptq “ xpt ́ τq. (3.19)
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Fγ3µ2β3γ1

Fγ2µ2β2γ1
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Figure 3.5. – Quasi (2,3)-periodic (C/C)-functions Fγ3µ2β3γ1 and quasi (2,2)-periodic (C/C)-function

Fγ2µ2β3γ1 . For k ă 0: Fγ2µ2β2γ1pkq ă Fγ3µ2β3γ1pkq and for k ą 3:
Fγ2µ2β2γ1pkq ą Fγ3µ2β3γ1pkq.

Clearly, the δτ mapping is lower-semi continuous, since for all finite and infinite subsets

X Ď Σ
́

δτ
̀à

xPX
x
̆

̄

ptq “
̀à

xPX
x
̆

pt ́ τq,

“
à

xPX
xpt ́ τq, due to (3.1),

“
à

xPX

̀

δτx
̆

ptq, due to (3.19).

Furthermore, pδτpε̃qqptq “ ε̃pt́τq and since ε̃ptq “ 8, @t P Z and τ P Z then pδτpε̃qqptq “

ε̃ptq, thus δτ is an endomorphism. Consequently, the time-shift operator δτ P O. Moreover,

the time-shift operator commutes with all E-operators [16], i.e., @w P E , wδτ “ δτw.

̀

pδτwqx
̆

ptq “
̀

δτpwxq
̆

ptq, due to (3.5),

“ pwxqpt ́ τq, due to (3.19),

“ pwδτxqptq, again due to (3.19).

Definition 34 ([16]). We denote by pErrδss,‘,bq the quotient dioid in the set of formal power
series in one variable δ with exponents in Z and coefficients in the non-commutative complete
dioid pE ,‘,bq induced by the equivalence relation @s P Errδss,

s “ pδ́1q̊s “ spδ́1q̊. (3.20)

Hence we identify two series s1, s2 P Errδss with the same equivalence class if s1pδ́1q̊ “

s2pδ́1q̊
. It is helpful to think of spδ́1q̊

as the representative of the equivalence class of s.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

A series s P Errδss is expressed as s “
À

τPZ spτqδτ, with spτq P E . Recall (2.13) and (2.14)

for the definition of addition and multiplication in dioids of formal power series. Therefore,

given two series s1, s2 P Errδss,

s1 ‘ s2 “
à

τPZ

̀

s1pτq ‘ s2pτq
̆

δτ,

s1 b s2 “
à

τ

́

à

t̀t 1“τ

s1ptq b s2pt 1q

̄

δτ.

Due to the quotient structure (3.20) of the dioid pErrδss,‘,bq the variable δ in Errδss matches

with the operator δ P O defined in (3.19). Moreover, the zero and unit element in Errδss are

given by the zero and unit element of O, i.e., @x P Σ, εpxq “ ε and epxq “ x, see (3.6).

Monomial, Polynomial and ultimately cyclic Series in Em|brrδss

The subset of Errδss obtained by restricting the coefficients spτq to Em|b, i.e. the set of

pm,bq-periodic operators, is denoted by Em|brrδss. For instance, µ2β3γ
1δ2 P E2|3rrδss, since

the µ2β3γ
1
E-operator is p2, 3q-periodic. A monomial in Em|brrδss is defined as wδτ where

w P Em|b. A polynomial in Em|brrδss is a finite sum of monomials p “
ÀI

i“1wiδ
τi
such

that @i P t1, ̈ ̈ ̈ , Iu, wi P Em|b. For instance, µ2β3γ
1δ2 ‘ µ2β3γ

2δ3 P E2|3rrδss, but the

polynomial µ2β3γ
1δ2‘µ3β4γ

2δ3 R Em|brrδss. Moreover, the gain of an element s P Em|brrδss

is defined to the gain of its coefficients spτq, i.e., Γpsq “ Γpspτqq, for instance, Γpµ2β3γ
1δ2q “

Γpµ2β3γ
1q “ 2{3.

Graphical Representation

An element s P Errδss can be graphically represented in Zmin ̂ Zmin ̂ Z. For a series

s “
À

iPZwiδ
i P Errδss this graphical representation is constructed by depicting for every

i the corresponding (C/C)-function Fwi
of the coefficient wi in the (I-count/O-count)-plane

of i.

Example 15. For the graphical representation of p “ pµ3β3γ
2 ‘γ1µ3β3γ

1qδ2 ‘µ3β3γ
2δ3 P

E3|3rrδss, respectively its representative ppδ́1q̊ see in Figure 3.6, with the (I-count/O-count)-
plane for t ď 2 (resp. t “ 3) shown in Figure 3.7a (resp. Figure 3.7b). To improve readability,
the graphical representation for elements s P Errδss has been truncated to non-negative values
in Figure 3.6.

The ordering of two monomials w1δ
τ1 , w2δ

τ2 P Em|brrδss can be checked by

w1δ
τ1 ľ w2δ

τ2 ô τ1 ě τ2 and w1 ľ w2. (3.21)

Proposition 14 ([16]). Let p P Em|brrδss, then p has a canonical form p “
ÀJ

j“1w
1
jδ

t 1
j such

that the pm,bq-periodic E-operator w 1
j is in canonical form of Prop. 11, and coefficients and

exponents are strictly ordered, for j P t1, ̈ ̈ ̈ , J ́ 1u, t 1
j ă t 1

j̀1 and w
1
j ą w 1

j̀1.
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Figure 3.6. – 3D representation of polynomial pµ3β3γ
2 ‘ γ1µ3β3γ

1qδ2 ‘ µ3β3γ
2δ3.

Fµ3β3γ2‘γ1µ3β3γ1
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(a) (I/O-count)-plane for t ď 2
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(b) (I/O-count)-plane for t “ 3

Figure 3.7. – Slices of the coefficients in the (I/O-count)-plane of the polynomial pµ3β3γ
2 ‘

γ1µ3β3γ
1qδ2 ‘ µ3β3γ

2δ3

Proof. Without loss of generality, we can assume that p “
ÀI

i“1wiδ
ti
, with ti ă tì1 for

i “ 1, ̈ ̈ ̈ I ́ 1. As p P Errδss, we can identify s with their maximal representative spδ́1q̊
,

we can also identify p and

p 1 “

I
à

i“1

́ I
à

j“i

wj

loomoon

w 1
i

̄

δti

as ppδ́1q̊ “ p 1pδ́1q̊
. Therefore, w 1

i ľ w 1
ì1. If w 1

i “ w 1
ì1 we can write w 1

iδ
ni ‘

w 1
ì1δ

nì1 “ w 1
ipδ

ni ‘ δnì1q “ w 1
iδ

nì1
. For this reason, we can write p 1

as

ÀJ
j“1w

1
jδ

t 1
j

with w 1
j ą w 1

j̀1 and J ď I.

Definition 35 (Ultimately Cyclic Series). A series s P Em|brrδss is said to be ultimately cyclic
if it can be written as s “ p‘qpγνδτq̊, where ν, τ P N0 and p, q are polynomials in Em|brrδss,
i.e., p and q have the same period. The expression pγνδτq̊ is called growing term.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

Proposition 15 ([16]). An ultimately cyclic series s P Em|brrδss has a left- and right-cyclic
form given by:

s “ p ‘ pγνlδτlq̊ql, (left-cyclic form)

s “ p ‘ qrpγ
νrδτrq̊, (right-cyclic form)

wherep, ql, qr P Em|brrδss are polynomials and τl, νl, τr, νr P N0. The left- and right-asymptotic
slopes are respectively defined by σlpsq “ τl{νl and σrpsq “ τr{νr. The asymptotic slopes of
an ultimately cyclic series s P Em|brrδss satisfy the following property

m{b “ σrpsq{σlpsq.

Proof. Consider an ultimately cyclic series s “ p ‘ qrpγ
νrδτrq̊ P Em|brrδss in a right-

cyclic form. Since, the dioid pErrδss,‘,bq is not commutative in general the growing term

pγνrδτrq̊
does not commute with the qr polynomial, i.e., qrpγ

νrδτrq̊ ‰ pγνrδτrq̊qr. How-

ever, due to (3.13), for specific growing terms given by pγnbδτq̊
with n P N0 we have

qrpγ
nbδτq̊ “ pγnmδτq̊qr. For an arbitrary series s “ p ‘ qrpγ

νrδτrq̊ P Em|brrδss in a

right-cyclic form we can rewrite qr and pγνrδτrq̊
such that the conversion is possible. With

nνr “ lcmpb, νrq the growing term can be expressed as

pγνrδτrq̊ “ pe ‘ γνrδτr ‘ γ2νrδ2τr ‘ ̈ ̈ ̈ ‘ γpń1qνrδpń1qτrqpγnνrδnτrq̊

“ q̃pγnνrδnτrq̊.

Since nνr is a multiple of b, we have

qrq̃pγnνrδnτrq̊ “ pγpnνr{bqmδnτrq̊qrq̃.

Then by choosing ql “ qrq̃, νl “ pnνr{bqm and nτr “ τl the series s can be represented

in a left-cyclic form

s “ p ‘ pγνlδτlq̊ql “ p ‘ pγpnνr{bqmδτlq̊qrq̃.

Furthermore, σrpsq “ τr{νr and σlpsq “ pnτrq{ppnνr{bqmq and thus

σrpsq

σlpsq
“

τr
νr

nτr
pnνr{bqm

“
m

b
.

The conversion of an ultimately cyclic series from a left-cyclic form into a right-cyclic one

can be shown analogously.

Example 16. Consider the following series s “ γ1µ3β2γ
1δ2‘pγ3µ3β2γ

1‘γ5µ3β2qδ3pγ1δ1q̊

in a right-cyclic form. By extending the “growing-term” pγ1δ1q̊ “ pe‘γ1δ1qpγ2δ2q̊ the series
can be expressed in a left-cyclic form as follows

s “ γ1µ3β2γ
1δ2 ‘ pγ3δ2q̊

̀

pγ3µ3β2γ
1 ‘ γ5µ3β2qδ3 ‘ pγ6µ3β2 ‘ γ5µ3β2γ

1qδ4
̆

.
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3.1. Dioid pErrδss,‘,bq

The left- and right asymptotic slopes are σlpsq “ 2{3 and σrpsq “ 1{1, respectively. This series
has a graphical representation given in Figure 3.8, with the left- asymptotic slope indicated by
the red stairs in the (O-count/t-shift)-plane (I-count value ́1) and the right asymptotic slope
indicated by the blue stairs in the (I-count/t-shift)-plane (O-count value 15).
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Figure 3.8. – Graphical representation of series s “ γ1µ3β2γ
1δ2 ‘ pγ3µ3β2γ

1 ‘

γ5µ3β2qδ3pγ1δ1q̊
.

Clearly, a polynomial p “
ÀI

i“1wiδ
τi

can be considered as a specific ultimately cyclic

series such that s “ p
ÀI

i“1wiδ
τiqpγ0δ0q̊

. Let us note that the set of pb, bq-periodic opera-

tors, i.e. the set Eb|brrδss, endowed with ‘ and b is a complete subdioid of pErrδss,‘,bq, but

in general the set Em|brrδss endowed with the ‘ and b is not a dioid since it is not closed for

the b-operation. For instance, consider the operator µ1β2γ
1δ2 P E1|2rrδss the product

µ1β2γ
1δ2 b µ1β2γ

1δ2 “ µ1β2γ
1δ2 b pµ2β4γ

3 ‘ γ1µ2β4γ
1qδ2

since µ1β2 “ µ2β4γ
2 ‘ γ1µ2β4 see Prop. 12

“ µ1β2γ
1µ2β4γ

3δ4 ‘ µ1β2γ
2µ2β4γ

1δ4

“ µ1β4γ
3δ4 ‘ µ1β4γ

5δ4

“ µ1β4γ
3δ4 due to (3.21)

this operator is (1,4)-periodic and therefore in E1|4rrδss and not in E1|2rrδss. Clearly since

an element s P Em|brrδss is also an element in Errδss, addition, and multiplication between
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

elements in Em|brrδss are defined, however, the result is not necessarily in Em|brrδss. In the

following proposition, we summarize the conditions under which sum, product, and infimum

of ultimately cyclic series in Em|brrδss are again ultimately cyclic series in Em|brrδss. The proofs

for these propositions are given later in Section 3.3.

Proposition 16 ([16]). Let s1 P Em1|b1rrδss, s2 P Em2|b2rrδss be two ultimately cyclic series
with equal gain, i.e. Γps1q “ Γps2q “ m1{b1 “ m2{b2, then ps1 ‘ s2q P Em|brrδss is an
ultimately cyclic series with gain Γps1 ‘ s2q “ Γps1q “ Γps2q.

Proposition 17 ([16]). Let s1 P Em1|b1rrδss, s2 P Em2|b2rrδss be two ultimately cyclic series
with equal gain, i.e. Γps1q “ Γps2q “ m1{b1 “ m2{b2, then ps1 ^ s2q P Em|brrδss is an
ultimately cyclic series with gain Γps1 ^ s2q “ Γps1q “ Γps2q.

Proposition 18 ([16]). Let s1 P Em1|b1rrδss and s2 P Em2|b2rrδss be two ultimately cyclic series
then ps1 b s2q P Em1m2|b1b2rrδss is an ultimately cyclic series. Moreover, since Γps1q “ m1{b1

and Γps2q “ m2{b2 the gain Γps1 b s2q “ pm1m2q{pb1b2q “ Γps1q ̂ Γps2q.

Proposition 19 ([16]). Let s P Eb|brrδss be an ultimately cyclic series then s̊ P Eb|brrδss is an
ultimately cyclic series.

Division in pErrδss,‘,bq

Recall Section 2.2, since pE ,‘,bq (resp. pErrδss,‘,bq) is a complete dioid right and left

multiplication are residuated. We obtain the following results for the left (resp. right) di-

vision of periodic elements. Again the proofs of the following propositions are provided in

Section 3.3.

Proposition 20 ([16]). Let s1 P Em|b1rrδss and s2 P Em|b2rrδss be two ultimately cyclic series
then ps2 z̋s1q P Eb2|b1rrδss is an ultimately cyclic series. Moreover, since Γps1q “ m{b1 and
Γps2q “ m{b2 the gain Γps2 z̋s1q “ b2{b1 “ Γps1q{Γps2q.

Proposition 21 ([16]). Let s1 P Em1|brrδss and s2 P Em2|brrδss be two ultimately cyclic series
then ps1{̋s2q P Em1|m2

rrδss is an ultimately cyclic series. Moreover, since Γps1q “ m1{b and
Γps2q “ m2{b the gain Γps2{̋s1q “ m1{m2 “ Γps1q{Γps2q.

3.2. pMax
in vγ, δw ,‘,bq as a Subdioid of pErrδss,‘,bq

Let us recall the dioid pMax
in vγ, δw ,‘,bq introduced in Section 2.3. The dioid

pMax
in vγ, δw ,‘,bq is a subdioid of pErrδss,‘,bq. More precisely Max

in vγ, δw is the set

E1|1rrδss, i.e., the set of p1, 1q-periodic series. Then according to Definition 22 the canoni-

cal injection fromMax
in vγ, δw into Errδss is defined by

Inj : Max
in vγ, δw Ñ Errδss, x ÞÑ Injpxq “ x.

For instance, Injpγ1δ2q “ γ1µ1β1δ
2 “ γ1δ2. In the following example, we give a graphical

interpretation of this injection.
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3.2. pMax
in vγ, δw ,‘,bq as a Subdioid of pErrδss,‘,bq

Example 17. Consider the series s “ γ1δ2 ‘
̀

γ3δ3 ‘γ5δ4
̆

pγ3δ2q̊ P Max
in vγ, δw, the graph-

ical representation of s is shown in Figure 3.9a. Moreover, the graphical representation of the
canonical injection Injpsq P Errδss is shown in Figure 3.9b. The series s P Max

in vγ, δw (Fig-
ure 3.9a) corresponds to the (O-count/t-shift)-plane for the (I-count) value 0 of the 3D represen-
tation of the series Injpsq P Errδss (Figure 3.9b). Moreover, the canonical injection Injpsq P Errδss

is (1,1)-periodic, therefore the (O-count/t-shift)-plane for the (I-count) value 1 corresponds to the
series γ1s P Max

in vγ, δw and for the (I-count) value 2 to the series γ2s P Max
in vγ, δw, etc. Ob-

serve that the left-cyclic form and the right-cyclic form are the same since pMax
in vγ, δw ,‘,bq

is commutative.
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(a) Graphical representation of s P Max
in vγ, δw.
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(b) Graphical representation of Injpsq P Errδss.

Figure 3.9. – Illustration of the canonical injection Inj : Max
in vγ, δw Ñ Errδss.

The canonical injection Inj : Max
in vγ, δw Ñ Errδss is continuous and thus it is both resid-

uated and dually residuated, see the following propositions.

Lemma 1. Let wδτ P Eb|brrδss be a pb, bq-periodic monomial. Then residual Inj7pwδτq and
dual residual Inj5pwδτq are given by

Inj
7pwδτq “ γmax

b́1
k“0pFwpkq́kqδτ, (3.22)

Inj
5pwδτq “ γmin

b́1
k“0pFwpkq́kqδτ. (3.23)

Proof. By definition, the residuated mapping Inj
7pwδτq is the greatest solution x of the fol-

lowing inequality

wδτ ľ Injpxq “ Inj

́

à

i
γνiδζi

̄

“
à

i
γνiδζi , (3.24)
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

where

À

i γ
νiδζi P Max

in vγ, δw. Clearly, the greatest ζi such that the inequality (3.24) holds

is τ and thus,

wδτ ľ
à

i
pγνiδτq “ γνδτ, see, (2.29). (3.25)

Since wδτ ľ γνδτ ô w ľ γν
, it remains to find the least ν such that (3.25) holds. By

considering the isomorphism between E-operators and (C/C)-functions, see (3.14), this is

equivalent to Fwpkq ľ Fγνpkq pFwpkq ď Fγνpkqq, @k P Zmin. Note that in Zmin the order

is reverse to the natural order. By using Fγνpkq “ ν ̀ k, see (3.12), we obtain

Fwpkq ď ν ̀ k ô ν ě Fwpkq ́ k, @k P Zmin. (3.26)

Since Fw is a quasi pb, bq-periodic function it is sufficient to evaluate the function for @k P

t0, ̈ ̈ ̈ , b ́ 1u. Therefore, the least ν such that (3.26) (resp. (3.25)) holds is

ν “
b́1
max

k“0

̀

Fwpkq ́ k
̆

.

Similarly, for (3.23), Inj
5pwδτq is the least solution x of the inequality

wδτ ĺ Injpxq “ Inj

́

à

i
γνiδζi

̄

“
à

i
γνiδζi . (3.27)

Then, the least ζi such that the inequality (3.27) holds is τ and thus,

wδτ ĺ
à

i
pγνiδτq “ γνδτ, see, (2.29). (3.28)

Again sincewδτ ĺ γνδτ ô w ĺ γν
, it remains to find the greatest ν such that (3.28) holds.

Therefore, @k P Zmin

Fwpkq ě Fγνpkq ô Fwpkq ě ν ̀ k ô ν ď Fwpkq ́ k. (3.29)

By considering that Fw is a quasi pb, bq-periodic function the greatest ν such that (3.29)

(resp. (3.28)) holds is

ν “
b́1
min

k“0

̀

Fwpkq ́ k
̆

.

Example 18. For the monomial γ1µ3β3γ
1δ2 P E3|3rrδss, see Figure 3.10b, the residual

Inj
7pγ1µ3β3γ

1δ2q “ γ
max

2
i“0

̀

F
γ1µ3β3γ

1 piq́i
̆

δ2 “ γmaxp1,0,2qδ2 “ γ2δ2.

We now compare γ1µ3β3γ
1δ2 to Inj

̀

Inj
7pγ1µ3β3γ

1δ2q
̆

and show that s ľ InjpInj7psqq is
satisfied, see Remark 4. The canonical injection Inj

̀

Inj
7pγ1µ3β3γ

1δ2q
̆

“ Injpγ2δ2q “ γ2δ2
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3.2. pMax
in vγ, δw ,‘,bq as a Subdioid of pErrδss,‘,bq

is shown in Figure 3.10a. Clearly, Injpγ2δ2q “ γ2δ2 ĺ γ1µ3β3γ
1δ2 this is illustrated in

Figure 3.11a where the (C/C)-functions Fγ1µ3β3γ1 and Fγ2 , are shown. Obviously, Fγ2 ĺ

Fγ1µ3β3γ1 pFγ2 ě Fγ1µ3β3γ1q, in particular, Fγ2 is the greatest quasi (1,1)-periodic (C/C)-
function which is less thanFγ1µ3β3γ1 . Therefore, γ2δ2 is the greatest operator in E1|1rrδss which
is less than γ1µ3β3γ

1δ2. The dual residual of the monomial γ1µ3β3γ
1δ2 P E3|3rrδss is given by

Inj
5pγ1µ3β3γ

1δ2q “ γminp1,0,2qδ2 “ γ0δ2 “ δ2.

Again we compare γ1µ3β3γ
1δ2 to Inj

̀

Inj
5pγ1µ3β3γ

1δ2q
̆

and show that s ĺ InjpInj5psqq

is satisfied, see Remark 5. The canonical injection Inj

̀

Inj
5pγ1µ3β3γ

1δ2q
̆

“ Injpδ2q “ δ2

is shown in Figure 3.10c. Clearly, Injpδ2q “ δ2 ľ γ1µ3β3γ
1δ2 this is illustrated in Fig-

ure 3.11b where the (C/C)-functions Fγ1µ3β3γ1 and Fγ0 , are shown. Obviously, Fγ1µ3β3γ1 ĺ

Fγ0 pFγ1µ3β3γ1 ě Fγ0q, in particular,Fγ0 is the least quasi (1,1)-periodic (C/C)-function which
is greater than Fγ1µ3β3γ1 and therefore γ0δ2 is the least operator in E1|1rrδss which is greater
than γ1µ3β3γ

1δ2.
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(a) Inj

̀

Inj
7
pγ1µ3β3γ

1δ2q
̆

“ γ2µ1β1δ
2

“ γ2δ2
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(b) γ1µ3β3γ
1δ2
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(c) Inj

̀

Inj
5
pγ1µ3β3γ

1δ2q
̆

“ γ0µ1β1δ
2

“ γ0δ2

Figure 3.10. – Graphical comparison of γ1µ3β3γ
1δ2, Inj

̀

Inj
7
pγ1µ3β3γ

1δ2q
̆

and Inj

̀

Inj
5
pγ1µ3β3γ

1δ2q
̆

.

For all t P Z the slices in the (I/O-count)-planes of γ1µ3β3γ
1δ2 cover the slices of

Inj

̀

Inj
7
pγ1µ3β3γ

1δ2q
̆

, but are covered by the slices of Inj

̀

Inj
5
pγ1µ3β3γ

1δ2q
̆

, see Figure 3.11.

Proposition 22. Let s “
À

iwiδ
τi P Eb|brrδss be a pb, bq-periodic series in the canonical

representation, see Prop. 14, extended to infinite sums, then

Inj
7psq “ Inj

7
́

à

i
wiδ

τi
̄

“
à

i
γmax

b́1
k“0pFwi

pkq́kqδτi , (3.30)

Second, for s P Errδss but s R Eb|brrδss,

Inj
7psq “ ε. (3.31)

Proof. For (3.30): Consider s “
À

iwiδ
τi

in the canonical form, such that τi ă τì1 and

wi ą wì1 and let Fwi
be the (C/C)-function associated with wi. Recall that Inj

7psq is

the greatest solution x in Max
in vγ, δw of inequality Injpxq ĺ s. This is given by

À

i γ
niδτi
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

Fγ2

Fγ1µ3β3γ1

I-count

O-count
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(a) Graphical illustration of Inj
7
pγ1µ3β3γ

1δ2q “

γ2δ2 in the (I/O-count)-planes for t ď 2
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(b) Graphical illustration of Inj
5
pγ1µ3β3γ

1δ2q “

γ0δ2 in the (I/O-count)-planes for t ď 2

Figure 3.11. – Comparison of Inj
7
pγ1µ3β3γ

1δ2q and Inj
5
pγ1µ3β3γ

1δ2q in the (I/O-count)-planes for t ď 2.

In (a) the (C/C)-function Fγ2 lies in the gray area shaped by the Fγ1µ3β3γ1 function, thus

Fγ2 ĺ Fγ1µ3β3γ1 and γ2
ĺ γ1µ3β3γ

1
. In (b) the (C/C)-function Fγ1µ3β3γ1 lies in the gray

area shaped by the Fγ0 function, thus Fγ1µ3β3γ1 ĺ Fγ0 and γ1µ3β3γ
1

ĺ γ0
.

where ni is the greatest integer such that γni ĺ wi. Repeating the first step of the proof of

Lemma 1, this is given by ni “ max
b́1
k“0pFwi

pkq ́ kq. To prove (3.31), recall that @s P Errδss

we must satisfy the following inequality, see (2.17) in Remark 4,

s ľ Inj

̀

Inj
7psq

̆

. (3.32)

Now let us consider two series s1 P Em1|b1rrδss and s2 P Em2|b2rrδss such that s1 ‰ ε, s2 ‰ ε

and
m1
b1

‰
m2
b2

. Then s1 and s2 are not ordered, i.e., s1 ń s2 and s1 ł s2 (see Prop. 13).

The canonical injection Injps̃q of an arbitrary series s̃ P Max
in vγ, δw is p1, 1q-periodic, i.e.,

Injps̃q P E1|1rrδss. Thus, for s R Eb|brrδss, s and Injps̃q are not ordered and (3.32) holds if and

only if Inj
7psq “ ε.

Proposition 23. Let s “
À

iwiδ
τi P Eb|brrδss be a pb, bq-periodic series in the canonical

representation, see Prop. 14, extended to infinite sums, then

Inj
5psq “ Inj

5
́

à

i
wiδ

τi
̄

“
à

i
γmin

b́1
k“0pFwi

pkq́kqδτi , (3.33)

Second, for s P Errδss but s R Eb|brrδss,

Inj
5psq “ ε. (3.34)

Proof. The proof is similar to the proof of Prop. 22.

Example 19. Consider the polynomial p “ γ1µ3β3γ
1δ2‘µ3β3γ

2δ3 P E3|3rrδss with a canon-
ical form p “ pµ3β3γ

2 ‘ γ1µ3β3γ
1qδ2 ‘ µ3β3γ

2δ3 and a graphical representation given in
Figure 3.12a. Then, Inj7ppq “ γ1δ2 ‘ γ2δ3 and Inj

̀

Inj
7ppq

̆

“ γ1δ2 ‘ γ2δ3 are shown in

48



3.2. pMax
in vγ, δw ,‘,bq as a Subdioid of pErrδss,‘,bq

Figure 3.12b. Moreover, Figure 3.13a illustrates Inj7ppµ3β3γ
2 ‘ γ1µ3β3γ

1qδ2q “ γ1δ2 for the
(I/O-count)-plane at t “ 2 and Figure 3.13b illustrates Inj7pµ3β3γ

2δ3q “ γ2δ3 for the (I/O-
count)-plane at t “ 3, respectively.
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(a) p “ pµ3β3γ
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1
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(b) Inj

̀

Inj
7
ppq

̆

“ γ1δ2 ‘ γ2δ3

Figure 3.12. – Graphical comparison of the polynomial p “ pµ3β3γ
2

‘ γ1µ3β3γ
1
qδ2 ‘ µ3β3γ

2δ3 and

Inj

̀

Inj
7
ppq

̆

. For all t P Z the slices in the (I/O-count)-planes of p cover the slices of Inj

̀

Inj
7
ppq

̆

,

see Figure 3.13.
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(a) (I/O-count)-plane for t ď 2
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(b) (I/O-count)-plane for t “ 3

Figure 3.13. – Graphical illustration of Inj
7
ppq “ γ1δ2 ‘ γ2δ3.

Zero slice Mapping Ψm|b : Em|brrδss Ñ Max
in vγ, δw

In addition to the canonical injection Inj : Max
in vγ, δw Ñ Errδss, we define a mapping:

Ψm|b : Em|brrδss Ñ Max
in vγ, δw.

Definition 36. Let s “
À

iwiδ
ti P Em|brrδss be an pm,bq-periodic series, then

Ψm|bpsq “ Ψm|b

́

à

i
wiδ

ti
̄

“
à

i
γFwi

p0qδti . (3.35)
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

This mapping Ψm|b has a graphical interpretation. If we take the 3D representation of a

series s P Em|brrδss the series s̃ “ Ψm|bpsq P Max
in vγ, δw corresponds to the slice in the (O-

count/t-shift)-plane of the 3D representation at the I-count value 0, therefore this mapping

is also called zero-slice mapping.

Example 20. Consider the following series s P E3|2rrδss,

s “ γ1µ3β2γ
1δ2 ‘ pγ3δ2q̊

̀

pγ3µ3β2γ
1 ‘ γ5µ3β2qδ3 ‘ pγ6µ3β2 ‘ γ5µ3β2γ

1qδ4
̆

.

with a graphical representation given in Example 16 in Figure 3.8.

Ψ3|2psq “ γ1δ2 ‘ pγ3δ2q̊
̀

γ3δ3 ‘ γ5δ4
̆

The seriesΨ3|2psq P Max
in vγ, δw corresponds to the slice ((O-count/t-shift)-plane) for the I-count

value 0 of the 3D representation of s, see Figure 3.14a and Figure 3.14b. Moreover, the asymptotic
slope of Ψ3|2psq P Max

in vγ, δw is the same as the left-asymptotic slope of s P E3|2rrδss, i.e.,
σpΨ3|2psqq “ σlpsq “ 2{3.
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(b) The (O-count/t-shift)-plane for the I-count

value 0

Figure 3.14. – Illustration of the zero-slice mapping Ψ3|2psq.

The mapping Ψm|b is by definition lower-semicontinuous, see Definition 36, therefore

Ψm|b is residuated.

Proposition 24. Let s “
À

i γ
νiδτi P Max

in vγ, δw. The residual Ψ7

m|b
psq P Em|brrδss of s is a

series defined by

Ψ
7

m|b

́

à

i
γνiδτi

̄

“
à

i
γνiδτiµmβb “ sµmβb. (3.36)

50



3.2. pMax
in vγ, δw ,‘,bq as a Subdioid of pErrδss,‘,bq

Proof. By definition of the residuated mapping, Ψ
7

m|b
p
À

i γ
νiδτiq P Em|brrδss is the greatest

solution of the following inequality

s “
à

i
γνiδτi ľ Ψm|bpxq “ Ψm|b

́

à

j
wjδ

ζj
̄

, (3.37)

where x “
À

jwjδ
ζj P Em|brrδss. First, we show that (3.36) satisfies (3.37) with equality.

Ψm|b

́

à

i

γνiδτiµmβb

̄

“
à

i

γ
Fγνiµmβb

p0q
δτi “

à

i

γνiδτi,

since Fγνiµmβb
p0q “ νi ̀ t0{bum “ νi, see (3.11), (3.9) and (3.10). Taking into account that

Ψm|b is isotone, it remains to show that

À

i γ
νiδτiµmβb is the greatest solution of

à

i

γνiδτi “ Ψm|bpxq “ Ψm|b

́

à

j

wjδ
ζj
̄

“
à

j

γ
Fwj

p0q
δζj. (3.38)

Clearly, to achieve equality we need ζj “ τi and Fwj
p0q “ νi. Furthermore, we are looking

for the greatest wj P Em|brrδss, such that νi “ Fwj
p0q. Due to the canonical form Prop. 11

we can write an pm,bq-periodic E-operator as
Àb

i“1 γ
niµmβbγ

n 1
i with 0 ď n 1

i ă b. This

operator corresponds to the (C/C)-function

Fpkq “
b

min

i“1

́

ni ̀

Z

n 1
i ̀ k

b

^

m
̄

.

Now we examine Fpkq for k “ 0, thus

Fp0q “
b

min

i“1

́

ni ̀

Z

n 1
i

b

^

m
̄

.

Recall that 0 ď n 1
i ă b, henceFwj

pkq “ νìtp0̀kq{bum is the least quasi pm,bq-periodic

(C/C)-function such that (3.38) holds, i.e., Fwj
p0q “ Fγνiµmβb

p0q “ νi ̀ t0{bum “ νi. This

function corresponds to the operator γνiµmβb.

Example 21. Recall Example 20 with,

s “ γ1µ3β2γ
1δ2 ‘ pγ3δ2q̊

̀

pγ3µ3β2γ
1 ‘ γ5µ3β2qδ3 ‘ pγ6µ3β2 ‘ γ5µ3β2γ

1qδ4
̆

,

s̃ “ Ψ3|2psq “ γ1δ2 ‘ pγ3δ2q̊
̀

γ3δ3 ‘ γ5δ4
̆

.

The residual Ψ7

3|2
ps̃q is given by

Ψ
7

3|2
ps̃q “

́

γ1δ2 ‘ pγ3δ2q̊
̀

γ3δ3 ‘ γ5δ4
̆

̄

µ3β2,

“ γ1µ3β2δ
2 ‘ pγ3δ2q̊

̀

γ3µ3β2δ
3 ‘ γ5µ3β2δ

4
̆

.

In Figure 3.15a and Figure 3.15b, s andΨ7

3|2
pΨ3|2psqq are compared, as required s ĺ Ψ

7

3|2

̀

Ψ3|2psq
̆

,
see (2.17).
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(a) s “ γ1µ3β2γ
1δ2 ‘ pγ3δ2q

̊
̀

pγ3µ3β2γ
1

‘

γ5µ3β2qδ3 ‘ pγ6µ3β2 ‘ γ5µ3β2γ
1
qδ4

̆

.
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(b) Ψ
7

3|2

̀

Ψ3|2psq
̆

“ γ1µ3β2δ
2

‘

pγ3δ2q
̊
̀

γ3µ3β2δ
3

‘ γ5µ3β2δ
4
̆

Figure 3.15. – For a comparison of the series s andΨ
7

3|2

̀

Ψ3|2psq
̆

we examine the slices in the (O-count/t-shift)-

planes for all I-count values k P Zmin of the graphical representation of s and Ψ
7

3|2

̀

Ψ3|2psq
̆

.

Clearly, for all I-count values k P Zmin the corresponding slice of Ψ
7

3|2

̀

Ψ3|2psq
̆

covers the

corresponding slice of s, therefore as required s ĺ Ψ
7

3|2

̀

Ψ3|2psq
̆

.

Proposition 25. Let s “
À

i γ
νiδτi P Max

in vγ, δw. The dual residual Ψ5
m|bpsq P Em|brrδss of

s is a series defined by

Ψ5
m|b

́

à

i
γνiδτi

̄

“
à

i
γνiδτiµmβbγ

b́1 “ sµmβbγ
b́1. (3.39)

Proof. The proof is similar to the proof of Prop. 24, with the difference that instead of finding

the greatest solutionwe are now looking for the least solution, denoted byΨ5
m|bp

À

i γ
νiδτiq P

Em|brrδss, of the following inequality

s “
à

i
γνiδτi ĺ Ψm|bpxq “ Ψm|b

́

à

j
wjδ

ζj
̄

. (3.40)

Again we show that (3.39) satisfies (3.40) with equality.

Ψm|b

́

à

i

γνiδτiµmβbγ
b́1

̄

“
à

i

γ
F

γνiµmβbγb́1 p0q
δτi “

à

i

γνiδτi,

since Fγνiµmβbγb́1p0q “ νi ̀ tpb ́ 1q{bum “ νi, see (3.11), (3.9) and (3.10). Taking

into account that Ψm|b is isotone, it remains to show that

À

i γ
νiδτiµmβbγ

b́1
is the least

solution of

à

i

γνiδτi “ Ψm|bpxq “ Ψm|b

́

à

j

wjδ
ζj
̄

“
à

j

γ
Fwj

p0q
δζj. (3.41)

Clearly, to achieve equality we need ζj “ τi and Fwj
p0q “ νi. Furthermore, we are looking

for the smallest wj P Em|brrδss, such that νi “ Fwj
p0q. Due to the canonical form Prop. 11
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3.3. Core Decomposition of Elements in Em|brrδss

an pm,bq-periodic E-operator can be written as

Àb
i“1 γ

niµmβbγ
n 1
i with 0 ď n 1

i ă b. This

operator corresponds to a (C/C)-function

Fpkq “
b

min

i“1

́

ni ̀

Z

n 1
i ̀ k

b

^

m
̄

.

Now we examine Fpkq for k “ 0, thus

Fp0q “
b

min

i“1

́

ni ̀

Z

n 1
i

b

^

m
̄

.

Recall that 0 ď n 1
i ă b, henceFwj

pkq “ νìtppb́1q̀kq{bum is the smallest (i.e. smallest

in the order in Zmin, hence greatest in the natural order in Z ) quasi pm,bq-periodic (C/C)-

function such that (3.41) holds, i.e., Fwj
p0q “ Fγνiµmβbγb́1p0q “ νi ̀ tpb ́ 1q{bum “ νi.

This function corresponds to the operator γνiµmβbγ
b́1

.

Example 22. Recall Example 20 with,

s “ γ1µ3β2γ
1δ2 ‘ pγ3δ2q̊

̀

pγ3µ3β2γ
1 ‘ γ5µ3β2qδ3 ‘ pγ6µ3β2 ‘ γ5µ3β2γ

1qδ4
̆

,

s̃ “ Ψ3|2psq “ γ1δ2 ‘ pγ3δ2q̊
̀

γ3δ3 ‘ γ5δ4
̆

.

The dual residual Ψ5
3|2ps̃q is given by

Ψ5
3|2ps̃q “

́

γ1δ2 ‘ pγ3δ2q̊
̀

γ3δ3 ‘ γ5δ4
̆

̄

µ3β2γ
1,

“ γ1µ3β2γ
1δ2 ‘ pγ3δ2q̊

̀

γ3µ3β2γ
1δ3 ‘ γ5µ3β2γ

1δ4
̆

.

See Figure 3.16 for a graphical comparison of the series s and the series Ψ5
3|2

̀

Ψ3|2psq
̆

.

3.3. Core Decomposition of Elements in Em|brrδss

This section focuses on a specific decomposition of series in Em|brrδss. This decomposi-

tion is a factorization of an element in Em|brrδss, where the core part is a matrix inMax
in vγ, δw.

Based on this decomposition it is shown that operations on ultimately cyclic series in Em|brrδss

can be reduced to operations on matrices with entries inMax
in vγ, δw.

A series s P Em|brrδss can always be represented as mmQbb, where Q is a matrix with

entries inMax
in vγ, δw, called core matrix, of sizem ̂ b. mm is a row vector defined by

mm :“
”

µm γ1µm ̈ ̈ ̈ γḿ1µm

ı

,

and bb is a column vector defined by

bb :“
”

βbγ
b́1 ̈ ̈ ̈ βbγ

1 βb

ıT
.
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(a) s “ γ1µ3β2γ
1δ2 ‘ pγ3δ2q̊

̀

pγ3µ3β2γ
1 ‘

γ5µ3β2qδ3 ‘ pγ6µ3β2 ‘ γ5µ3β2γ
1qδ4

̆

.
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(b) Ψ5
3|2

̀

Ψ3|2psq
̆

“ γ1µ3β2γ
1δ2 ‘

pγ3δ2q̊
̀

γ3µ3β2γ
1δ3 ‘ γ5µ3β2γ

1δ4
̆

.

Figure 3.16. – For a comparison of the series s andΨ5
3|2

̀

Ψ3|2psq
̆

we examine the slices in the (O-count/t-shift)-

planes for all I-count values k P Zmin of the graphical representation of s and Ψ5
3|2

̀

Ψ3|2psq
̆

.

Clearly, for all I-count values k P Zmin the corresponding slice of s covers the corresponding

slice of Ψ5
3|2

̀

Ψ3|2psq
̆

, therefore as required s ľ Ψ5
3|2

̀

Ψ3|2psq
̆

, see (2.21).

The index b (resp. m) determines the division (resp. multiplication) coefficient and gives

the dimension of the vector. First, we illustrate how to obtain this representation on a small

example and then provide a formal proof.

Example 23. Consider the following series s P E2|2rrδss,

s “ γ1µ2β2 ‘ pγ2δ2q̊pµ2β2γ
1 ‘ γ2µ2β2δ

2q.

Due to (3.13), γm̂nµm “ µmγ
n, this series can be written as

s “ γ1µ2 e
loomoon

M1

β2 ‘ µ2 pγ1δ2q̊
loomoon

S1

β2γ
1 ‘ µ2 γ

1δ2pγ1δ2q̊
loooooomoooooon

S2

β2.

Clearly, M1, S1, S2 P Max
in vγ, δw. Furthermore, in this form the entries of the m2-vector and

b2-vector appear on the left and on the right ofM1, S1, S2. We now can write s in the core-form
m2Qb2 as follows,

s “

”

µ2 γ1µ2

ı

looooomooooon

m2

«

pγ1δ2q̊ γ1δ2pγ1δ2q̊

ε e

ff

loooooooooooooomoooooooooooooon

Q

«

β2γ
1

β2

ff

looomooon

b2

.
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3.3. Core Decomposition of Elements in Em|brrδss

It is easy to check that this expressionm2Qb2, indeed represents the series s, since

m2Qb2 “

”

µ2pγ1δ2q̊ ‘ γ1µ2ε µ2γ
1δ2pγ1δ2q̊ ‘ γ1µ2e

ı

«

β2γ
1

β2

ff

,

“

”

pγ2δ2q̊µ2 γ2δ2pγ2δ2q̊µ2 ‘ γ1µ2

ı

«

β2γ
1

β2

ff

,

“ pγ2δ2q̊µ2β2γ
1 ‘ γ2δ2pγ2δ2q̊µ2β2 ‘ γ1µ2β2,

“ γ1µ2β2 ‘ pγ2δ2q̊pµ2β2γ
1 ‘ γ2µ2β2δ

2q “ s.

Proposition 26. Let s “
À

iwiδ
i P Em|brrδss be an pm,bq-periodic series, then s can be

written as s “ mmQbb, where Q P Max
in vγ, δw

m̂b.

Proof. s being an pm,bq-periodic series implies that all coefficients wi of s are pm,bq-

periodic E-operators. Then due to Prop. 11 all coefficients can be expressed in canonical

form wi “
ÀJi

j“1 γ
νijµmβbγ

ν 1
ij with Ji ď minpm,bq and 0 ď ν 1

ij
ă b. Therefore, s can be

rewritten as

s “
à

i

̀

Ji
à

j“1

γ
νijµmβbγ

ν 1
ij
̆

δi.

Due to (3.13) and the fact that @w P E , wδ “ δw, the series s can be written as

s “
à

i

̀

Ji
à

j“1

γ
ν̃ijµmγ

ν̂ijδiβbγ
ν 1
ij
̆

,

where 0 ď ν̃ij “ νij ́ tνij{mum ă m and ν̂ij “ tνij{mu. Observe that 0 ď ν̃ij ă m an

0 ď ν 1
ij

ă b, hence s is expressed by

s “

”

µm γ1µm ̈ ̈ ̈ γḿ1µm

ı

à

i

̀

Ji
à

j“1

Qij

̆

»

—

—

—

—

–

βbγ
b́1

̈ ̈ ̈

βbγ
1

βb

fi

ffi

ffi

ffi

ffi

fl

,

where the entry pQijq1̀ν̃ij
,b́ν 1

ij

“ γ
ν̂ijδi and all other entries of Qij are equals ε. Finally s

is in the required form s “ mmQbb, where Q “
À

i

̀
ÀJi

j“1Qij

̆

.

For the particular case, where s P Em|brrδss is a periodic ultimately cyclic series the core-

form can be obtained as follows. Given an ultimately cyclic series s “
ÀK

k“1wkδ
tk ‘
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

ÀL
l“1w

1
lδ

t 1
lpγνδτq̊ P Em|brrδss, we can always write s such that all coefficients wk, w

1
l are

in the pm,bq-periodic canonical form of Prop. 11, i.e.,

s “

I
à

i“1

γniµmβbγ
n 1
iδti ‘

J
à

j“1

γNjµmβbγ
N 1

jδTj
̀

γνδτ
̆̊
.

Recall that γmµm “ µmγ
1
and βbγ

b “ γ1βb, see (3.13). Moreover, we can always represent

an ultimately cyclic series s P Em|brrδss such that ν is a multiple of b, i.e., we can extend

pγν̃δτ̃q̊
such that, ν “ ν̃l “ lcmpν̃, bq

pγν̃δτ̃q̊ “ pe ‘ γν̃δτ̃ ‘ ̈ ̈ ̈ ‘ γpĺ1qν̃δpĺ1qτ̃qpγlν̃δlτ̃q̊,

“ pe ‘ γν̃δτ̃ ‘ ̈ ̈ ̈ ‘ γpĺ1qν̃δpĺ1qτ̃qpγνδτq̊.

Therefore, in the following we assume ν{b P N and thus βbpγνδτq̊ “ pγν{bδτq̊βb. It

follows that s can be written as,

s “

I
à

i“1

γñiµm γniδti
loomoon

Mi

βbγ
ñ 1
i ‘

J
à

j“1

γ
̃Njµm γNjδTjpγν{bδτq̊

loooooooomoooooooon

Sj

βbγ
̃N 1
j , (3.42)

where 0 ď ñ 1
i,

̃N 1
j ă b and 0 ď ñi, ̃Nj ă m. Clearly, in this representation, Mi are

monomials and Sj are series in the dioid pMax
in vγ, δw ,‘,bq. Moreover, the entries of the bb-

vector appear on the right and the entries of themm-vector appear on the left of monomial

Mi (resp. series Sj). For a given s we denote the set of monomials by M “ tMi, ̈ ̈ ̈ ,MIu

and the set of series by S “ tSj, ̈ ̈ ̈ , SJu. Furthermore, the subsets Ml,k (resp. Sl,k ) are

defined as

@l P t0, ̈ ̈ ̈ ,m ́ 1u, @g P t0, ̈ ̈ ̈ , b ́ 1u,

Ml,g :“ tMi P M| γlµmMiβbγ
g P

I
à

i“1

γñiµmMiβbγ
ñ 1
iu,

Sl,g :“ tSj P S| γlµmSjβbγ
g P

J
à

j“1

γ
̃NjµmSjβbγ

̃N 1
ju.

The element pQql̀1,b́g of the core matrix is then obtained by

pQql̀1,b́g “
à

MPMl,g

M ‘
à

SPSl,g

S.

In other words, monomialMi and series Sj are "dispatched" inQ depending on the left factor

γiµm and the right factor βbγ
j
of each term of s in (3.42).
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3.3. Core Decomposition of Elements in Em|brrδss

Remark 10. Note that, for s “ mmQbb be an ultimately cyclic series in Em|brrδss, the entries
of Q are ultimately cyclic series inMax

in vγ, δw.

Example 24. Consider the following series

s1 “ γ1µ3β2γ
1δ2 ‘ pγ3µ3β2γ

1 ‘ γ5µ3β2qδ3pγ1δ1q̊ P E3|2rrδss.

We first extend pγ1δ1q̊ “ pe ‘ γ1δ1qpγ2δ2q̊, because in this example b “ 2. This leads to

s1 “γ1µ3β2γ
1δ2 ‘ pγ3µ3β2γ

1 ‘ γ5µ3β2qδ3pe ‘ γ1δ1qpγ2δ2q̊

“γ1µ3β2γ
1δ2 ‘ pγ3µ3β2γ

1δ3 ‘ γ5µ3β2δ
3‘

γ3µ3β2γ
2δ4 ‘ γ5µ3β2γ

1δ4qpγ2δ2q̊

“γ1µ3β2γ
1δ2 ‘ ppγ3µ3β2γ

1 ‘ γ5µ3β2qδ3 ‘ pγ6µ3β2 ‘ γ5µ3β2γ
1qδ4qpγ2δ2q̊.

Now every term in the sum is rewritten as follows

γ1µ3β2γ
1δ2 “ γ1µ3δ

2β2γ1,

γ3µ3β2γ
1δ3pγ2δ2q̊ “ µ3γ

1δ3pγ1δ2q̊β2γ
1,

γ5µ3β2δ
3pγ2δ2q̊ “ γ2µ3γ

1δ3pγ1δ2q̊β2,

γ6µ3β2δ
4pγ2δ2q̊ “ µ3γ

2δ4pγ1δ2q̊β2,

γ5µ3β2γ
1δ4pγ2δ2q̊ “ γ2µ3γ

1δ4pγ1δ2q̊β2γ
1.

Therefore, s1 can be rephrased as,

s1 “γ1µ3 δ2
loomoon

M1

β2γ
1‘ µ3

́

γ2δ4pγ1δ2q̊
̄

loooooooomoooooooon

S1

β2 ‘ µ3

́

γ1δ3pγ1δ2q̊
̄

loooooooomoooooooon

S2

β2γ
1

‘ γ2µ3

́

γ1δ3pγ1δ2q̊
̄

loooooooomoooooooon

S3

β2 ‘ γ2µ3

́

γ1δ4pγ1δ2q̊
̄

loooooooomoooooooon

S4

β2γ
1.

For this series we obtain the following subsets

M1,1 “ tδ2u, M0,0 “ M0,1 “ M1,0 “ M2,0 “ M2,1 “ tεu,

S0,0 “ tγ2δ4pγ1δ2q̊u, S0,1 “ tγ1δ3pγ1δ2q̊u,

S2,0 “ tγ1δ3pγ1δ2q̊u, S2,1 “ tγ1δ4pγ1δ2q̊u,

S1,0 “ S1,1 “ tεu.

The core-form of the series s1 is given bym3Qb2 where

Q “

»

—

–

γ1δ3pγ1δ2q̊ γ2δ4pγ1δ2q̊

δ2 ε

γ1δ4pγ1δ2q̊ γ1δ3pγ1δ2q̊

fi

ffi

fl

.
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Properties of the mm-vector and the bb-vector

In the following, we elaborate some properties of themm-vector and the bb-vector, which

are useful for computations for series s P Em|brrδss. Consider themi-vector and the bi-vector

with same index i, i.e., mi-vector and bi-vector have the same length. The scalar product

mi b bi is the identity e, since Prop. 12,

mi b bi “ µiβiγ
í1 ‘ γ1µiβiγ

í2 ‘ ̈ ̈ ̈ ‘ γí1µiβi “ e. (3.43)

The dyadic product bi b mi is a square matrix inMax
in vγ, δw, denoted by E.

E “ bi b mi “

»

—

—

—

—

—

—

—

–

βiγ
í1µi γ1βiµi γ1βiγ

1µi ̈ ̈ ̈ γ1βiγ
í2µi

βiγ
í2µi βiγ

í1µi γ1βiµi ̈ ̈ ̈ γ1βiγ
í3µi

.

.

.

.

.

.

.

.

.

.

.

.

βiγ
1µi βiγ

2µi βiγ
3µi ̈ ̈ ̈ γ1βiµi

βiµi βiγ
1µi βiγ

2µi ̈ ̈ ̈ βiγ
í1µi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

“

»

—

—

—

—

—

–

e γ1 ̈ ̈ ̈ γ1

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
. γ1

e ̈ ̈ ̈ ̈ ̈ ̈ e

fi

ffi

ffi

ffi

ffi

ffi

fl

, (3.44)

since βiγ
nµi “ e for 0 ď n ă i. If necessary, the dimension of E is stated as an index, e.g.,

Ei “ bimi P te, γ1uîi
.

Proposition 27. For the E matrix, the following relations hold

Ei b Ei “ Ei, (3.45)

Ei b bi “ bi, (3.46)

mi b Ei “ mi. (3.47)

Proof. Because ofmibi “ e, see (3.43), we have

Ei b Ei “ bi b mi b bi b mi “ bi b e b mi “ Ei,

Ei b bi “ bi b mi b bi “ bi b e “ bi,

mi b Ei “ mi b bi b mi “ e b mi “ mi.

Corollary 1. Observe that I ‘ E “ E and E “ EE, as a consequence,

E “ I ‘ E ‘ EE ‘ EEE ‘ ̈ ̈ ̈

“ E̊. (3.48)
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3.3. Core Decomposition of Elements in Em|brrδss

Since the scalar productmibi “ e (3.43) and E “ E̊
(3.48), under some conditions the left

product and right product of matrices with entries in Errδss bymm and bb are invertible, see

the following proposition.

Proposition 28. ForD P Errδss1̂n and P P Errδssn̂1, we have

mm z̋D “ bm b D, P{̋bb “ P b mb. (3.49)

ForO P Errδssn̂m, N P Errδssb̂n, we have
̀

OE
̆

{̋mm “ OE b bm, bb z̋
̀

EN
̆

“ mb b EN. (3.50)

Proof. See Section C.1.1 in the appendix.

Corollary 2. For D P Errδssm̂b, E z̋pEDq “ ED and pDEq{̋E “ DE.

Proof.

E z̋pEDq “ pbmmmq z̋pEDq,

“ mm z̋pbm z̋pEDqq, since pabq z̋x “ b z̋pa z̋xq, see (A.5) in Appendix A

“ mm z̋pmmEDq, since (3.50)

“ bmpmmEDq, since (3.49)

“ EED “ ED.

The proof of the right division pDEq{̋E “ DE is analogous.

Greatest Core-Form

Given a series s “ mmQbb P Em|brrδss, in general, the core-matrix Q is not unique, i.e.,
s “ mmQbb “ mmQ 1bb, whereQ ‰ Q 1

. In the following, we prove that s admits a unique

greatest core, denoted Q̂ P Max
in vγ, δw

m̂b
(greatest with respect to the order relation in the

dioidMax
in vγ, δw, i.e., Q̂ ľ Q and Q̂ ľ Q 1

).

Proposition 29. Let s “ mmQbb P Em|brrδss be a decomposition of s P Em|brrδss. The greatest
core matrix is given by,

Q̂ “ EmQEb. (3.51)

Proof. Consider the inequality mmX̃bb ĺ mmQbb “ s. Then because of Prop. 28, the

greatest solution for X̃ is

mm z̋mmQbb{̋bb “ bmmmQbbmb “ EmQEb “ Q̂.

Furthermore, because ofmm “ mmEm (3.47) and bb “ Ebbb (3.46),

mmQ̂bb “ mmEmQEbbb “ mmQbb “ s.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

Remark 11. The greatest core matrix Q̂ has the following properties. Since E b E “ E, then
EQ̂ “ EEQE “ Q̂ and Q̂E “ EQEE “ Q̂. As a consequence, EQ̂E “ Q̂.

Remark 12. Due to the order of the entries in the E matrix, the left and right multiplica-
tions of the core matrix with the E matrix induce ordering of the entries in the greatest core
Q̂. More precisely, in every row the entries are in descending order, i.e. @i P t1, ̈ ̈ ̈ ,mu, @j P

t1, ̈ ̈ ̈ , b́ 1u pQ̂qi,j ľ pQ̂qi,j̀1 and in every column the entries are in an ascending order, i.e.
@i P t1, ̈ ̈ ̈ ,ḿ 1u, @j P t1, ̈ ̈ ̈ , bu pQ̂qi,j ĺ pQ̂qì1,j. Furthermore, all entries of the great-
est core have the same asymptotic slope. Thus, the greatest core is highly redundant. When we
think about software tools it is desirable to reduce memory usage. Therefore, for implementation
the order in Q̂ can be used to define a lean representation of Q̂.

Example 25. The greatest core of the series considered in Example 24 is given by

Q̂ “ E3QE2,

“

»

—

–

e γ1 γ1

e e γ1

e e e

fi

ffi

fl

»

—

–

γ1δ3pγ1δ2q̊ γ2δ4pγ1δ2q̊

δ2 ε

γ1δ4pγ1δ2q̊ γ1δ3pγ1δ2q̊

fi

ffi

fl

«

e γ1

e e

ff

,

“

»

—

–

γ1δ3pγ1δ2q̊ γ2δ4pγ1δ2q̊

δ2 ‘ γ1δ3pγ1δ2q̊ γ1δ2pγ1δ2q̊

δ2pγ1δ2q̊ γ1δ3pγ1δ2q̊

fi

ffi

fl

.

Note that all entries have the same asymptotic slope pγ1δ2q̊. Moreover, observe that the entries
in Q̂ are ordered, e.g., pQ̂q1,1 ľ pQ̂q1,2, as γ1δ3pγ1δ2q̊ ľ γ2δ4pγ1δ2q̊, respectively pQ̂q1,2 ĺ

pQ̂q2,2, as γ2δ4pγ1δ2q̊ ĺ γ1δ2pγ1δ2q̊, etc.

3.3.1. Calculation with the Core Decomposition

To perform addition between two series s1 “ mm1
Q̂1bb1 P Em1|b1rrδss, s2 “ mm2

Q̂2bb2 P

Em2|b2rrδss with equal gain, i.e. m1{b1 “ m2{b2, in the core-form it is necessary to express

the corematrices Q̂1 P Max
in vγ, δw

m1̂b1
and Q̂2 P Max

in vγ, δw
m2̂b2

with equal dimensions.

This is possible by expressing both serieswith their least common periodm “ lcmpm1,m2q,

see the following proposition.

Proposition 30. A series s “ mmQ̂bb P Em|brrδss can be expressed with a multiple period
pnm,nbq by extending the core matrix Q̂, i.e., s “ mmQ̂bb “ mnmQ̂

1bnb, where Q̂ 1 P
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3.3. Core Decomposition of Elements in Em|brrδss

Max
in vγ, δw

nm̂nb and is given by

Q̂ 1 “

»

—

—

—

—

–

βnγ
ń1Q̂µn βnγ

ń1Q̂γ1µn ̈ ̈ ̈ βnγ
ń1Q̂γń1µn

βnγ
ń2Q̂µn βnγ

ń2Q̂γ1µn ̈ ̈ ̈ βnγ
ń2Q̂γń1µn

...
...

...

βnQ̂µn βnQ̂γ1µn ̈ ̈ ̈ βnQ̂γń1µn

fi

ffi

ffi

ffi

ffi

fl

.

Proof. See Section C.1.2 in the appendix.

Proposition 31. Let s “ mmQbb, s
1 “ mmQ 1bb P Em|brrδss be two ultimately cyclic series,

the sum s ‘ s 1 “ mmQ2bb P Em|brrδss is an ultimately cyclic series, where Q2 “ pQ ‘ Q 1q.

Proof.

s ‘ s 1 “ mmQbb ‘ mmQ 1bb “ mmpQ ‘ Q 1qbb “ mmQ2bb

Clearly, the entries of the core matricesQ andQ 1
are ultimately cyclic series inMax

in vγ, δw.

Because of Theorem 2.6 the sum of two ultimately cyclic series in Max
in vγ, δw is again an

ultimately cyclic series. Therefore,Q2
is composed of ultimately cyclic series inMax

in vγ, δw

and thus s ‘ s 1 “ mmQ2bb is an ultimately cyclic series in Em|brrδss.

Corollary 3. Let s “ mmQ̂bb, s
1 “ mmQ̂

1bb P Em|brrδss be two ultimately cyclic series,
with Q̂, Q̂ 1 are greatest cores, the sum s ‘ s 1 “ mmQ̂

2bb P Em|brrδss is an ultimately cyclic
series, where Q̂2

“ pQ̂ ‘ Q̂ 1
q is again a greatest core.

Proof.

s ‘ s 1 “ mmQ̂bb ‘ mmQ̂
1bb “ mmpEQ̂E ‘ EQ̂ 1Eqbb “ mm EpQ̂ ‘ Q̂ 1

qE
loooooomoooooon

Q̂2

bb

To perform multiplication between two series s1 “ mm1
Q̂1bb1 P Em1|b1rrδss, s2 “

mm2
Q̂2bb2 P Em2|b2rrδss in the core-form it is necessary to express the core matrices with

appropriate dimensions. Due to Prop. 30 and by choosing b “ lcmpb1,m2q we can express

s1, s2 such that s1 “ mm 1
1
Q̂ 1

1bb and s2 “ mbQ̂
1

2bb 1
2
, withm 1

1 “ m1 ̂ lcmpb1,m2q{b1 and

b 1
2 “ b2 ̂ lcmpb1,m2q{m2.

Proposition 32. Let s “ mmQbb P Em|brrδss and s 1 “ mbQ 1bb 1 P Eb|b 1rrδss be two ulti-
mately cyclic series, the product s b s 1 “ mmQ2bb 1 P Em|b 1rrδss is an ultimately cyclic series,
where Q2 “ QEQ 1.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

Proof.

s b s 1 “ mmQbbmbQ 1bb 1 “ mmQEQ 1bb 1 “ mmQ2bb 1

Moreover, the entries of the corematricesQ andQ 1
are ultimately cyclic series inMax

in vγ, δw.

Because of Theorem 2.6 the sum and product of ultimately cyclic series in Max
in vγ, δw are

again ultimately cyclic series in Max
in vγ, δw. Therefore, entries of Q2

are ultimately cyclic

series in Max
in vγ, δw and the product s b s 1 “ mmQ2bb 1 is an ultimately cyclic series in

Em|b 1rrδss.

Corollary 4. Let s “ mmQ̂bb P Em|brrδss and s 1 “ mbQ̂
1bb 1 P Eb|b 1rrδss be two ultimately

cyclic series, with Q̂, Q̂ 1 are greatest cores, the product s b s 1 “ mmQ̂
2bb 1 P Em|b 1rrδss is an

ultimately cyclic series, where Q̂2
“ Q̂Q̂ 1 is again a greatest core.

Proof.

s b s 1 “ mmQ̂bbmbQ̂
1bb 1 “ mmQ̂EQ̂ 1bb 1 “ mmQ̂Q̂ 1bb 1 ,

Furthermore: Q̂Q̂ 1
“ EQ̂EEQ̂ 1E “ Q̂2

.

Proposition 33. Let s “ mbQbb P Eb|brrδss. Then, s̊ “ mbpQEq̊bb P Eb|brrδss is an
ultimately cyclic series.

Proof. In this case, Γpsq “ b{b “ 1 means that Q is a square matrix. Moreover, recall that

bbE “ bb (3.44) and therefore s “ mbQEbb.

s̊ “ e ‘ mbQEbb ‘ mbQEbbmbQEbb ‘ ̈ ̈ ̈

Since, e “ mbbb (3.43), E “ bbmb (3.44) and E “ E̊ “ EE (3.48) ,

s̊ “ mbbb ‘ mbQEbb ‘ mbQEEQEbb ‘ ̈ ̈ ̈

“ mbpI ‘ QE ‘ pQEq2 ‘ ̈ ̈ ̈ qbb

“ mbpQEq̊bb.

Again due to Theorem 2.6 the Kleene star, sum, and product of ultimately cyclic series in

Max
in vγ, δw are ultimately cyclic series inMax

in vγ, δw and therefore, s̊ “ mbpQEq̊bb is an

ultimately cyclic series in Eb|brrδss.

Remark 13. Let s “ mbQ̂bb P Eb|brrδss be an ultimately cyclic series expressed with a greatest
core. Then, s̊ “ mbQ̂

̊bb P Eb|brrδss is an ultimately cyclic series. However, in general,
Q̂̊

ĺ EQ̂̊E as:

Q̂̊
“ I ‘ Q̂ ‘ Q̂2

̈ ̈ ̈

“ I ‘ EQ̂E ‘ EQ̂2E ̈ ̈ ̈ .
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3.3. Core Decomposition of Elements in Em|brrδss

Whereas,

EQ̂̊E “ EIE ‘ EQ̂E ‘ EQ̂"E ̈ ̈ ̈

“ E ‘ Q̂ ‘ Q̂2
̈ ̈ ̈ .

However, EQ̂̊E “ pEQ̂̊Eq̊ as E “ E ‘ I and EQ̂̊EEQ̂̊E “ EQ̂̊E. For an illustration,
consider the star of the zero element ε, clearly pεq̊ “ e. In the core-from, with m “ b “ 2,
this can be written as

pεq̊ “ m2

«

ε ε

ε ε

ff̊

b2 “ m2

«

e ε

ε e

ff

b2.

Note that in this case, I is not the greatest core, i.e. I ă EIE “ E.

In general, for complete partially ordered dioids, such as pErrδss,‘,bq, multiplication is

not distributive over ^, see (2.2). However, in the following lemmas, we show that dis-

tributivity holds for left multiplication by the mm-vector and right multiplication by the

bm-vector for specific matrices with entries in Errδss.

Lemma 2. Let Q1,Q2 P Errδssm̂b, then

mmpEQ1 ^ EQ2q “ mmEQ1 ^ mmEQ2.

Proof. The proof is similar to the proof of Lemma 4.36 in [1][Chap 4.3.]. There distributivity

is proven for cpa ^ bq “ ca ^ cb for the case that c admits a left and right inverse. For this

proof, recall that e “ mmbm (3.43), E “ bmmm (3.44) and E “ EE (3.45). Moreover, recall

that inequality cpa ^ bq ĺ ca ^ cb holds for a, b, c elements in a partially ordered dioid,

see (2.2). Now let us define q1 “ mmEQ1 and q2 “ mmEQ2, then

q1 ^ q2 “ epq1 ^ q2q “ mmbmpq1 ^ q2q ĺ mmpbmq1 ^ bmq2q.

Inserting q1 “ mmEQ1 and q2 “ mmEQ2 lead to,

mmpbmq1 ^ bmq2q “ mmpbmmmEQ1 ^ bmmmEQ2q,

“ mmpEEQ1 ^ EEQ2q,

“ mmpEQ1 ^ EQ2q.

Finally,

mmpEQ1 ^ EQ2q ĺ mmEQ1 ^ mmEQ2 “ q1 ^ q2.

Hence, equality holds throughout.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

Lemma 3. Let Q1,Q2 P Errδssm̂b, then

pQ1E ^ Q2Eqbb “ Q1Ebb ^ Q2Ebb.

Proof. The proof is similar to the proof of Lemma 2.

Proposition 34. Let s “ mmQ̂bb, s
1 “ mmQ̂

1bb P Em|brrδss be two ultimately cyclic series,
then s ^ s 1 “ mmQ̂

2bb P Em|brrδss is an ultimately cyclic series, where Q̂2
“ pQ̂ ^ Q̂ 1

q is
again a greatest core.

Proof. Let us recall that Q̂ “ EQ̂E, then according to Lemma 2 and Lemma 3 we can write

s ^ s 1 “ mmQ̂bb ^ mmQ̂
1bb “ mmEQ̂Ebb ^ mmEQ̂

1Ebb “ mmpEQ̂E ^ EQ̂ 1Eqbb

“ mmpQ̂ ^ Q̂ 1
qbb

“ mmpQ̂2
qbb.

It remains to be shown that Q̂2
“ pQ̂ ^ Q̂ 1

q is a greatest core. Clearly, E “ E̊ “ I ‘ E
implies that Q̂2

ĺ EQ̂2E. Then, according to Lemma 2 and Lemma 3,

EQ̂2E “ EpQ̂ ^ Q̂ 1
qE “ bmmmpQ̂ ^ Q̂ 1

qbbmb “ bmpmmQ̂bb ^ mmQ̂
1bbqmb.

Recall, cpa ^ bq ĺ ca ^ cb and pa ^ bqc ĺ ac ^ bc (2.2), therefore

bmpmmQ̂bb ^ mmQ̂
1bbqmb ĺ bmmmQ̂bbmb ^ bmmmQ̂

1bbmb “ Q̂ ^ Q̂ 1
“ Q̂2

.

Hence, equality holds throughout. Moreover, note that due to Theorem 2.6 Q̂2
is a matrix

where entries are ultimately cyclic series in Max
in vγ, δw, hence s ^ s 1 “ dωQ̂

2pω is an

ultimately cyclic series in Em|brrδss.

Division in the Core Form

Proposition 35. Let s “ mmQ̂bb P Em|brrδss, s 1 “ mmQ̂
1bb 1 P Em|b 1rrδss be two ultimately

cyclic series. Then,

s 1 z̋s “ mb 1pQ̂ 1
z̋Q̂qbb “ mb 1Q̂2bb,

is an ultimately cyclic series in Eb 1|brrδss, where Q̂2
“ Q̂ 1

z̋Q̂ is again a greatest core.

Proof. First, it is shown that

Q̂ 1
z̋Q̂ “ Eb 1pQ̂ 1

z̋Q̂qEb. (3.52)
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3.3. Core Decomposition of Elements in Em|brrδss

For this,

́

Eb 1

́

Q̂ 1
z̋Q̂

̄̄

Eb “

́

Eb 1 z̋

́

Eb 1

́

Q̂ 1
z̋Q̂

̄̄̄

Eb, since: Corollary 2

“

́

Eb 1 z̋

́

Eb 1

́́

Q̂ 1Eb 1

̄

z̋Q̂
̄̄̄

Eb, since: Q̂ “ Q̂E

“

́

Eb 1 z̋

́

Eb 1

́

Eb 1 z̋

́

Q̂ 1
z̋Q̂

̄̄̄̄

Eb,

since: pabq z̋x “ b z̋ pa z̋xq (A.5)

“

́

Eb 1 z̋

́

Q̂ 1
z̋Q̂

̄̄

Eb, since: a z̋ pa pa z̋xqq “ a z̋x (A.4)

“

́́

Q̂ 1Eb 1

̄

z̋Q̂
̄

Eb “

́

Q̂ 1
z̋Q̂

̄

Eb,

since: pabq z̋x “ b z̋ pa z̋xq (A.5) and Q̂ “ Q̂E

“

́́

Q̂ 1
z̋
̀

Q̂{̋Eb

̆

̄

Eb

̄

{̋Eb, since: Corollary 2 twice

“

́́́

Q̂ 1
z̋Q̂

̄

{̋Eb

̄

Eb

̄

{̋Eb, since: pa z̋xq{̋b “ a z̋px{̋bq (A.6)

“

́

Q̂ 1
z̋Q̂

̄

{̋Eb, since: ppx{̋aqaq{̋a “ x{̋a (A.4)

“ Q̂ 1
z̋
̀

Q̂{̋Eb

̆

“ Q̂ 1
z̋Q̂,

since: pa z̋xq{̋b “ a z̋px{̋bq (A.6) and Corollary 2 .

Second,

́

mmQ̂
1bb 1

̄

z̋
̀

mmQ̂bb

̆

“

́

Q̂ 1bb 1

̄

z̋
̀

mm z̋pmmQ̂bbq
̆

, because of (A.5),

“

́

Q̂ 1bb 1

̄

z̋
̀

bmmmQ̂bb

̆

, because of (3.49),

“

́

Q̂ 1bb 1

̄

z̋
̀

Q̂bb

̆

, as bmmmQ̂ “ Q̂ Remark 11,

“

́

Q̂ 1bb 1

̄

z̋
̀

Q̂{̋mb

̆

, from (3.50) and Remark 11,

“ bb 1 z̋

́

Q̂ 1
z̋pQ̂{̋mbq

̄

, because of (A.5),

“ bb 1 z̋

́

pQ̂ 1
z̋Q̂q{̋mb

̄

, because of (A.6),

“ mb 1pQ̂ 1
z̋Q̂qbb, because of (3.50) and (3.52).

Due to Theorem 2.6, the quotient Q̂ z̋Q̂ 1
is a matrix composed of ultimately cyclic series in

Max
in vγ, δw and therefore the quotient s 1 z̋s “ mb 1pQ̂ 1

z̋Q̂qbb is an ultimately cyclic series

in Eb 1|brrδss.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

Proposition 36. Let s “ mmQ̂bb P Em|brrδss, s 1 “ mm 1Q̂ 1bb P Em 1|brrδss be two ultimately
cyclic series. Then,

s{̋s 1 “ mmpQ̂{̋Q̂ 1
qbm 1 “ mmQ̂

2bm 1 ,

is an ultimately cyclic series in Em|m 1rrδss, where Q̂2
“ Q̂{̋Q̂ 1 is again a greatest core.

Proof. The proof is analogous to the proof of Prop. 35.

Let us note that to compute the infimum and the quotient of two series in the core-form

both series must be represented with their greatest cores.

Minimal Core-Form

In contrast, to extending a core, see Prop. 30, we can check if a series s P Em|brrδss can

be represented by a core-matrix with smaller dimensions. In the following, we prove that a

series s P Em|brrδss can be uniquely represented by a greatest core with minimal dimension.

Proposition 37. An ultimately cyclic series s P Em|brrδss has the minimal core-form s “

mmQ̂bb, where Q̂ P Max
in vγ, δw

m̂b is a canonical matrix of minimal dimensionsm ̂ b.

Proof. In the following, we give an algorithm to obtain the minimal core-form. Given a series

s “ mmQ̂bb P Em|brrδss, withK “ tn P N|m{n P N and b{n P Nu is the set of all common

divisors of m and b. The biggest n P K such that s “ mmQ̂bb “ mm{nQ̂
1bb{n determines

the canonical core-form of s. One can check for every n P K if s can be represented with

a smaller core Q̂ 1
P Max

in vγ, δw
m{n̂b{n

. First a core candidate
̃Q 1

P Max
in vγ, δw

m{n̂b{n
is

computed based on the firstm{n rows of Q̂. Second, the candidate
̃Q 1

is extended by n, see

Prop. 30. Therefore, s̃ “ mm{n
̃Q 1bb{n “ mm

̃Qbb. If
̃Q “ Q̂, then s can be represented by

s “ mm{n
̃Q 1bb{n. To obtain a core candidate we partition the core Q̂ into submatrices of

sizem{n ̂ b{n.

Q̂ “

»

—

—

—

—

–

Q11 Q12 ̈ ̈ ̈ Q1n

Q21 Q22 ̈ ̈ ̈ Q2n
.
.
.

.

.

.

.

.

.

Qn1 Q2n ̈ ̈ ̈ Qnn

fi

ffi

ffi

ffi

ffi

fl

)

m{n
)

m{n

)

m{n

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

m

loomoon

b{n

loomoon

b{n

loomoon

b{n

loooooooooooooooomoooooooooooooooon

b

,
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3.3. Core Decomposition of Elements in Em|brrδss

where for @i, j P t1, ̈ ̈ ̈nu, Qij P Max
in vγ, δw

m{n̂b{n
. Then a core candidate

̃Q is computed

based on the matrices Q11,Q12, ̈ ̈ ̈ ,Q1n as follows,

s̃ “

”

µln ̈ ̈ ̈ γĺ1µln

ı

Q11

»

—

—

–

βngγ
nǵ1

.

.

.

βngγ
nǵn

fi

ffi

ffi

fl

‘ ̈ ̈ ̈

‘

”

µln ̈ ̈ ̈ γĺ1µln

ı

Q1n

»

—

—

–

βngγ
ǵ1

.

.

.

βng

fi

ffi

ffi

fl

,

“ mlµnQ11βnγ
ń1bg ‘ ̈ ̈ ̈ ‘ mlµnQ1nβnbg,

“ ml

́

µnQ11βnγ
ń1 ‘ ̈ ̈ ̈ ‘ µnQ1nβn

̄

bg,

“ ml
̃Qbg.

Definition 37 (Causal Series in Em|brrδss). A series s “
À

iPZwiδ
i P Em|brrδss, with wì1 ĺ

wi, is said to be causal, if s “ ε or for all i ă 0, wi “ ε and for all i ě 0, wi ĺ µmβb. The
subset of causal pm,bq-periodic series of Em|brrδss is denoted by È

m|b
rrδss.

Remark 14. The causal projection Pr̀

m|b
: Em|brrδss Ñ È

m|b
rrδss, is given by, for s “ mmQ̂bb P

Em|brrδss

Pr
̀

m|b
psq “ Pr

̀

m|b

̀

mmQ̂bb

̆

“ mmPr
̀
̀

Q̂
̆

bb,

where Pr̀pQ̂q P Max̀
in vγ, δw

m̂b is the causal projection of the greatest core Q̂ in the dioid
Max

in vγ, δw, see Remark 6.

Example 26. Consider the operator γ́1δ0 P E1|1rrδss, clearly, this operator is not causal since
the exponent of γ is ́1, i.e., µ1β1 “ e “ γ0 ĺ γ́1. The causal projection Pr

̀

1|1
pγ́1δ0q “

γ0δ0 “ e. Therefore, e is the greatest p1, 1q-periodic causal operator smaller than γ́1δ0. This
coincides with the causal projection of the operator γ́1δ0 P Max

in vγ, δw, i.e., Pr̀pγ́1δ0q “

γ0δ0 “ e, see Remark 6. However, if we expressγ́1δ0 in its p2, 2q-periodic form, i.e., pγ́1µ2β2γ
1

‘µ2β2qδ0, and then perform the causal projection, i.e.,

Pr
̀

2|2

́

pγ́1µ2β2γ
1 ‘ µ2β2qδ0

̄

“ µ2β2δ
0

we obtain µ2β2δ
0. Observe that µ2β2δ

0 ą e “ pµ2β2γ
1‘γ1µ2β2qδ0 and hence Pr̀

2|2
pγ́1δ0q

ą Pr
̀

1|1
pγ́1δ0q. µ2β2δ

0 is the greatest p2, 2q-periodic causal operator smaller than γ́1δ0.
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As shown in Example 26, for s P Em|brrδss, the causal projection Pr
̀

m|b
psq only provides

the greatest causal pm,bq-periodic series such that Pr
̀

m|b
psq ĺ s, in general, there might be

a causal pnm,nbq-periodic series s 1
such that Pr

̀

m|b
psq ă s 1 ĺ s.

Remark 15. Let s “
À

iPZwiδ
i P Em|brrδss, with wì1 ĺ wi, and for all i ě 0, wi ĺ

µmβb, then the causal pm,bq-periodic series Pr̀

m|b
psq is the greatest causal series such that

Pr
̀

m|b
psq ĺ s.

3.4. Matrices with entries in Em|brrδss

In the last section the core decomposition for series in Em|brrδss was introduced. This

section extends the core representation to matrices with entries in Em|brrδss. We first give the

decomposition for a trivial example and then show how arbitrary matricesA P Em|brrδssĝp

can be handled. However, the focus of this section lies on a particular subclass of matrices

with entries in Em|brrδss, called consistent matrices. The study of this subclass is motivated

by the modeling of consistent WTEGs in the dioid pErrδss,‘,bq, see Section 6.2. Similarly

to Section 3.3 it is shown that all relevant operations on consistent matrices with entries in

Em|brrδss can be reduced to operations on matrices with entries inMax
in vγ, δw.

Example 27. Let us first consider the trivial case, in which all entries of a matrix are pm,bq-
periodic series in Em|brrδss. For instance, the following matrix A P Em|brrδss2̂2 with pm,bq-
periodic entries a11, a12, a21, a22 P Em|brrδss.

A “

«

a11 a12

a21 a22

ff

“

«

mmQ11bb mmQ12bb

mmQ21bb mmQ22bb

ff

.

This matrix can be represented in the following decomposed form

A “

«

mm ε

ε mm

ff«

Q11 Q12

Q21 Q22

ff

loooooomoooooon

Q

«

bb ε

ε bb

ff

.

Clearly, Q is a matrix with entries inMax
in vγ, δw of size 2m ̂ 2b.

In general, for matrices with entries in Em|brrδss, the entries may have different periods.

For instance, consider the matrix

A “

«

a11 a12

a21 a22

ff

“

«

m3Q11b2 m2Q12b3

m4Q21b5 m3Q22b3

ff

.
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For this matrix, the decomposition as shown in Example 27 is not possible. However, we can

decompose an arbitrary matrix A P Em|brrδssM̂N
as follows,

A “

»

—

—

–

a11 ̈ ̈ ̈ a1N
.
.
.

.

.

.

aM1 ̈ ̈ ̈ aMN

fi

ffi

ffi

fl

“

»

—

—

–

mm11
Q11bb11 ̈ ̈ ̈ mm1N

Q1Nbb1N
.
.
.

.

.

.

mmM1
QM1bbM1

̈ ̈ ̈ mmMN
QMNbbMN

fi

ffi

ffi

fl

“ MLQBR

where,

ML “

»

—

—

—

—

–

»

—

—

—

—

–

mm11
̈ ̈ ̈ mm1N

ε ̈ ̈ ̈ ε
.
.
.

.
.
.

.

.

.

ε ̈ ̈ ̈ ε

fi

ffi

ffi

ffi

ffi

fl

̈ ̈ ̈

»

—

—

—

—

–

ε ̈ ̈ ̈ ε
.
.
.

.
.
.

.

.

.

ε ̈ ̈ ̈ ε

mmM1
̈ ̈ ̈ mmMN

fi

ffi

ffi

ffi

ffi

fl

fi

ffi

ffi

ffi

ffi

fl

BR “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

»

—

—

—

—

—

–

bb11 ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε bb1N

fi

ffi

ffi

ffi

ffi

ffi

fl

.

.

.
»

—

—

—

—

—

–

bbM1
ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε bbMN

fi

ffi

ffi

ffi

ffi

ffi

fl

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Q11 ε ̈ ̈ ̈ ̈ ̈ ̈ ̈ ̈ ̈ ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
. Q1N

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
. QM1

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ̈ ̈ ̈ ̈ ̈ ̈ ̈ ̈ ̈ ε QMN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

In this form, Q is a block diagonal matrix again with entries inMax
in vγ, δw.
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3.4.1. Decomposition of Consistent Matrices

Definition 38. The gain of a matrix A P Em|brrδssp̂g, denoted by ΓpAq P Qp̂g, is defined
by

pΓpAqqi,j :“ Γ ppAqi,jq .

Remark 16. Note that, because for an pm,bq-periodic element a P Em|brrδss, m and b are
strictly positive integers, therefore the entries of ΓpAq P Qp̂g are again strictly positive.

Definition 39. A matrix A P Em|brrδssp̂g is called consistent, if rankpΓpAqq “ 1, i.e., the
rank of its corresponding gain matrix is 1.

Remark 17. When we consider matrices with entries in Em|brrδss and some entries equal to
the zero element ε, the gain to these elements can be freely chosen to any positive value in Q.
Recall that @k P Zmin, Fεpkq “ 8 and therefore @k P Zmin, @m,b P N, Fεpk ̀ bq “

m ̀ Fεpkq “ 8. Hence, we can choose any period for the ε operator (Remark 8). Now recall
that for s P Em|brrδss, Γpsq “ m{b (Definition 32), therefore the gain Γpεq can be chosen to any
value in Q. Thus, if we check (minimize) the rank of the matrix ΓpAq the entries pAqi,j equal
to ε are variables.

Example 28. Consider the following matrix A P Em|brrδss2̂2,

A “

«

e µ2β3δ
2

ε µ4β1δ
3

ff

.

The corresponding gain matrix ΓpAq is

ΓpAq “

«

1 2
3

a 4

ff

,

where a P Q, a ą 0 is variable. Clearly, for a “ 6, the matrix ΓpAq has rank 1 and thus the
matrix A is consistent.

We use the adjective consistent for matrices with entries in Em|brrδss since a consistent

WTEG admits a consistent transfer function matrix H P Em|brrδss, this is shown in Section

6, Prop. 95. In the sequel, we elaborate the core decomposition for consistent matrices with

entries in Em|brrδss. Furthermore, we give the conditions under which the sum, product, and

quotient of consistent matrices are again consistent matrices.

Theorem 3.1 ([41](0.4.6(e))). Let N P Qp̂g be a matrix of rank 1, then N can be written as
a product: N “ LR where L P Qp̂1 and R P Q1̂g.

Remark 18. The full-rank factorization of N is not unique. Therefore, given a matrix N P

Qp̂g be of rank 1, thenN can bewritten asN “ LR, whereL P Zp̂1 andR “ r1{r1 ̈ ̈ ̈ 1{rgs P

Q1̂g, where @i P t1, ̈ ̈ ̈ , gu, ri P Z.
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Remark 19. Recall the fact that the gain of an element a P Em|brrδss is a strictly positive value.
Therefore, given a consistent matrix A P Em|brrδssp̂g we can express the gain ΓpAq P Qp̂g

by the product acar where ac P Qp̂1 is a column vector with strictly positive entries and
ar P Q1̂g is a row vector with strictly positive entries.

In general, a consistent matrix A P Em|brrδssĝp
can be decomposed into a Max

in vγ, δw

matrix (core), a matrix Mw and a matrix Bw 1 , which are block diagonal matrix where the

entries aremm-vectors and bb-vectors, i.e.,

Mw “

»

—

—

—

—

—

–

mm1
ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε mmp

fi

ffi

ffi

ffi

ffi

ffi

fl

, Bw 1 “

»

—

—

—

—

—

–

bb1 ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε bbg

fi

ffi

ffi

ffi

ffi

ffi

fl

.

The indicesw “ rm1 ̈ ̈ ̈mps andw 1 “ rb1 ̈ ̈ ̈bgs are vectors, the entries of which represent

the multiplication and division coefficients.

Example 29.

Mr3 2s “

»

–

”

µ3 γ1µ3 γ2µ3

ı

ε

ε
”

µ2 γ1µ2

ı

fi

fl

Br2 3s “

»

—

—

—

—

—

—

–

«

β2γ
1

β2

ff

ε

ε

»

—

–

β3γ
2

β3γ
1

β3

fi

ffi

fl

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Similarly to the scalar case, where mibi “ e and bimi “ E, the product MwBw 1 and

Bw 1Mw are specific matrices. Let us consider a specific matrixMw and a specific matrix Bw 1

such that w “ w 1
, thus both matrices have the same weight vector w. Then, by recalling

that mmi
bmi

“ e (3.43),

MwBw “

»

—

—

—

—

—

–

mm1
bm1

ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε mmpbmp

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

e ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε e

fi

ffi

ffi

ffi

ffi

ffi

fl

“ I.
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Moreover, because of bmi
mmi

“ Emi
(3.44),

BwMw “

»

—

—

—

—

—

–

bm1
mm1

ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε bmpmmp

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

Em1
ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε Emp

fi

ffi

ffi

ffi

ffi

ffi

fl

.

This product BwMw is denoted by Ew. As in the scalar case, one has EwEw “ Ew;MwEw “

Mw and Ew 1Bw 1 “ Bw 1 .

Proposition 38. ForMw (resp. Bw 1) we have

Mw z̋D “ BwD, O{̋Bw 1 “ OMw 1 , (3.53)

pNEwq{̋Mw “ pNEwqBw, Bw 1 z̋pEw 1Gq “ Mw 1pEw 1Gq, (3.54)

where D, O, N andG are matrices of appropriate size and with entries in Errδss.

Proof. See Section C.1.3 in the Appendix.

Proposition 39. Let A P Em|brrδssp̂g be a consistent matrix, then A can be decomposed in
the following form:

A “

»

—

—

–

a11 ̈ ̈ ̈ a1n
...

...

ap1 ̈ ̈ ̈ apn

fi

ffi

ffi

fl

“

»

—

—

–

mm1
Q̂11bb1 ̈ ̈ ̈ mm1

Q̂1gbbg
...

...

mmpQ̂p1bb1 ̈ ̈ ̈ mmpQ̂pgbbg

fi

ffi

ffi

fl

,

“

»

—

—

—

—

—

–

mm1
ε ̈ ̈ ̈ ε

ε
. . . . . .

...
...

. . . . . . ε

ε ̈ ̈ ̈ ε mmp

fi

ffi

ffi

ffi

ffi

ffi

fl

looooooooooooooomooooooooooooooon

Mw

»

—

—

–

Q̂11 ̈ ̈ ̈ Q̂1g
...

...

Q̂p1 ̈ ̈ ̈ Q̂pg

fi

ffi

ffi

fl

loooooooooomoooooooooon

Q̂

»

—

—

—

—

—

–

bb1 ε ̈ ̈ ̈ ε

ε
. . . . . .

...
...

. . . . . . ε

ε ̈ ̈ ̈ ε bbg

fi

ffi

ffi

ffi

ffi

ffi

fl

looooooooooooomooooooooooooon

Bw 1

. (3.55)

Proof. Due to Theorem 3.1 one can represent all entries of a row pAqi,: with the same mi-

vector. Similarly one can represent all entries of a column pAq:,i with the same bi-vector.

Then the mi-vector are factored out on the left in the Mw-matrix and the bi-vector are

factored out on the right in the Bw 1-matrix.

Example 30. Consider the following matrix A P Em|brrδss2̂2,

A “

«

pµ3β2γ
1 ‘ γ2µ2β3qδ1pγ1δ1q̊ µ3β2δ

2

µ4β1 µ4β1δ
3

ff

.
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Expressing all elements of the matrix in the core form leads to,

A “

»

—

—

—

—

—

—

—

—

—

—

—

–

m3

»

—

–

δ1pγ1δ2q̊ γ1δ2pγ1δ2q̊

ε ε

δ2pγ1δ2q̊ δ1pγ1δ2q̊

fi

ffi

fl

b2 m3

»

—

–

ε δ2

ε ε

ε ε

fi

ffi

fl

b2

m4

»

—

—

—

—

–

e

ε

ε

ε

fi

ffi

ffi

ffi

ffi

fl

b1 m4

»

—

—

—

—

–

δ3

ε

ε

ε

fi

ffi

ffi

ffi

ffi

fl

b1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The gain matrix ΓpAq of matrix A is,

ΓpAq “

«

3
2

3
2

4 4

ff

“

«

3

8

ff

”

1
2

1
2

ı

.

Clearly, ΓpAq has rank 1, thusA is consistent. Moreover, ΓpAq has a rank 1 factorization given

by the vectors
”

3 8

ıT
and

”

1{2 1{2

ı

. According to the entries of
”

3 8

ıT
all entries of the

first row of matrixA are expressed with them3-vector and all entries of the second row with the
m8-vector. Respectively, according to the entries of

”

1{2 1{2

ı

all entries of the first column
of matrix A are expressed with the b2-vector and all entries of the second column with the b2-
vector. This is achieved by extending the core-matrices of the entries pAq1,2 and pAq2,2, Prop. 30
and leads to,

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

m3

»

—

–

δ1pγ1δ2q̊ γ1δ2pγ1δ2q̊

δ1pγ1δ2q̊ γ1δ2pγ1δ2q̊

δ2pγ1δ2q̊ δ1pγ1δ2q̊

fi

ffi

fl

b2 m3

»

—

–

δ2 δ2

δ2 δ2

δ2 δ2

fi

ffi

fl

b2

m8

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

e γ1

e γ1

e γ1

e γ1

e e

e e

e e

e e

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

b2 m8

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

δ3 γ1δ3

δ3 γ1δ3

δ3 γ1δ3

δ3 γ1δ3

δ3 δ3

δ3 δ3

δ3 δ3

δ3 δ3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

b2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that in this form the entries are expressed with their greatest core-matrices. This matrix
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can now be written as a product in the following form,

A “

«

m3 ε

ε m8

ff

looooomooooon

Mr3 8s

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

δ1pγ1δ2q̊ γ1δ2pγ1δ2q̊ δ2 δ2

δ1pγ1δ2q̊ γ1δ2pγ1δ2q̊ δ2 δ2

δ2pγ1δ2q̊ δ1pγ1δ2q̊ δ2 δ2

e γ1 δ3 γ1δ3

e γ1 δ3 γ1δ3

e γ1 δ3 γ1δ3

e γ1 δ3 γ1δ3

e e δ3 δ3

e e δ3 δ3

e e δ3 δ3

e e δ3 δ3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

loooooooooooooooooooooooomoooooooooooooooooooooooon

Q

«

b2 ε

ε b2

ff

loooomoooon

Br2 2s

.

Clearly in this form Q is a matrix with entries in Max
in vγ, δw.

Greatest Core-Matrix in the Matrix Case

As in the scalar case, where Q̂ “ EQE is the greatest core of the series s “ mmQbb P

Em|brrδss, it can be shown that EwQEw 1 is the greatest core of the consistent matrix A “

MwQBw 1 P Em|brrδssp̂g
.

Proposition 40. LetA “ MwQBw 1 P Em|brrδssp̂g be the decomposition ofA P Em|brrδssp̂g.
Then the greatest core matrix is given by

Q̂ :“ EwQEw 1 . (3.56)

Proof. Consider the inequalityMwX̃Bw 1 ĺ MwQBw 1 “ A. The greatest solution for X̃ is

Mw z̋pMwQBw 1q{̋Bw 1 “ BwMwQBw 1Mw 1 “ EwQEw 1 “ Q̂.

Furthermore, Q̂ is indeed a core of A P Em|brrδssp̂g
, as Mw “ MwEw and Bw 1 “ Ew 1Bw 1 ,

therefore

MwQ̂Bw 1 “ MwEwQEw 1Bw 1 “ MwQBw 1 “ A.

Prop. 40 implies that EwQ̂ “ Q̂Bw 1 “ Q̂. Similarly to the core extension in Prop. 30 the

core Q̂ can be extended as follows.
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Proposition 41. A consistent matrix A “ MwQ̂Bw 1 P Em|brrδssp̂g can be expressed with
multiple periods by extending the core matrix Q̂, i.e.,

A “

»

—

—

—

—

—

–

mm1
ε ̈ ̈ ̈ ε

ε
. . . . . .

...
...

. . . . . . ε

ε ̈ ̈ ̈ ε mmp

fi

ffi

ffi

ffi

ffi

ffi

fl

looooooooooooooomooooooooooooooon

Mw

»

—

—

–

Q̂11 ̈ ̈ ̈ Q̂1g
...

...

Q̂p1 ̈ ̈ ̈ Q̂pg

fi

ffi

ffi

fl

loooooooooomoooooooooon

Q̂

»

—

—

—

—

—

–

bb1 ε ̈ ̈ ̈ ε

ε
. . . . . .

...
...

. . . . . . ε

ε ̈ ̈ ̈ ε bbg

fi

ffi

ffi

ffi

ffi

ffi

fl

looooooooooooomooooooooooooon

Bw 1

,

“

»

—

—

—

—

—

–

mnm1
ε ̈ ̈ ̈ ε

ε
. . . . . .

...
...

. . . . . . ε

ε ̈ ̈ ̈ ε mnmp

fi

ffi

ffi

ffi

ffi

ffi

fl

loooooooooooooooomoooooooooooooooon

Mpnwq

»

—

—

–

Q̂ 1

11 ̈ ̈ ̈ Q̂ 1

1g
...

...

Q̂ 1

p1 ̈ ̈ ̈ Q̂ 1

pg

fi

ffi

ffi

fl

loooooooooomoooooooooon

Q̂ 1

»

—

—

—

—

—

–

bnb1 ε ̈ ̈ ̈ ε

ε
. . . . . .

...
...

. . . . . . ε

ε ̈ ̈ ̈ ε bnbg

fi

ffi

ffi

ffi

ffi

ffi

fl

looooooooooooooomooooooooooooooon

Bpnw 1q

.

Proof. @i P t1, ̈ ̈ ̈ , pu, @j P t1, ̈ ̈ ̈ , gu, Q̂ 1

ij can be obtained by extending Q̂ij, see Prop. 30.

3.4.2. Calculation with Matrices

Sum and Product in the Matrix Case

Proposition 42. Let A,P P Em|brrδssm̂p be two consistent matrices, then the sum A ‘ P is
a consistent matrix if and only if ΓpAq “ ΓpPq.

Proof. This follows fromProp. 16, all entries pA‘Pqi,jmust satisfy ΓppA‘Pqi,jq “ ΓppAqi,jq “

ΓppPqi,jq.

Recall that due to Prop. 41, by extending the core-form if necessary, two consistent matri-

ces with equal gain can be expressed with their least common period.

Proposition 43 (Sum of Matrices). Let A “ MwQ̂Bw 1 , P “ MwQ̂
1Bw 1 P Em|brrδssm̂p be

two consistent matrices satisfying Prop. 42, then the sum A ‘ P “ MwQ̂
2Bw 1 , where Q̂2

“

Q̂ ‘ Q̂ 1 is again a greatest core.

Proof.

MwQ̂Bw 1 ‘ MwQ̂
1Bw 1 “ MwpEwQEw 1 ‘ EwQ 1Ew 1qBw 1

“ Mw EwpQ ‘ Q 1qEw 1
loooooooomoooooooon

Q̂2

Bw 1

75



3. Dioids pE ,‘,bq and pErrδss,‘,bq

Clearly, the product of two consistent matrices is not necessarily consistent itself. In the

following proposition, the conditions are given under which the product of two consistent

matrices is again consistent.

Proposition 44. Let A P Em|brrδssp̂g and P P Em|brrδssĝl be two consistent matrices, then
the product A b P is consistent if and only if @k P t2, ̈ ̈ ̈ , gu,

̀

ΓpAq
̆

1,k

̀

ΓpPq
̆

k,1
“
̀

ΓpAq
̆

1,1

̀

ΓpPq
̆

1,1
. (3.57)

Proof. Recall
̀

A b P
̆

i,j
“

Àg
k“1

̀

pAqi,k b pPqk,j
̆

(2.10), this sum is in Em|brrδss iff @k P

t1, ̈ ̈ ̈ , gu,

Γ
̀

pAqi,k
̆

Γ
̀

pPqk,j
̆

“ Γ
̀

pAqi,1
̆

Γ
̀

pPq1,j
̆

,

see Prop. 18. It is sufficient to check this property for i “ j “ 1, i.e., for the first row of

matrix ΓpAq and first column of matrix ΓpPq, since both matrices have rank 1 and therefore

all rows/columns are linearly dependent.

Corollary 5. Let A P Em|brrδssp̂g and P P Em|brrδssĝl be consistent matrices satisfying
Prop. 44. Then, ΓpAq “ acar and ΓpPq “ pcpr, where ac P Qp̂1, ar P Q1̂g, pc P Qĝ1

and pr P Q1̂l (Remark 19). Then, ar is linearly dependent to every row of ΓpAq and pc is
linearly dependent to every column of ΓpPq. Therefore, (3.57) can be written as,

parq1ppcq1 “ parqkppcqk, @k P t1, ̈ ̈ ̈ , gu. (3.58)

Then gain matrix ΓpAPq is given by

ΓpAPq “ ac

̀

parq1ppcq1
̆

pr. (3.59)

Proof. Form (3.57) follows that,

pΓpAPqqi,j “ pΓpAqqi,1pΓpPqq1,j

“ pacqiparq1ppcq1pprqj.

Hence ΓpAPq “ ac

̀

parq1ppcq1
̆

pr.

Proposition 45 (Product of Matrices). Let A “ MwQ̂Bw 1 , P “ Mw 1Q̂ 1Bw2 P Em|brrδss

be two consistent matrices satisfying Prop. 44, then the product AP “ MwQ̂
2Bw2 , where

Q̂2
“ Q̂Q̂ 1 is again a greatest core.

Proof. Because of, Bw 1Mw 1 “ Ew 1 and Q̂Ew 1 “ Q̂,

MwQ̂Bw 1Mw 1Q̂ 1Bw2 “ MwQ̂Ew 1Q̂ 1Bw2 “ MwQ̂Q̂ 1Bw2 ,

Furthermore: Q̂Q̂ 1
“ EwQEw 1Ew 1Q 1Ew2 “ Q̂2

.
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3.4. Matrices with entries in Em|brrδss

Proposition 46. Let A P Em|brrδssn̂n be a consistent matrix, then the Kleene star Å is a
consistent matrix if and only if ΓpAq “ acar, where ac P Qn̂1 and ar P Q1̂n such that
pacqi “ pparqiq

́1, @i P t1, ̈ ̈ ̈ , nu.

Proof. The Kleene star of matrix A is computed by

Å “ I ‘ A ‘ AA ‘ ̈ ̈ ̈

According to Prop. 42 and Prop. 44 we need

1. ΓpIq “ ΓpAq,

2. ΓpAq = ΓpAAq.

To satisfy (1) the diagonal entries of ΓpAq must be equal to 1, i.e., @i P t1, ̈ ̈ ̈nu, ΓpAqi,i “

pacqi ̂ parqi “ 1. Clearly, this condition is satisfied if pacqi “ pparqiq
́1

. Moreover, (3.58)

and Prop. 44 is satisfied as well. Then for (2) recall Corollary 5, thus

ΓpAAq “ ac

̀

parq1pacq1
̆

ar “ acar “ ΓpAq,

since parq1pacq1 “ parq1pparq1q́1 “ 1.

Corollary 6. Let A P Em|brrδssp̂g be a consistent matrix satisfying Prop. 46, then ΓpAq “

ΓpÅq.

Proposition 47 (Kleene Star of a Matrix). Let A “ MwQ̂Bw P Em|brrδssn̂n be a consistent
matrix satisfying Prop. 46, then Å “ MwQ̂

̊Bw.

Proof. Note that, Mw-matrix and the Bw-matrix having the same weight vector w, implies

that Q̂ is a square matrix. Then since,MwBw “ I, BwMw “ Ew and EwQ̂ “ Q̂,

Å “ I ‘ MwQ̂Bw ‘ MwQ̂BwMwQ̂Bw ‘ ̈ ̈ ̈ .

“ MwBw ‘ MwQ̂Bw ‘ MwQ̂
2Bw ‘ ̈ ̈ ̈ ,

“ MwpI ‘ Q̂ ‘ Q̂2
‘ ̈ ̈ ̈ qBw,

“ MwQ̂
̊Bw.

Again not that Q̂̊
ĺ EwQ̂

̊Ew, hence Q̂
̊
is not the greatest core of Å

.

Division in the Matrix Case

Proposition 48. Let A P Em|brrδssp̂g and P P Em|brrδssp̂l be consistent matrices, then the
left division A z̋P is consistent iff Dc P Q, c ą 0 such that,

c
̀

ΓpAq
̆

k,1
“
̀

ΓpPq
̆

k,1
, @k P t1, ̈ ̈ ̈ , pu.
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3. Dioids pE ,‘,bq and pErrδss,‘,bq

Proof. Let us recall that pA z̋Pqi,j “
Źp

k“1ppAqk,i z̋pPqk,jq (2.24), this infimum is in Em|brrδss

iff @k P t1, ̈ ̈ ̈ , pu,

Γ
̀

pAqk,i z̋pPqk,j
̆

“ Γ
̀

pAq1,i z̋pPq1,j
̆

.

Moreover, recall Γps2 z̋s1q “ Γps1q{Γps2q (Prop. 20), thus @k P t1, ̈ ̈ ̈ , pu,

Γ
̀

pAqk,i z̋pPqk,j
̆

“ Γ
̀

pAq1,i z̋pPq1,j
̆

ô
ΓppPqk,jq

ΓppAqk,iq
“

ΓppPq1,jq

ΓppAq1,iq

ô

̀

ΓpPq
̆

k,j
̀

ΓpAq
̆

k,i

“

̀

ΓpPq
̆

1,j
̀

ΓpAq
̆

1,i

.

Finally, @k P t1, ̈ ̈ ̈ , pu,

̀

ΓpPq
̆

k,j
“

̀

ΓpPq
̆

1,j
̀

ΓpAq
̆

1,i

̀

ΓpAq
̆

k,i
“ cij

̀

ΓpAq
̆

k,i
,

where cij “ pΓpPqq1,j{pΓpAqq1,i P Q. Since the equation above must hold @k P t1, ̈ ̈ ̈ , pu

this condition can be expressed by,

̀

ΓpPq
̆

:,j
“ cij

̀

ΓpAq
̆

:,i
.

Recall that ΓpAq and ΓpPq have rank 1, therefore all columns of ΓpAq (resp. ΓpPq) are linearly

dependent. Hence, it is sufficient to consider

̀

ΓpPq
̆

:,1
“ c11

̀

ΓpAq
̆

:,1
.

Or differently,

̀

ΓpPq
̆

k,1
“ c11

̀

ΓpAq
̆

k,1
, @k P t1, ̈ ̈ ̈ , pu.

Differently stated, the left divisionA z̋P is consistent if and only if every column of matrix

ΓpAq is linearly dependent to every column of matrix ΓpPq. Note that since both matrices

have rank 1 it is sufficient to check linear dependence for the first column of matrix ΓpAq

and ΓpPq.

Corollary 7. Let A P Em|brrδssp̂g and P P Em|brrδssp̂l be consistent matrices satisfying
Prop. 48. Moreover, ΓpAq “ acar and ΓpPq “ pcpr, with ac,pc P Qp̂1, ar P Q1̂g and
pr P Q1̂l. The gain matrix ΓpA z̋Pq is given by

ΓpA z̋Pq “ āc
pacq1

ppcq1
pr, (3.60)

where āc “ rpparq1q́1 pparq1q́1 ̈ ̈ ̈ pparqgq́1sT .
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3.4. Matrices with entries in Em|brrδss

Proposition 49. Let A P Em|brrδssp̂g and P P Em|brrδssl̂g be consistent matrices, then the
right division A{̋P is consistent iff, Dc P Q, c ą 0 such that

c
̀

ΓpAq
̆

1,k
“
̀

ΓpPq
̆

1,k
, @k P t1, ̈ ̈ ̈ , gu.

Proof. The proof is analogous to the proof of Prop. 48.

Differently stated, the right division A{̋P is consistent if and only if every row of matrix

ΓpAq is linearly dependent to every row of matrix ΓpPq. Then again since ΓpAq and ΓpPq

have rank 1 it is sufficient to check linear dependence for the first row of matrices ΓpAq and

ΓpPq.

Corollary 8. Let A P Em|brrδssp̂g and P P Em|brrδssl̂g be consistent matrices, satisfying
Prop. 49. Moreover, ΓpAq “ acar and ΓpPq “ pcpr, with ar,pr P Q1̂g, ac P Qp̂1 and
pc P Ql̂1. The gain matrix ΓpA{̋Pq is given by

ΓpA{̋Pq “ ac
parq1

pprq1
p̄r, (3.61)

where p̄r “ rppcq1q́1 ppcq2q́1 ̈ ̈ ̈ ppcqlq
́1s.

Proposition 50 (Left Division of Matrices). Let A P Em|brrδssp̂g and P P Em|brrδssp̂l be
consistent matrices satisfying Prop. 48. The quotientP z̋A is computed based on their core-forms,
i.e. A “ MwQ̂Bw 1 , P “ MwQ̂

1Bw2 , in the following way

P z̋A “ Mw2pQ̂ 1
z̋Q̂qBw 1 .

Proof. The proof is analogous to Prop. 35.

Proposition 51 (Right Division of Matrices). Let A P Em|brrδssp̂g and P P Em|brrδssl̂g be
consistent matrices, satisfying Prop. 49. The quotientP{̋A is computed based on their core-forms,
i.e. A “ MwQ̂Bw 1 , P “ Mw2Q̂ 1Bw 1 in the following way

A{̋P “ MwpQ̂{̋Q̂ 1
qBw2 .

Proof. The proof is analogous to Prop. 35.
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4
Dioids pT ,‘,bq and pT rrγss,‘,bq

In this chapter, the dioids pT ,‘,bq and pT rrγss,‘,bq are introduced. These dioids have

an application in themodeling and the control of Periodic Time-variant Event Graphs (PTEGs)

(resp. Timed Event Graphs (TEGs) under partial synchronization (PS)). The dioids pT ,‘,bq

and pT rrγss,‘,bq are the counterpart to the dioids pE ,‘,bq and pErrδss,‘,bq studied in

Chapter 3. In contrast to pErrδss,‘,bq, which consists of specific event-variant operators,

the dioid pT rrγss,‘,bq consists of specific time-variant operators. Therefore, many results

are similar to the results obtained for the dioid pErrδss,‘,bq in Chapter 3. Specifically, in

Section 4.2 the core-form for periodic elements in T rrγss is similar to the core-form for peri-

odic elements in Em|brrδss, see Section 3.3. It is shown that for periodic elements in T rrγss all

relevant operations p‘,b, z̋, {̋q in T rrγss can be reduced to operations betweenmatrices with

entries inMax
in vγ, δw. The presented results in this chapter have partially been published in

[67, 68, 69].

4.1. Dioid pT rrγss,‘,bq

The firing of a transition in a PTEG, respectively in a TEG under PS can be naturally

described by a dater function x : Z Ñ Zmax. For these functions, xpkq represents the time of

the pk ̀ 1qst firing of the associated transition. Note that dater functions are isotone. In the

following the dioid pT rrγss,‘,bq is introduced as a set of operators on dater functions. We

denote by Ξ the set of isotone mappings from Z into Zmax. This set Ξ is a Zmax-semimodule

equipped with addition, defined to the pointwise addition in the dioid

(Zmax,‘,b), thus for x1, x2 P Ξ

@k P Z,
̀

x1 ‘ x2
̆

pkq :“ x1pkq ‘ x2pkq “ maxpx1pkq, x2pkqq, (4.1)

and a scalar multiplication defined by, for λ P Zmax and x1 P Ξ,

@k P Z,
̀

λ b x1
̆

pkq :“ λ ̀ x1pkq. (4.2)

The zero and top mapping on Ξ, denoted by ε̃ resp. ̃J, are defined by

@k P Z, ε̃pkq :“ ε (Recall that in Zmax, ε “ ́8 ),

@k P Z, ̃Jpkq :“ J (Recall that in Zmax, J “ 8 ).
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4. Dioids pT ,‘,bq and pT rrγss,‘,bq

Clearly, pΞ,‘, ε̃q is a complete idempotent commutative monoid, see Definition 3. The order

relation on Ξ coincides with the order in the dioid pZmax,‘,bq, i.e., the standard order on

Z. Thus, for x1, x2 P Ξ,

x1 ĺ x2 ô x1 ‘ x2 “ x2, (4.3)

ô x1pkq ‘ x2pkq “ x2pkq, @k P Z,
ô max

̀

x1pkq, x2pkq
̆

“ x2pkq, @k P Z,
ô x1pkq ď x2pkq, @k P Z.

The infimum (^ operator) on the set Ξ is defined by

@k P Z, px1 ^ x2qpkq :“ x1pkq ^ x2pkq “ minpx1pkq, x2pkqq.

Definition 40 (Operator). An operator is a lower semi-continuous mapping f : Ξ Ñ Ξ from
the set Ξ into itself, such that fpε̃q “ ε̃. Including the property fpε̃q “ ε̃ implies that f is an
endomorphism. The set of these operators is denoted by O.

Proposition 52 ([16]). The set of operators O, equipped with multiplication and addition as
follows,

f1, f2 P O, @x P Ξ
̀

f1 ‘ f2
̆

pxq :“ f1pxq ‘ f2pxq, (4.4)

f1, f2 P O, @x P Ξ
̀

f1 b f2
̆

pxq :“ f1
̀

f2pxq
̆

, (4.5)

is a complete dioid.

Proof. The proof is equivalent to the proof of Prop. 8 in Section 3.1.

Recall Prop. 5, therefore the zero and unit element ofO are given by, @x P Ξ, ε̂pxq :“ ε̃ and

êpxq :“ x. Again, to simplify notation the multiplication symbol b is often omitted and we

write usually fx instead of fpxq. Due to (2.1) the ‘ operation induces a partial order relation

on O, defined by

f1 ľ f2 ô f1 ‘ f2 “ f1,

ô
̀

f1x
̆

pkq ‘
̀

f2x
̆

pkq “
̀

f1x
̆

pkq, @x P Ξ, @k P Z,

ô min

́

̀

f1x
̆

pkq,
̀

f2x
̆

pkq

̄

“
̀

f1x
̆

pkq @x P Ξ, @k P Z. (4.6)

Subsequently, two operators f1, f2 P O are equal iff @x P Ξ, @k P Z: pf1xqpkq “ pf2xqpkq .

Moreover, pO,‘,bq is a complete dioid, thus the top mapping is given by, @x P Ξ,

Ĵpxq “

$

&

%

ε̃ for: x “ ε̃,

̃J otherwise,

(4.7)

and the infimum is defined as, for f1, f2 P O,

f1 ^ f2 “
à

tf3 P O|f3 ‘ f1 ĺ f1, f3 ‘ f2 ĺ f2u.
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4.1. Dioid pT rrγss,‘,bq

Proposition 53. The following operators are both endomorphic and lower semi-continuous and
thus in O.

τ P Z, δτ : @x P Ξ, pδτxqpkq “ xpkq ̀ τ, (4.8)

ω,ϖ P N, ∆ω|ϖ : @x P Ξ, p∆ω|ϖxqpkq “ rxpkq{ϖsω, (4.9)

where ras is the least integer greater than or equal to a.

Proof. The mapping δτ is an endomorphism and it is lower semi-continuous. First, since τ P

Z is an integer @k P Z,
̀

δτpε̃q
̆

pkq “ τ̀ ε̃pkq “ τ̀ ṕ8q “ ́8, thus

̀

δτpε̃q
̆

pkq “ ε̃pkq.

Moreover, for all finite and infinite subsets X Ď Ξ,
́

δτ
̀à

xPX
x
̆

̄

pkq “ τ ̀

́

à

xPX
x
̄

pkq “ τ ̀ max

xPX

̀

xpkq
̆

“ max

xPX

̀

τ ̀ xpkq
̆

“

́

à

xPX
δτx

̄

pkq,

which proves the lower semi-continuity of δτ. For the mapping ∆ω|ϖ again ω,ϖ P N are

finite positive integers, therefore @k P Z,
̀

∆ω|ϖpε̃q
̆

pkq “ rε̃pkq{ϖsω “ rṕ8q{ϖsω “

́8 and

̀

∆ω|ϖpε̃q
̆

pkq “ ε̃pkq. Moreover, for all finite and infinite subsets X Ď Ξ,

́

∆ω|ϖ

̀
à

xPX
x
̆

̄

pkq “

S

̀
À

xPX x
̆

pkq

ϖ

W

ω “

S

maxxPX
̀

xpkq
̆

ϖ

W

ω,

“ max

xPX

̃S

xpkq

ϖ

W

ω

̧

“ max

xPX

́

̀

∆ω|ϖx
̆

pkq

̄

,

“

́

à

xPX
∆ω|ϖx

̄

pkq.

Proposition 54. The operators δτ and ∆ω|ϖ introduced in Prop. 53 satisfy the following rela-
tions

δτδτ
1

“ δτ̀τ 1

, δτ ‘ δτ
1

“ δmaxpτ,τ 1q, (4.10)

∆ω|ϖδ
ϖ “ δω∆ω|ϖ. (4.11)

Proof. For the proof of δτδτ
1

“ δτ̀τ 1

, since (4.5) and (4.8), then @x P Ξ,@k P Z,
̀

δτδτ
1

x
̆

pkq “
̀

δτpδτ
1

xq
̆

pkq “ τ ̀ pδτ
1

xqpkq “ τ ̀ τ 1 ̀ xpkq “
̀

δτ̀τ 1

x
̆

pkq.

For the proof of δτ ‘ δτ
1

“ δmaxpτ,τ 1q
, since (4.4), (4.1) and (4.8), then @x P Ξ,@k P Z,

̀

pδτ ‘ δτ
1

qx
̆

pkq “
̀

δτx ‘ δτ
1

x
̆

pkq “ max

̀

pδτxqpkq, pδτ
1

xqpkq
̆

“ max

̀

τ ̀ xpkq, τ 1 ̀ xpkq
̆

“ maxpτ, τ 1q ̀ xpkq

“
̀

δmaxpτ,τ 1qx
̆

pkq.
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4. Dioids pT ,‘,bq and pT rrγss,‘,bq

For the proof of (4.11), recall (4.8) and (4.9), then @x P Ξ,@k P Z,

p∆ω|ϖδ
ϖxqpkq “

Qxpkq ̀ ϖ

ϖ

U

ω “

Qxpkq

ϖ
̀ 1

U

ω “

Qxpkq

ϖ

U

ω ̀ ω

“ pδω∆ω|ϖxqpkq.

Remark 20. (4.11) implies that for ́b ă τ ď 0, ∆ω|bδ
τ∆b|ϖ “ ∆ω|ϖ, since,

p∆ω|bδ
τ∆b|ϖxqpkq “

S

rxpkq{ϖsb ̀ τ

b

W

ω,

“

S

Qxpkq

ϖ

U

̀
τ

b

W

ω,

“

Qxpkq

ϖ

U

ω, since ́1 ă
τ

b
ď 0,

“ p∆ω|ϖxqpkq.

4.1.1. Dioid of Time Operators

Definition 41 (Dioid of Time Operators). The dioid of time operators, denoted by pT ,‘,bq,
is defined by sums and compositions over the set tê, ε̂, Ĵ, δτ, ∆ω|ϖu with ω,ϖ P N, τ P Z,
equipped with addition and multiplication defined in (4.4) and (4.5), respectively.

Clearly pT ,‘,bq is a complete subdioid of pO,‘,bq. Similarly to the dioid pE ,‘,bq,

introduced in Section 3.1.1, the dioid pT ,‘,bq is not commutative, i.e. let v1, v2 P T , then

in general v1v2 ‰ v2v1. The order on T , naturally induced by ‘ is as follows. Let v1, v2 P T
then @x P Ξ, @k P Z,

v1 ľ v2 ô v1 ‘ v2 “ v1,

ô v1x ‘ v2x “ v1x,

ô
̀

v1x
̆

pkq ‘
̀

v2x
̆

pkq “
̀

v1x
̆

pkq,

ô max

́

̀

v1x
̆

pkq,
̀

v2x
̆

pkq

̄

“
̀

v1x
̆

pkq.

Recall that x : Z Ñ Zmax is an isotone mapping, an operator v P T only manipulates the

value of the mapping x. Therefore, we can associate a function Rv : Zmax Ñ Zmax to a

T-operator v P T . This function Rv is obtained by replacing xpkq by t in the expression

vpxqpkq. For example pp∆3|4δ
1 ‘ δ2∆3|3qxqpkq “ maxprpxpkq ̀ 1q{4s3, 2 ̀ rxpkq{3s3q and

therefore R∆3|4δ
1‘δ2∆3|3

ptq “ maxprpt ̀ 1q{4s3, 2 ̀ rt{3s3q. We denote by R the set of

functions generated by all operators in T . Since T-operators are lower-semi continuous,
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4.1. Dioid pT rrγss,‘,bq

then functions in R are lower-semi continuous and isotone. For a reason explained later

on in Section 6.1.3, we call functions in R release-time function. Clearly, the set R and the

set of T-operators T are isomorphic, therefore the order relation over the dioid pT ,‘,bq

corresponds to the order induced by the max operation on R. For v1, v2 P T ,

v1 ľ v2 ô v1 ‘ v2 “ v1

ô pv1xqpkq ‘ pv2xqpkq “ pv1xqpkq @x P Ξ, @k P Z,
ô Rv1ptq ľ Rv2ptq @t P Zmax,

ô Rv1ptq ě Rv2ptq, @t P Zmax. (4.12)

The release-time function Rv provides a graphical representation of a T-operator v P T .

Moreover, the order relation on T has a graphical interpretation which is shown in the fol-

lowing example.

Example 31. Figure 4.1a illustrates the release-time function Rδ2∆4|4δ
-1 associated to the T-

operator δ2∆4|4δ
́1 P T . The gray area shaped by Rδ2∆4|4δ

-1 corresponds to the domain of
release-time functions (resp. T-operators) less than or equal toRδ2∆4|4δ

-1 (resp. δ2∆4|4δ
́1). Con-

sider now the release-time function Rδ1∆4|4δ
-2 associated to the operator δ1∆4|4δ

́2. Rδ1∆4|4δ
-2

lies in the area shaped byRδ2∆4|4δ
-1 (Rδ1∆4δ-2

is beneathRδ2∆4δ-1
) and therefore δ1∆4|4δ

́2 ĺ

δ2∆4|4δ
́1. In contrast, consider the operators δ́3∆4|4 and∆4|4δ

́1 with corresponding release-
time functions shown in Figure 4.1b. Rδ́3∆4|4

does not cover and is not covered by R∆4|4δ
́1 ,

therefore δ́3∆4|4 ł ∆4|4δ
́1 and δ́3∆4|4 ń ∆4|4δ

́1.

R
δ2∆4|4δ-1

R
δ1∆4|4δ-2

t

Rptq

-4 -2 2 4 6 8

-2

2

4

6

8

10

12

(a) Rδ2∆4|4δ-1 ą Rδ1∆4|4δ-2

R
∆4|4δ-1

R
δ-3∆4|4

t

Rptq

-2 2 4 6 8 10 12

-2

2

4

6

8

10

12

(b) Rδ-3∆4|4‘∆4|4δ-1 .

Figure 4.1. – (a) Rδ2∆4|4δ-1 covers Rδ1∆4|4δ-2 . (b) Rδ-3∆4|4
does not cover and is not covered by

R∆4|4δ-1 .
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4. Dioids pT ,‘,bq and pT rrγss,‘,bq

Periodic T-operators

Definition 42. A T-operator v P T is said to beω-periodic if Dω P N such that, @x P Ξ, @k P

Z, pvpω b xqqpkq “ ω b pvpxqqpkq. The set of ω-periodic T-operators is denoted by Tω.
Moreover, the set of periodic operators is defined by Tper “

Ť

ωPN Tω.

Definition 43. A release-time functionR : Zmax Ñ Zmax is called quasiω-periodic if Dω P

N such that @t P Zmax, Rvpt ̀ ωq “ ω ̀ Rvptq.

Remark 21. Since the periodic property does only depend on the value xpkq (the time) we
can neglect the argument k for examining the periodic property of a T-operator. Therefore, a
T-operator v P T isω-periodic if its corresponding release-time functionRv is quasiω-periodic.

Example 32. The δτ operator, with τ P Z is p1q-periodic since Rδτptq “ t ̀ τ one has
Rδτpt ̀ 1q “ pt ̀ 1q ̀ τ “ 1 ̀ Rδτptq. For example, see Figure 4.2a for the graphical
representation of the δ3 operator. The δ2∆2|2δ

́1 operator is p2q-periodic, with a graphical
illustration given in Figure 4.2b. In contrast, the∆2|1 operator, shown in Figure 4.2c, is according
to Definition 42 not periodic sinceR∆2|1

ptq “ rt{1s2 and therefore @t P Zmax,R∆2|1
pt̀ 1q “

2 ̀ R∆2|1
ptq.

t

Rptq

-2 2 4 6

-2

2

4

6

(a) Rδ3

t

Rptq

-2 2 4 6

-2

2

4

6

(b) Rδ2∆2|2δ-1

t

Rptq

-2 2 4 6

-2

2

4

6

(c) R∆2|1

Figure 4.2. – In (a) the function Rδ3 is quasi p1q-periodic. In (b) the function Rδ2∆2|2δ-1 is quasi

p2q-periodic. (c) the functionR∆2|1
is not quasi ω-periodic.

Proposition 55 (Canonical form of an ω-periodic T-operator). An ω-periodic T-operator
v P Tper has a canonical form given by a finite sum

ÀI
i“1 δ

τi∆ω|ωδ
τ 1
i . Moreover, the sum is

strictly ordered such that @i P t1, ̈ ̈ ̈ , I ́ 1u, τi ă τì1 and 1 ́ ω ă τ 1 ď 0.

Proof. We first show that an ω-periodic T-operator v P Tper can be represented as

v “

ώ1
à

i“0

δRvṕiq∆ω|ωδ
íὼ1. (4.13)
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4.1. Dioid pT rrγss,‘,bq

For this, we consider the operator w “
Àώ1

i“0 wi with wi “ δRvṕiq∆ω|ωδ
íὼ1

. The

release-time function associated to wi is

Rwi
ptq “ Rvṕiq ̀

Qt ̀ i ́ ω ̀ 1

ω

U

ω.

Hence, Rw is given by

Rwptq “ max

́

Rvp0q ̀

Qt ́ ω ̀ 1

ω

U

ω, Rvṕ1q ̀

Qt ́ ω ̀ 2

ω

U

ω, ̈ ̈ ̈

Rvp1 ́ ωq ̀

Q t

ω

U

ω
̄

. (4.14)

Clearly, Rw is a quasi ω-periodic function. To prove that v can be represented as (4.13) we

have to show thatRwptq “ Rvptq. BecauseRw andRv are both quasiω-periodic functions

it is sufficient to check Rwptq “ Rvptq for t “ t1 ́ ω, ̈ ̈ ̈ , 0u. Let us remark that Rv is

isotone and thus,

̈ ̈ ̈ ď Rvp0q ́ ω ď Rvp1 ́ ωq ď ̈ ̈ ̈ ď Rvp0q ď Rvp1 ́ ωq ̀ ω ď ̈ ̈ ̈

We evaluate (4.14) for t “ 0, this leads to

Rwp0q “max

́

Rvp0q ̀

Q1 ́ ω

ω

U

ω, Rvṕ1q ̀

Q2 ́ ω

ω

U

ω, ̈ ̈ ̈

Rvp1 ́ ωq ̀

Q 0

ω

U

ω
̄

“max

̀

Rvp0q,Rvṕ1q, ̈ ̈ ̈ ,Rvp1 ́ ωq
̆

“Rvp0q.

Similarly, one can show that for t P t1́ω, ̈ ̈ ̈ ,́1u,Rwptq “ Rvptq. For this, recall (4.14)

Rwptq “ max

́

Rvp0q ̀

Qt ̀ 1 ́ ω

ω

U

ω, Rvṕ1q ̀

Qt ̀ 2 ́ ω

ω

U

ω, ̈ ̈ ̈

Rvp1 ́ ωq ̀

Q t

ω

U

ω
̄

.

For 1 ď j ď ω and 1 ́ ω ď t ď ́1 observe that,

Qt ̀ j ́ ω

ω

U

ω “

$

&

%

́ω, for t ̀ j ă 0

0, for t ̀ j ě 0,

therefore,

Rwptq “ max

̀

Rvp0q ́ ω, ̈ ̈ ̈ ,Rvpt ̀ 1q ́ ω,Rvptq, ̈ ̈ ̈

̈ ̈ ̈ ,Rvp1 ́ ωq
̆

,

“ Rvptq,

and v “ w “
Àώ1

i“0 wi “
Àώ1

i“0 δRvṕiq∆ω|ωδ
íὼ1

. The canonical representation is the

one obtained by removing redundant wi according to the order relation given in (4.12).
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4. Dioids pT ,‘,bq and pT rrγss,‘,bq

Remark 22. Clearly, an ω-periodic operator is also nω-periodic. Therefore, an ω-periodic
operator v is represented in a nω-periodic form given by

v “

nώ1
à

i“0

δRvṕiq∆nω|nωδ
ínὼ1.

Proposition 56. Theω-periodic∆ω|ω operator can be represented in an expendednω-periodic
form by the sum

∆ω|ω “

ń1
à

i“0

δ́iω∆nω|nωδ
́pń1́iqω.

Proof. See Section C.2.1 in the appendix.

Corollary 9. The 1-periodic identity operator e “ ∆1|1 can be represented in the specific form

e “

ώ1
à

i“0

δ́i∆ω|ωδ
1̀íω.

Example 33. The 1-periodic identity operator e “ ∆1|1 is represented in a 3-periodic form
given by e “ ∆3|3δ

́2 ‘ δ́1∆3|3δ
́1 ‘ δ́2∆3|3, see Figure 4.3.

R
∆3|3δ́2

R
δ́1∆3|3δ́1

R
δ́2∆3|3

t

Rptq

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

Figure 4.3. –Reptq is equal to maxpR∆3|3δ́2ptq,Rδ́1∆3|3δ́1ptq,Rδ́2∆3|3
ptqq.

Proposition 57. The set of periodic operators Tper equipped with addition and multiplication
defined in (4.4) and (4.5) is a complete subdioid of pT ,‘,bq.

Proof. Clearly, the unit, zero and top element e, ε and J belong to Tper. Moreover, due to

Definition 4 one has to show that the set of periodic operators Tper are closed for addition

and multiplication. Given two periodic operators v1, v2 P Tper, due to Remark 22, v1 and v2
are expressed with their least common periodω in the following form

v1 “

I
à

i“1

δτi∆ω|ωδ
τ 1
i , v2 “

J
à

j“1

δtj∆ω|ωδ
t 1
j .
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4.1. Dioid pT rrγss,‘,bq

Then the sum, v1 ‘ v2 “
ÀI

i“1 δ
τi∆ω|ωδ

τ 1
i ‘

ÀJ
j“1 δ

tj∆ω|ωδ
t 1
j is clearly an ω-periodic

operator. This also holds for infinite sums. The product v1 b v2 is as wellω-periodic, recall

that ∆ω|ωδ
τ∆ω|ω “ ∆ω|ω for ́ω ă τ ď 0 (Remark 20), hence,

v1 b v2 “

́ I
à

i“1

δτi∆ω|ωδ
τ 1
i

̄

b

́ J
à

j“1

δtj∆ω|ωδ
t 1
j

̄

,

“

I
à

i“1

J
à

j“1

δτi∆ω|ωδ
τ 1
iδtj∆ω|ωδ

t 1
j ,

“

I
à

i“1

J
à

j“1

δτìrpτìtjq{ωsω∆ω|ωδ
t 1
j .

The distributivity of left and right multiplication over infinite sums are carried over from the

dioid pT ,‘,bq.

Corollary 10. The set of ω-periodic operators Tω equipped with addition and multiplication
defined in (4.4) and (4.5) is a complete subdioid of pT ,‘,bq and pTper,‘,bq.

Causal T-Operators

Definition 44. A T-operator v P T is said to be causal if v “ ε or if its corresponding release-
time function satisfies, @t P Zmax,

Rvptq ě t. (4.15)

Clearly, the least causal operator in T (except ε) is the unit operator e with the release-time

function, Reptq “ t.

4.1.2. Dioid of Formal Power Series pT rrγss,‘,bq

The event-shift operator γη
is defined as a mapping over Ξ as follows,

η P Z γη : @x P Ξ, k P Z
̀

γηx
̆

pkq “ xpk ́ ηq. (4.16)

Clearly, the γη
mapping is lower-semi continuous, since for all finite and infinite subsets

X Ď Ξ
́

γη
̀à

xPX
x
̆

̄

pkq, “
̀à

xPX
x
̆

pk ́ ηq

“
à

xPX
xpk ́ ηq, due to (4.1),

“
à

xPX

̀

γηx
̆

pkq, due to (4.16).
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4. Dioids pT ,‘,bq and pT rrγss,‘,bq

Furthermore, pγηε̃qpkq “ ε̃pk ́ ηq and since @k P Z, ε̃pkq “ ́8, then η P Z, @k P Z,
pγηε̃qpkq “ ε̃pḱηq “ ε̃pkq “ ́8. Therefore, the event-shift operator is an endomorphism,

i.e., γη P O. Moreover, the event-shift operator commutes with all T-operators, i.e., @v P

T , vγη “ γηv, since,

̀

pγηvqx
̆

pkq “
̀

γηpvxq
̆

pkq, since (4.5),

“
̀

vx
̆

pk ́ ηq, since (4.16),

“
̀

vpγηxq
̆

pkq, again (4.16),

“
̀

pvγηqx
̆

pkq, again (4.5).

Definition 45. (Dioid pT rrγss,‘,bq) We denote by pT rrγss,‘,bq the quotient dioid in the
set of formal power series in one variable γ with exponents in Z and coefficients in the non-
commutative complete dioid pT ,‘,bq induced by the equivalence relation @s P T rrγss,

s “ pγ1q̊s “ spγ1q̊. (4.17)

Hence we identify two series s1, s2 with the same equivalence class if s1γ
̊ “ s2γ

̊
. It

is helpful to think of sγ̊
as the representative of the equivalence class of s. Note that we

can interpret elements in T rrγss as isotone functions s : Z Ñ T , where spηq refers to the

coefficient of γη
. Hence, @η P Z, spηq ĺ spη ̀ 1q. The quotient structure (4.17) allows

assimilating the variable γ to the event-shift operator γ P O, defined in (4.16). Recall the

definition for addition and multiplication on formal power series (2.13) and (2.14), respec-

tively. Therefore we obtain the following definition for addition and multiplication in the

dioid pT rrγss,‘,bq.

Definition 46. Let s1, s2 P T rrγss, then addition and multiplication are defined by

s1 ‘ s2 “
à

ηPZ

̀

s1pηq ‘ s2pηq
̆

γη,

s1 b s2 “
à

ηPZ

̃

à

ǹn 1“η

̀

s1pnq b s2pn 1q
̆

̧

γη.

As before, ‘ defines an order on T rrγss, i.e., a, b P T rrγss : a ‘ b “ b ô a ĺ b.

Remark 23. Recall that pTper,‘,bq and pTω,‘,bq are complete subdioids of pT ,‘,bq,
then from Prop. 4 it follows that pTperrrγss,‘,bq and pTωrrγss,‘,bq are complete subdioids of
pT rrγss,‘,bq. Moreover, pTωrrγss,‘,bq is a complete subdioid of pTperrrγss,‘,bq.

Monomial, Polynomial and ultimately cyclic Series in T rrγss

A monomial in T rrγss is defined by vγη
, where v P T . A polynomial is a finite sum of

monomials, i.e.,
ÀI

i“1 viγ
ηi
. The ordering of two periodic monomials v1γ

η1 , v2γ
η2 P T rrγss

90



4.1. Dioid pT rrγss,‘,bq

can be checked as follows,

v1γ
η1 ĺ v2γ

η2 ô

$

&

%

v1 ĺ v2,

η1 ě η2.
(4.18)

Proposition 58. Let p P Tperrrγss, then p has a canonical form p “
ÀJ

j“1 v
1
jγ

η 1
j such that

@j P t1, ̈ ̈ ̈ , Ju, theω-periodic T-operator v 1
j is in the canonical form of Prop. 55, and coefficients

and exponents are strictly ordered, i.e., for j P t1, ̈ ̈ ̈ , J ́ 1u, η 1
j ă η 1

j̀1 and v
1
j ă v 1

j̀1.

Proof. Without loss of generality, we can assume that p “
ÀI

i“1 viγ
ηi
, with ηi ă ηì1, i “

1, ̈ ̈ ̈ I ́ 1. As p P Tperrrγss, we identify all elements s with their maximal representation

sγ̊
, we can also identify p and

p 1 “

I
à

i“1

́ i
à

j“1

vj

loomoon

v 1
i

̄

γηi

as pγ̊ “ p 1γ̊
. Hence, v 1

i ĺ v 1
ì1. If v

1
i “ v 1

ì1 we can write v 1
iγ

ηi ‘ v 1
ì1γ

ηì1 “ v 1
ipγ

ηi ‘

γηì1q “ v 1
iγ

ηi . For that we can write p 1
as

ÀJ
j“1 v

1
jγ

η 1
j with v 1

j ă v 1
j̀1 and J ď I.

Definition 47. (Ultimately Cyclic Series in T rrγss ): A series s P T rrγss is said to be ultimately
cyclic if it can be written as s “ p ‘ qpγηδτq̊, where η, τ P N0 and p, q are polynomials in
T rrγss.

Note that a polynomial p “
ÀI

i“0 viγ
ni

can be considered as a specific ultimately cyclic

series s “ ε ‘ ppγ0δ0q̊
where η “ 0 and τ “ 0.

Similarly to Errδss, an element s P T rrγss has a graphical representation in the Zmax ̂

Zmax ̂ Z. Given a series s “
À

i viγ
i P T rrγss, this graphical representation is obtained by

depicting for every i the release-time function Rvi of the coefficient vi in the (input-time /

output-time)-plane of i.

Example 34. For the graphical representation of the polynomialp “ pδ1∆4|4δ
́1‘δ́2∆4|4qγ0‘

pδ5∆4|4δ
́1 ‘ δ2∆4|4qγ2 ‘ pδ5∆4|4 ‘ δ6∆4|4δ

́1qγ4 P Tperrrγss, respectively its representative
pγ̊ see Figure 4.4. The slices in the (I/O-time)-plane for the event-shift values k “ 0, 1 are il-
lustrated in Figure 4.5a. These slices correspond to the release-time functionRδ1∆4|4δ

́1‘δ́2∆4|4

of the coefficient δ1∆4|4δ
́1 ‘ δ́2∆4|4 for γ0 (resp. γ1) in p. The slices for k “ 2, 3 and k ě 4

are shown in Figure 4.5b and Figure 4.5c. To improve readability, the graphical representation
for elements s P T rrγss has been truncated to non-negative values in Figure 4.4 and Figure 4.5.
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Figure 4.4. – 3D representation of polynomial p “ pδ1∆4|4δ
́1 ‘ δ́2∆4|4qγ0 ‘ pδ5∆4|4δ

́1 ‘

δ2∆4|4qγ2 ‘ pδ5∆4|4 ‘ δ6∆4|4δ
́1qγ4
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(c) k ě 4

Figure 4.5. – Slices of the coefficients of p in the (I/O-time)-plane. (a) Rδ1∆4|4δ́1‘δ́2∆4|4
, (b)

Rδ5∆4|4δ́1‘δ2∆4|4
and (c) Rδ5∆4|4‘δ6∆4|4δ́1
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4.2. Core Decomposition of Elements in Tperrrγss

Similarly to Section 3.3, in this section, a specific decomposition of series in Tperrrγss is

proposed. It is shown that a periodic series s P Tperrrγss can always be represented as s “

dωQpω whereQ is a square matrix inMax
in vγ, δw of sizeω̂ω, dω is a row vector defined

as

dω :“
”

∆ω|1 δ́1∆ω|1 ̈ ̈ ̈ δ1́ω∆ω|1

ı

,

and pω is a column vector defined as

pω :“
”

∆1|ωδ
1́ω ̈ ̈ ̈ ∆1|ωδ

́1 ∆1|ω

ıT
.

The indexω determines the dimension of the vectors. It is important to note that in this form

the core matrixQ is a matrix with entries inMax
in vγ, δw. An advantage of this representation

is that all relevant operations on periodic series s P Tperrrγss can be reduced to operations

on square matrices with entries in Max
in vγ, δw. In the following, this decomposition is first

demonstrated on a small example.

Example 35. Consider the following series in Tperrrγss,

s “ ∆2|2 ‘ δ1∆2|2δ
́1 ‘ δ2∆2|2γ

2pδ2γ2q̊

Because of ∆ω|ϖ “ ∆ω|b∆b|ϖ (Remark 20), δω∆ω|ϖ “ ∆ω|ϖδ
ϖ
(4.11) and @v P T , vγ “ γv,

this series can be rewritten as

s “ ∆2|1 e
loomoon

M1

∆1|2 ‘ δ́1∆2|1 δ1
loomoon

M2

∆1|2δ
́1 ‘ ∆2|1 δ

1γ2pδ1γ2q̊
loooooomoooooon

S1

∆1|2.

Clearly M1,M2 and S1 are elements in Max
in vγ, δw. We now can rewrite s in the core repre-

sentation,

s “

”

∆2|1 δ́1∆2|1

ı

«

ε e ‘ δ1γ2pδ1γ2q̊

δ1 ε

ff«

∆1|2δ
́1

∆1|2

ff

,

due to e ‘ δ1γ2pδ1γ2q̊ “ pδ1γ2q̊,

s “

”

∆2|1 δ́1∆2|1

ı

loooooooomoooooooon

d2

«

ε pδ1γ2q̊

δ1 ε

ff

looooooomooooooon

Q

«

∆1|2δ
́1

∆1|2

ff

loooomoooon

p2

,

which is in the required form.
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4. Dioids pT ,‘,bq and pT rrγss,‘,bq

Proposition 59. Let s “
À

i viγ
i P Tperrrγss be anω-periodic series, then s can be written as

s “ dωQpω, where Q P Max
in vγ, δw

ω̂ω.

Proof. s being an ω-periodic series implies that all coefficients vi of s are ω-periodic T-

operators. Then due to Prop. 55 all coefficients can be expressed in canonical form vi “
ÀJi

j“1 δ
τij∆ω|ωδ

τ 1
ij with Ji ď ω and ́ω ă τ 1

ij
ď 0. Then s can be rewritten as

s “
à

i

̀

Ji
à

j“1

δ
τij∆ω|ωδ

τ 1
ij
̆

γi.

By using ∆ω|ω “ ∆ω|1∆1|ω (Remark 20), δω∆ω|1 “ ∆ω|1δ
1
(4.11) and vγ “ γv, @v P T ,

the series s is written as

s “
à

i

̀

Ji
à

j“1

δ
τ̃ij∆ω|1δ

τ̂ijγi∆1|ωδ
τ 1
ij
̆

,

where ́ω ă τ̃ij “ τij ́ rτij{ωsω ď 0 and τ̂ij “ rτij{ωs. Observe that ́ω ă τ̃ij , τ
1
ij

ď 0

hence we can express s by

s “

”

∆ω|1 δ́1∆ω|1 ̈ ̈ ̈ δ1́ω∆ω|1

ı

à

i

̀

Ji
à

j“1

Qij

̆

»

—

—

—

—

–

∆1|ωδ
1́ω

̈ ̈ ̈

∆1|ωδ
́1

∆1|ω

fi

ffi

ffi

ffi

ffi

fl

,

where the entry pQijq1́τ̃ij ,ὼτ 1
ij

“ δ
τ̂ijγi

and all other entries of Qij are equals ε. Finally s

is in the required form s “ dωQpω, where Q “
À

i

̀
ÀJi

j“1Qij

̆

.

For the particular case of an ultimately cyclic series s P Tperrrγss, the core-matrixQ is ob-

tained as follows. The ultimately cyclic series s “
ÀI

i viγ
ni ‘

ÀJ
j v

1
jγ

n 1
jpδτγνq̊ P Tperrrγss

is written, such that all coefficients vi and v
1
j are represented with their least common period

(Remark 22), i.e.,

s “

L
à

l“1

δtl∆ω|ωδ
t 1
lγnl ‘

K
à

k“1

δξk∆ω|ωδ
ξ 1
kγnkpδτγνq̊.

Recall that ∆ω|ϖ “ ∆ω|b∆b|ϖ (Remark 20) therefore,

s “

L
à

l“1

δtl∆ω|1∆1|ωδ
t 1
lγnl ‘

K
à

k“1

δξk∆ω|1∆1|ωδ
ξ 1
kγnkpδτγνq̊.
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Note that the δω operator commutes with ∆ω|ω, i.e., δω∆ω|ω “ ∆ω|ωδ
ω
(4.11). Moreover,

we can always represent an ultimately cyclic series s P Tperrrγss such that τ is a multiple of

ω, i.e., we can extend pγνδτ̃q̊
such that, τ “ lτ̃ “ lcmpτ̃,ωq

pγνδτ̃q̊ “ pe ‘ γνδτ̃ ‘ ̈ ̈ ̈ ‘ γpĺ1qνδpĺ1qτ̃qpγlνδlτ̃q̊

“ pe ‘ γνδτ̃ ‘ ̈ ̈ ̈ ‘ γpĺ1qνδpĺ1qτ̃qpγlνδτq̊.

Therefore, in the following we assume τ{ω P N, thus ∆1|ωpδτγνq̊ “ pδτ{ωγνq̊∆1|ω. This

leads to

s “

L
à

l“1

δt̃l∆ω|1 δ
t̂lγnl

loomoon

Ml

∆1|ωδ
t̃ 1
l ‘

K
à

k“1

δ
̃ξk∆ω|1 δ

ξ̂kγnkpδτ{ωγνq̊
looooooooomooooooooon

Sk

∆1|ωδ
̃ξ 1
k ,

with ́ω ă t̃l, t̃
1
l,
̃ξk, ̃ξ

1
k ď 0. In this representation Ml are monomials and Sk are series in

Max
in vγ, δw. Moreover, the entries of the pω-vector appear on the right and the entries of

the dω-vector appear on the left of monomial Ml (resp. series Sk). For a given s we denote

the set of monomials by M “ tM1, ̈ ̈ ̈ ,MLu and the set of series by S “ tS1, ̈ ̈ ̈ , SKu.

Furthermore, the subsetsMi,j (resp. Si,j ) are defined as, @i, j P t0, ̈ ̈ ̈ ,ω ́ 1u

Mi,j :“ tMl P M| δ́i∆ω|1Ml∆1|ωδ
́j P

L
à

l“1

δt̃l∆ω|1Ml∆1|ωδ
t̃ 1
lu,

Si,j :“ tSk P S| δ́i∆ω|1Sk∆1|ωδ
́j P

K
à

k“1

δ
̃ξk∆ω|1Sk∆1|ωδ

̃ξ 1
ku.

The entry pQqì1,ώj of the core matrix is then given by

pQqì1,ώj “
à

MPMi,j

M ‘
à

SPSi,j

S.

Remark 24. Note that, for series s “ dωQpω P Tperrrγss be an ultimately cyclic series, the
entries of Q are ultimately cyclic series inMax

in vγ, δw.

Properties of dω and pω

In the following, we elaborate some properties of the dω-vector and pω-vector, which

are necessary for computations in the core-from. The scalar product dω b pω of these two

vectors is the identity e:

dω b pω “δ0∆ω|1∆1|ωδ
1́ω ‘ ̈ ̈ ̈ ‘ δ1́ω∆ω|1∆1|ωδ

0

“δ0∆ω|ωδ
1́ω ‘ ̈ ̈ ̈ ‘ δ1́ω∆ω|ωδ

0 “ e, (4.19)
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4. Dioids pT ,‘,bq and pT rrγss,‘,bq

where the latter inequalities hold because of∆ω|1∆1|ω “ ∆ω|ω (Remark 20) and Corollary 9.

For an illustration see Example 33. The dyadic product pω b dω is a square matrix with

entries in Max
in vγ, δw denoted by N. For i, j P t1, ̈ ̈ ̈ ,ωu, the entry ppω b dωqi,j is given

by,

pNqi,j “ ppω b dωqi,j “ ∆1|ωδ
píjq̀p1́ωq∆ω|1.

Then, because of ∆1|ωδ
́ω “ δ́1∆1|ω and ∆1|ωδ

́n∆ω|1 “ ∆1|1 “ e for ́ω ă ́n ď 0,

see Remark 20,

N “ pω b dω “

»

—

—

—

—

—

–

e δ́1 ̈ ̈ ̈ δ́1

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
. δ́1

e ̈ ̈ ̈ ̈ ̈ ̈ e

fi

ffi

ffi

ffi

ffi

ffi

fl

. (4.20)

Proposition 60. For the N matrix the following relations hold

N b N “ N, (4.21)

N b pω “ pω, (4.22)

dω b N “ dω. (4.23)

Proof.

N b N “ pω b dω b pω b dω “ pω b e b dω “ N,
N b pω “ pω b dω b pω “ pω b e “ pω,

dω b N “ dω b pω b dω “ e b dω “ dω.

Corollary 11. Observe that I ‘ N “ N and N b N “ N, hence

N “ I ‘ N ‘ NN ‘ ̈ ̈ ̈

“ N̊. (4.24)

Due to the scalar product dωpω “ e (3.43) and N “ N̊
(4.24), under some conditions the

left and right product of elements in T rrγss by dω and pω are invertible, see the following

proposition.

Proposition 61. For A P T rrγss1̂ω and G P T rrγssω̂1, we have

dω z̋A “ pω b A, G{̋pω “ G b dω. (4.25)

For O P T rrγssω̂ω we have

pONq{̋dω “ pONq b pω, pω z̋pNOq “ dω b pNOq. (4.26)
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4.2. Core Decomposition of Elements in Tperrrγss

Proof. See Section C.2.2 in the appendix.

Proposition 62. ForD P T rrγssω̂ω, N z̋pNDq “ ND and pDNq{̋N “ DN.

Proof. Recall, that N “ N̊
(4.24) and that å z̋påxq “ åx (resp. påxq{̋å “ xå

), see

(A.9), which completes the proof.

Greatest Core of a Series s P Tperrrγss

In general a series s P Tperrrγss may have several core-representations. In the following it

is shown that a series s P Tperrrγss admits a unique greatest core, denoted Q̂, i.e., s “ dωQ̂pω

and Q̂ ľ Q for all core matrices Q such that s “ dωQpω. Note that the greatest core is

referred to the order relation in the dioid pMax
in vγ, δw ,‘,bq.

Proposition 63. Let s “ dωQpω P Tperrrγss be a decomposition of s P Tperrrγss. The greatest
core matrix is given by

Q̂ “ NωQNω. (4.27)

Proof. Consider the inequality dωX̃pω ĺ dωQpω “ s. Then, because of Prop. 61 the

greatest solution for X̃ is

dω z̋dωQpω{̋pω “ pωdωQpωdω “ NωQNω “ Q̂.

Furthermore, because of dω “ dωNω and pω “ Nωpω (Prop. 60),

dωQ̂pω “ dωNωQNωpω “ dωQpω “ s.

Remark 25. The greatest core matrix Q̂ has the following properties. Since: N b N “ N,
NQ̂ “ NNQN “ Q̂; Q̂N “ NQNN “ Q̂.

Example 36. The greatest core of the series considered in Example 35 is given by

Q̂ “ NQN “

«

e δ́1

e e

ff«

ε pδ1γ2q̊

δ1 ε

ff«

e δ́1

e e

ff

“

«

pδ1γ2q̊ pδ1γ2q̊

δ1 ‘ δ1γ2pδ1γ2q̊ pδ1γ2q̊

ff

.
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4.2.1. Calculation with the Core Decomposition

Sum and Product of Periodic Series in Tperrrγss

In this section, it is shown that operations on ultimately cyclic series in Tperrrγss can be

reduced to operations on matrices with entries inMax
in vγ, δw.

To perform addition andmultiplication of two series s1 “ mω1
Q̂1bω1

, s2 “ mω2
Q̂2bω2

P

Tperrrγss in the core-form it is necessary to express the core matrices Q̂1 P Max
in vγ, δw

ω1̂ω1

and Q̂2 P Max
in vγ, δw

ω2̂ω2
with equal dimensions. This is possible by expressing both

series with their least common periodω “ lcmpω1,ω2q, see the following proposition.

Proposition 64. An ultimately cyclic series s “ dωQ̂pω P Tperrrγss can be expressed with a
multiple period nω by extending the core matrix Q̂, i.e., s “ dωQ̂pω “ mnωQ̂

1bnω, where
Q̂ 1 P Max

in vγ, δw
nω̂nω and is given by

Q̂ 1 “

»

—

—

—

—

–

∆1|nδ
1́nQ̂∆n|1 ∆1|nδ

1́nQ̂δ́1∆n|1 ̈ ̈ ̈ ∆1|nδ
1́nQ̂δ1́n∆n|1

∆1|nδ
2́nQ̂∆n|1 ∆1|nδ

2́nQ̂δ́1∆n|1 ̈ ̈ ̈ ∆1|nδ
2́nQ̂δ1́n∆n|1

...
...

...

∆1|nQ̂∆n|1 ∆1|nQ̂δ́1∆n|1 ̈ ̈ ̈ ∆1|nQ̂δ1́n∆n|1

fi

ffi

ffi

ffi

ffi

fl

.

Proof. See Section C.2.3.

Proposition 65. Let s “ dωQpω, s
1 “ dωQ 1pω be two ultimately cyclic series in Tperrrγss,

the sum s ‘ s 1 “ dωQ2pω, where Q
2 “ Q ‘ Q 1, is again an ultimately cyclic series in

Tperrrγss.

Proof.

s ‘ s 1 “ dωQpω ‘ dωQ 1pω “ dωpQ ‘ Q 1qpω “ dωQ2pω.

Clearly, the entries of the core matricesQ andQ 1
are ultimately cyclic series inMax

in vγ, δw.

Because of Theorem 2.6, the sum of two ultimately cyclic series in Max
in vγ, δw is again an

ultimately cyclic series. Therefore,Q2
is composed of ultimately cyclic series inMax

in vγ, δw

and thus s ‘ s 1 “ dωQ2pω is an ultimately cyclic series in Tperrrγss.

Corollary 12. Let s “ dωQ̂pω, s
1 “ dωQ̂

1pω P Tperrrγss be two ultimately cyclic series,
with Q̂, Q̂ 1 are greatest cores, the sum s ‘ s 1 “ dωQ̂

2pω P Tperrrγss is an ultimately cyclic
series, where Q̂2

“ pQ̂ ‘ Q̂ 1
q is again a greatest core.

Proof.

s ‘ s 1 “ dωQ̂pω ‘ dωQ̂
1pω “ dωpNQ̂N ‘ NQ̂ 1Nqpω “ dωNpQ̂ ‘ Q̂ 1

qN
loooooomoooooon

Q̂2

pω
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Proposition 66. Let s “ dωQpω, s
1 “ dωQ 1pω be two ultimately cyclic series in Tperrrγss,

the product s b s 1 “ dωQ2pω, where Q
2 “ QNQ 1, is again an ultimately cyclic series in

Tperrrγss.

Proof. Recall that pωdω “ N (4.20), then

s b s 1 “ dωQpωdωQ 1pω “ dωQNQ 1pω “ dωQ2pω.

Moreover, the entries of the corematricesQ andQ 1
are ultimately cyclic series inMax

in vγ, δw.

Because of Theorem 2.6, the sum and product of ultimately cyclic series in Max
in vγ, δw are

again ultimately cyclic series in Max
in vγ, δw. Therefore, entries of Q2

are ultimately cyclic

series in Max
in vγ, δw and the product s b s 1 “ dωQ2pω is an ultimately cyclic series in

Tperrrγss.

Corollary 13. Let s “ dωQ̂pω, s
1 “ dωQ̂

1pω be two ultimately cyclic series, with Q̂, Q̂ 1

are greatest cores, the product s b s 1 “ dωQ̂
2pω P Tperrrγss is an ultimately cyclic series,

where Q̂2
“ Q̂Q̂ 1 is again a greatest core.

Proof. Because of NN “ N (Prop. 60),

Q̂Q̂ 1
“ NQNNQ 1N “ Q̂2

.

Proposition 67. Let s “ dωQpω P Tperrrγss be an ultimately cyclic series in Tperrrγss. Then,

s̊ “ dωpQNq̊pω, (4.28)

is an ultimately cyclic series in Tperrrγss.

Proof. Clearly,QN is a core of s P Tperrrγss, since e “ dωpω andN “ pωdω thendωQpωe “

dωQpωdωpω “ dωQNpω. The Kleene star of series s can be written as

s̊ “ e ‘ dωQNpω ‘ dωQNpωdωQNpω ‘ ̈ ̈ ̈

Recall that Q is a square matrix, e “ dωpω (4.19), N “ pωdω (4.20) and N “ N̊ “ NN
(4.24), therefore

s̊ “ dωpω ‘ dωQNpω ‘ dωQNNQNpω ‘ ̈ ̈ ̈

“ dωpI ‘ QN ‘ pQNq2 ‘ ̈ ̈ ̈ qpω

“ dωpQNq̊pω.

Again, due to Theorem 2.6 the Kleene star, sum, and product of ultimately cyclic series in

Max
in vγ, δw are ultimately cyclic series inMax

in vγ, δw and therefore, s̊ “ dωpQNq̊pω is an

ultimately cyclic series in Tperrrγss.
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Remark 26. Let s “ dωQ̂pω P Tperrrγss be an ultimately cyclic series, where Q̂ is a greatest
core, i.e., Q̂ “ NQ̂N. Then, s̊ “ dωQ̂

̊pω P Tperrrγss is an ultimately cyclic series. However,
in general, Q̂̊ is not the greatest core of the series s̊.

Q̂̊
“ I ‘ Q̂ ‘ Q̂2

̈ ̈ ̈

“ I ‘ NQ̂N ‘ NQ̂2N ̈ ̈ ̈ .

Whereas,

NQ̂̊N “ NIN ‘ NQ̂N ‘ NQ̂2N ̈ ̈ ̈

“ N ‘ Q̂ ‘ Q̂2
̈ ̈ ̈ .

Moreover, NQ̂̊N “ pNQ̂̊Nq̊, since NQ̂̊N “ I ‘ NQ̂̊N and NQ̂̊NNQ̂̊N “ NQ̂̊N.

In general, multiplication does not distribute with respect to ^ in the dioid pT rrγss,‘,bq.

However, as shown for the dioid pErrδss,‘,bq in Lemma 2 and Lemma 3, distributivity holds

for left multiplication by the dω-vector and right multiplication by the bω-vector for specific

matrices with entries in T rrγss.

Lemma 4. Let Q1,Q2 P T rrγssω̂ω, then

dωpNQ1 ^ NQ2q “ dωNQ1 ^ dωNQ2,

pQ1N ^ Q2Nqpω “ Q1Npω ^ Q2Npω.

Proof. The proof is similar to the proof of Lemma 2. Recall that e “ dωpω (4.19),N “ pωdω

(4.20) and N “ NN Prop. 60. Moreover, recall that inequality cpa ^ bq ĺ ca ^ cb holds

for a, b, c elements in a complete dioid, see (2.2). Now let us define q1 “ dωNQ1 and

q2 “ dωNQ2, then

q1 ^ q2 “ epq1 ^ q2q “ dωpωpq1 ^ q2q ĺ dωppωq1 ^ dωq2q.

Inserting q1 “ dωNQ1 and q2 “ dωNQ2 leads to,

dωppωq1 ^ dωq2q “ dωppωdωNQ1 ^ pωdωNQ2q,

“ dωpNNQ1 ^ NNQ2q,

“ dωpNQ1 ^ NQ2q.

Finally,

dωpNQ1 ^ NQ2q ĺ dωNQ1 ^ dωNQ2 “ q1 ^ q2.

Hence, equality holds throughout. The proof for pQ1N ^ Q2Nqpω “ Q1Npω ^ Q2Npω is

similar.
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Proposition 68. Let s “ dωQ̂pω, s
1 “ dωQ̂

1pω P Tperrrγss be two ultimately cyclic series,
then s ^ s 1 “ dωQ̂

2pω P Tperrrγss is an ultimately cyclic series, where Q̂2
“ pQ̂ ^ Q̂ 1

q is
again a greatest core.

Proof. Again, this proof is similar to the proof of Prop. 34. Let us recall that Q̂ “ NQ̂N, then
according to Lemma 4 we can write

s ^ s 1 “ dωQ̂pω ^ dωQ̂
1pω “ dωNQ̂Npω ^ dωNQ̂

1Npω “ dωpNQ̂N ^ NQ̂ 1Nqpω

“ dωpQ̂ ^ Q̂ 1
qpω.

It remains to be shown that Q̂2
“ pQ̂ ^ Q̂ 1

q is a greatest core. First, N “ N̊
, therefore,

I ‘ N “ N, and Q̂2
ĺ NQ̂2N. Then, according to Lemma 4,

NQ̂2N “ NpQ̂ ^ Q̂ 1
qN “ pωdωpQ̂ ^ Q̂ 1

qpωdω “ pωpdωQ̂pω ^ dωQ̂
1pωqdω.

Recall, cpa ^ bq ĺ ca ^ cb and pa ^ bqc ĺ ac ^ bc (2.2), therefore

pωpdωQ̂pω ^ dωQ̂
1pωqdω ĺ pωdωQ̂pωdω ^ pωdωQ̂

1pωdω “ Q̂ ^ Q̂ 1
“ Q̂2

.

Hence, equality holds throughout. Moreover, note that due to Theorem 2.6 Q̂2
is a matrix

where entries are ultimately cyclic series in Max
in vγ, δw, hence s ^ s 1 “ dωQ̂

2pω is an

ultimately cyclic series in Tperrrγss.

Division of Series in Tperrrγss

Proposition 69. Let s “ dωQ̂pω, s
1 “ dωQ̂

1pω be two ultimately cyclic series in Tperrrγss.
Then,

s 1 z̋s “ dωpQ̂ 1
z̋Q̂qpω, s{̋s 1 “ dωpQ̂{̋Q̂ 1

qpω,

are ultimately cyclic series in Tperrrγss.

Proof. First, we show that

Q̂ 1
z̋Q̂ “ NpQ̂ 1

z̋Q̂qN. (4.29)
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For this,

́

N
́

Q̂ 1
z̋Q̂

̄̄

N “

́

N z̋

́

N
́

Q̂ 1
z̋Q̂

̄̄̄

N, because of Prop. 62

“

́

N z̋

́

N
́́

Q̂ 1N
̄

z̋Q̂
̄̄̄

N, because of Q̂ “ Q̂N

“

́

N z̋

́

N
́

N z̋

́

Q̂ 1
z̋Q̂

̄̄̄̄

N,

since: pabq z̋x “ b z̋ pa z̋xq (A.5)

“

́

N z̋

́

Q̂ 1
z̋Q̂

̄̄

N, because of a z̋ pa pa z̋xqq “ a z̋x (A.4)

“

́́

Q̂ 1N
̄

z̋Q̂
̄

N “

́

Q̂ 1
z̋Q̂

̄

N,

since: pabq z̋x “ b z̋ pa z̋xq (A.5) and Q̂ “ Q̂N

“

́́

Q̂ 1
z̋
̀

Q̂{̋N
̆

̄

N
̄

{̋N, since: Prop. 62 twice

“

́́́

Q̂ 1
z̋Q̂

̄

{̋N
̄

N
̄

{̋N, since: pa z̋xq{̋b “ a z̋px{̋bq (A.6)

“

́

Q̂ 1
z̋Q̂

̄

{̋N, because ppx{̋aqaq{̋a “ x{̋a (A.4)

“ Q̂ 1
z̋
̀

Q̂{̋N
̆

“ Q̂ 1
z̋Q̂,

since: pa z̋xq{̋b “ a z̋px{̋bq (A.6) and Prop. 62 .

Second,

́

dωQ̂
1pω

̄

z̋
̀

dωQ̂pω

̆

“

́

Q̂ 1pω

̄

z̋
̀

dω z̋pdωQ̂pωq
̆

, because of (A.5),

“

́

Q̂ 1pω

̄

z̋
̀

pωdωQ̂pω

̆

, because of (4.25)

“

́

Q̂ 1pω

̄

z̋
̀

Q̂pω

̆

, as pωdωQ̂ “ Q̂ Remark 25,

“

́

Q̂ 1pω

̄

z̋
̀

Q̂{̋dω

̆

, from (4.26) and Remark 25,

“ pω z̋

́

Q̂ 1
z̋pQ̂{̋dωq

̄

, because of (A.5),

“ pω z̋

́

pQ̂ 1
z̋Q̂q{̋dω

̄

, because of (A.6),

“ dωpQ̂ 1
z̋Q̂qpω, because of (4.26) and (4.29).

Due to Theorem 2.6, the quotient Q̂ z̋Q̂ 1
is a matrix composed of ultimately cyclic series in

Max
in vγ, δw and therefore the quotient s 1 z̋s “ dωpQ̂ 1

z̋Q̂qpω is an ultimately cyclic series in

Tperrrγss. The proof of s{̋s 1 “ dωpQ̂{̋Q̂ 1
qpω is analogous.

Definition 48 (Causal Series in Tperrrγss). A series s “
À

iPZ viγ
i P Tperrrγss, with vi ĺ vì1,

is said to be causal, if s “ ε or for all i ă 0, vi “ ε and for all i ě 0, vi ĺ e. The subset of
causal periodic series of Tperrrγss is denoted by T ̀

perrrγss.
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Remark 27. The causal projection Pr̀ : Tperrrγss Ñ T ̀
perrrγss, is given by, for s “

À

iPZ viγ
i P

Tperrrγss, with vi ĺ vì1,

Pr
̀psq “ Pr

̀
́

à

iPZ
viγ

i
̄

“
à

iPZ
s̀piqγi

where,

s̀piq “

$

&

%

vi, if i ě 0 and vi ľ e, i.e., vi is a causal T-operator,

ε, otherwise.

4.3. Matrices with entries in pTperrrγss,‘,bq

Recall that the sum, product, Kleene star as well as left and right division of ultimately

cyclic series in Tperrrγss are again ultimately cyclic series in Tperrrγss. Therefore, the extension

of the basic operations p‘,b, z̋, {̋q to matrices with entries in Tperrrγss is straightforward.

Additionally, the core representation of series in Tperrrγss is extended to the matrix case.

Therefore, consider a matrix A P Tperrrγssn̂m
where the entries are in the core-form, i.e.,

A “

»

—

—

–

dω1,1
Q̂1,1pω1,1

̈ ̈ ̈ dω1,m
Q̂1,mpω1,m

.

.

.

.

.

.

dωn,1
Q̂n,1pωn,1

̈ ̈ ̈ dωn,mQ̂n,mpωn,m

fi

ffi

ffi

fl

.

Due to Prop. 64 all entries ofA can be represented with a common dω-vector and a common

pω-vector, whereω “ lcmpω1,1, ̈ ̈ ̈ ,ωn,mq. This leads to,

A “

»

—

—

–

dωQ̂
1

1,1pω ̈ ̈ ̈ dωQ̂
1

1,mpω
.
.
.

.

.

.

dωQ̂
1

n,1pω ̈ ̈ ̈ dωQ̂
1

n,mpω

fi

ffi

ffi

fl

,

“

»

—

—

—

—

—

–

dω ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε dω

fi

ffi

ffi

ffi

ffi

ffi

fl

loooooooooooomoooooooooooon

Dw

»

—

—

–

Q̂ 1

1,1 ̈ ̈ ̈ Q̂ 1

1,m
.
.
.

.

.

.

Q̂ 1

n,1 ̈ ̈ ̈ Q̂ 1

n,m

fi

ffi

ffi

fl

looooooooooomooooooooooon

Q̂

»

—

—

—

—

—

–

pω ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε pω

fi

ffi

ffi

ffi

ffi

ffi

fl

loooooooooooomoooooooooooon

Pw 1

. (4.30)

The size of Q̂ is thenωn̂ωn. Note that in contrast to the decomposition of matrices with

entries s P Em|brrδss, see Section 3.4.1, the decomposition of matrices with entries in Tperrrγss
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4. Dioids pT ,‘,bq and pT rrγss,‘,bq

is simpler. Unlike to (3.55) in Prop. 39 the matrices Dw and Pw 1 are block diagonal matrices

with same entries dω and pω. Moreover, note that the core representation in (4.30) is clearly

not the most efficient one in terms of expressing A with a core Q̂ P Max
in vγ, δw of minimal

dimensions.

4.4. Subdioids of pTperrrγss,‘,bq

Recall that pTωrrγss,‘,bq is a complete subdioid of pTperrrγss,‘,bq (Remark 23). The

subdioid pT1rrγss,‘,bq of pTperrrγss,‘,bq, i.e. the set of 1-periodic series endowed with

addition and multiplication, is the dioid pMax
in vγ, δw ,‘,bq. Moreover, pMax

in vγ, δw ,‘,bq

is a subdioid of pTωrrγss,‘,bq, e.g., a subdioid of pT3rrγss,‘,bq, pT4rrγss,‘,bq etc.

Example 37. Figure 4.6 illustrates the subdioid structure of pTperrrγss,‘,bq. It is shown
that pMax

in vγ, δw ,‘,bq, pT3rrγss,‘,bq and pT4rrγss,‘,bq are subdioids of pTperrrγss,‘,bq.
Moreover, pMax

in vγ, δw ,‘,bq is a subdioid of pT3rrγss,‘,bq and pT4rrγss,‘,bq.

Max
in vγ, δwT3rrγss T4rrγss

Tperrrγss

Figure 4.6. – Subdioid structure of pTperrrγss,‘,bq.

Due to the subdioid structure of pTperrrγss,‘,bq, one can define the canonical injection

Inj : Max
in vγ, δw Ñ Tperrrγss, x ÞÑ Injpxq “ x. For a graphical illustration of this canonical

injection see the following example.

Example 38. Recall the series s “ γ1δ2 ‘
̀

γ3δ3 ‘γ5δ4
̆

pγ3δ2q̊ P Max
in vγ, δw (Example 17)

with a graphical representation of s given in Figure 4.7a. Then, the graphical representation of
the canonical injection Injpsq P Tperrrγss is shown in Figure 4.7b. The series s P Max

in vγ, δw

(Figure 4.7a) corresponds to the (event-shift/output-time)-plane for the (input-time) value 0 of
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4.4. Subdioids of pTperrrγss,‘,bq

the 3D representation of the series Injpsq P Tperrrγss (Figure 4.7b). Moreover, the canonical
injection Injpsq P Tperrrγss is (1)-periodic, therefore the (event-shift/output-time)-plane for the
(input-time) value 1 corresponds to the series δ1s P Max

in vγ, δw and for the (input-time) value
2 to the series δ2s P Max

in vγ, δw, etc.

event-shift k

time-shift t

1 2 3 4 5 6 7 8 9

1
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3

4

5
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7

8

9

(a) Graphical representation of s P Max
in vγ, δw.
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(b) Graphical representation of Injpsq P Tperrrγss.

Figure 4.7. – Illustration of the canonical injection Inj : Max
in vγ, δw Ñ Tperrrγss of the series s “

γ1δ2 ‘
̀

γ3δ3 ‘ γ5δ4
̆

pγ3δ2q̊ P Max
in vγ, δw.

Lemma 5. Let vγn P Tωrrγss be an ω-periodic monomial. Then residual Inj7pvγnq and the
dual residual Inj5pvγnq are given by

Inj
7pvγnq “ δmin

ώ1
t“0 pRvptq́tqγn, (4.31)

Inj
5pvγnq “ δmax

ώ1
t“0 pRvptq́tqγn. (4.32)

Proof. By definition, the residuated mapping Inj
7pvγnq is the greatest solution x of the fol-

lowing inequality

vγn ľ Injpxq “ Inj

́

à

i
γηiδζi

̄

“
à

i
γηiδζi , (4.33)

where

À

i γ
ηiδζi P Max

in vγ, δw. Clearly, the least ηi such that the inequality (4.33) holds is

n and thus,

vγn ľ
à

i
pγnδζiq “ γnδτ, see, (2.28). (4.34)

Since vγn ľ γnδτ ô v ľ δτ, it remains to find the greatest τ such that (4.34) holds. By

considering the isomorphism between T-operators and release-time functions, see (4.12), this

is equivalent toRvptq ě Rδτptq, @t P Zmax. By usingRδτptq “ τ̀ t, see (4.8), one obtains

Rvptq ě τ ̀ t ô τ ď Rvptq ́ t, @t P Zmax. (4.35)
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4. Dioids pT ,‘,bq and pT rrγss,‘,bq

Since Rv is a quasi ω-periodic function it is sufficient to evaluate the function for @t P

t0, ̈ ̈ ̈ ,ω ́ 1u. Therefore the greatest τ such that (4.35) (resp. (4.34)) holds is

τ “
ώ1
min

t“0

̀

Rvptq ́ t
̆

.

Similarly, for (4.32), Inj
5pvγnq is the least solution x of the inequality

vγn ĺ Injpxq “ Inj

́

à

i
δζiγηi

̄

“
à

i
γηiδζi . (4.36)

Then, the greatest ηi such that the inequality (4.36) holds is n and thus,

vγn ĺ
à

i
pγnδζiq “ γnδτ, see, (2.28). (4.37)

Again, since vγn ĺ γnδτ ô v ĺ γτ
, it remains to find the least τ such that (4.37) holds.

Therefore @t P Zmax

Rvptq ď Rδτptq ô Rvptq ď τ ̀ t ô τ ě Rvptq ́ t. (4.38)

By considering thatRv is a quasiω-periodic function the least τ such that (4.38) (resp. (4.37))

holds is

τ “
ώ1
max

t“0

̀

Rvptq ́ t
̆

.

Proposition 70. Let s “
À

i viγ
ni P Tωrrγss be an ω-periodic series in the canonical repre-

sentation, see Prop. 58, extended to infinite sums, then

Inj
7psq “ Inj

7
́

à

i
viγ

ni

̄

“
à

i
δmin

ώ1
t“0 pRvi

ptq́tqγni , (4.39)

Inj
5psq “ Inj

5
́

à

i
viγ

ni

̄

“
à

i
δmax

ώ1
t“0 pRvi

ptq́tqγni . (4.40)

Proof. For (4.39): Consider s “
À

i viγ
ni

in the canonical form, such that ni ă nì1 and

vi ă vì1 and let Rvi be the release-time function associated to the operator vi. Recall that

Inj
7psq is the greatest solution x P Max

in vγ, δw of inequality Inj
7pxq ĺ s. This is given by

À

i δ
τiγni

where τi is the greatest integer such that δτi ĺ vi. Repeating the first step of

Lemma 5, this is given by τi “ min
ώ1
t“0 pRviptq ́ tq. The proof of (4.40) is analogous.

Example 39. Recall the polynomialp “ pδ1∆4|4δ
́1‘δ́2∆4|4qγ0‘pδ5∆4|4δ

́1‘δ2∆4|4qγ2‘

pδ5∆4|4 ‘δ6∆4|4δ
́1qγ4 P Tperrrγss with a graphical representation given in Figure 4.8a. More-

over, recall the function Rδ1∆4|4δ
́1‘δ́2∆4|4

(resp. Rδ5∆4|4δ
́1‘δ2∆4|4

and Rδ5∆4|4‘δ6∆4|4δ
́1)

shown in Figure 4.5a (resp. Figure 4.5b and Figure 4.5c). The residual of the canonical injection
is Inj7ppq “ δ1γ0 ‘ δ2γ2 ‘ δ5γ4, which is shown in Figure 4.8b. In Figure 4.8 and Figure 4.9
the polynomial p is compared to InjpInj7ppqq, as required p ľ InjpInj7ppqq (2.17).
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(a) 3D representation of polynomial

p “ pδ1∆4|4δ
́1

‘δ́2∆4|4qγ0
‘pδ5∆4|4δ

́1
‘

δ2∆4|4qγ2
‘ pδ5∆4|4 ‘ δ6∆4|4δ

́1
qγ4

.
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(b) 3D representation of InjpInj
7
ppqq “ δ1γ0

‘

δ2γ2
‘ δ5γ4

.

Figure 4.8. – Comparison of the polynomial p “ pδ1∆4|4δ
́1

‘ δ́2∆4|4qγ0
‘ pδ5∆4|4δ

́1
‘ δ2∆4|4qγ4

‘

pδ5∆4|4 ‘ δ6∆4|4δ
́1

qγ6
and InjpInj

7
ppqq. For all k P Z the slices in the (input-time/output-

time)-plane of p cover the slices of InjpInj
7
ppqq, see Figure 4.9.

Rδ1Rδ1∆4|4δ́1‘δ́2∆4|4

t
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(a) k “ t0, 1u

Rδ5Rδ5∆4|4δ́1‘δ2∆4|4

t

Rptq

0 2 4 6 8

2

4

6

8

10

12

14

(b) k “ t2, 3u
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(c) k ě 4

Figure 4.9. – Graphical illustration of Inj
7ppq “ γ0δ1 ‘ γ2δ5 ‘ γ4δ6.
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Zero slice Mapping Ψω : Tωrrγss Ñ Max
in vγ, δw

Recall that pMax
in vγ, δw ,‘,bq is a subdioid of pTωrrγss,‘,bq, hence we define a specific

projection from Tωrrγss intoMax
in vγ, δw as follows.

Definition 49. Let s “
À

i viγ
ni P Tωrrγss be anω-periodic series, then

Ψωpsq “ Ψω

́

à

i
viγ

ni

̄

“
à

i
γniδRvi

p0q. (4.41)

This projection Ψω has a graphical interpretation, for a given s P Tωrrγss the series s̃ “

Ψωpsq P Max
in vγ, δw corresponds to the slice in the (event/output-time)-plane of the 3D

representation of s P Tωrrγss at the input-time value 0, thus this projection is also called zero-

slice mapping. Note that in contrast to the zero-slice mappingΨm|b : Em|brrδss Ñ Max
in vγ, δw

defined in Section 3.2, the mapping Ψω is a projection because Max
in vγ, δw is a subset of

Tωrrγss and Ψω satisfies Ψω “ Ψω ̋ Ψω. However, this is not the case for the set Em|brrδss,

for instance, Max
in vγ, δw is not a subset of E3|2rrδss and therefore the concatenation of the

mappings Ψ3|2 ̋ Ψ3|2 is not defined (possible).

Example 40. Recall the polynomialp “ pδ1∆4|4δ
́1‘δ́2∆4|4qγ0‘pδ5∆4|4δ

́1‘δ2∆4|4qγ2‘

pδ5∆4|4 ‘ δ6∆4|4δ
́1qγ4 P Tperrrγss with a graphical representation given in Figure 4.4. Then,

Ψ4ppq “ δ1γ0 ‘ δ5γ2 ‘ δ6γ4.

The seriesΨ4ppq corresponds to the slice in the (event-shift/output-time)-plane for the input-time
value t “ 0 in the 3D representation of p, see Figure 4.10a and Figure 4.10b.
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(a) 3D representation of p
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(b) The (event-shift/output-time)-plane for the

imput-time value 0

Figure 4.10. – Illustration of the Projection Ψ4ppq.
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The projection Ψω is by definition lower-semicontinuous, see Definition 49, therefore Ψω

is residuated.

Proposition 71. Let s “
À

i γ
niδτi P Max

in vγ, δw. The residual Ψ7
ωpsq P Tωrrγss of s is a

series defined by

Ψ7
ω

́

à

i
γniδτi

̄

“
à

i
γniδτi∆ω|ω “ s∆ω|ω. (4.42)

Proof. By definition of the residuated mapping, Ψ
7
ωp

À

i γ
niδτiq P Tωrrγss is the greatest

solution of the following inequality

à

i
γniδτi ľ Ψωpxq “ Ψω

́

à

j
vjγ

ηj
̄

, (4.43)

where x “
À

j vjγ
ηj P Tωrrγss. First we show that (4.42) satisfies (4.43) with equality.

Ψω

́

à

i

γniδτi∆ω|ω

̄

“
à

i

γniδ
Rδτi∆ω|ω

p0q
“
à

i

γniδτi ,

since Rδτi∆ω|ω
p0q “ τi ̀ r0{ωsω “ τi, see (4.8) and (4.9). Taking into account that Ψω is

isotone, it remains to show that

À

i γ
niδτi∆ω|ω is the greatest solution of

à

i

γniδτi “ Ψωpxq “ Ψω

́

à

j

vjγ
ηj
̄

“
à

j

γηjδ
Rvj

p0q
. (4.44)

Clearly, to achieve equality we need ηj “ ni andRvjp0q “ τi. Furthermore, we are looking

for the greatest vj P Tω, such that τi “ Rvjp0q. Due to the canonical form Prop. 55 we

can write an ω-periodic T-operator as

Àω
i“1 δ

ζi∆ω|ωγ
ζ 1
i with ́ω ă ζ 1

i ď 0. This operator

corresponds to the release-time function

Rptq “
ω

max

i“1

́

ζi ̀

R

ζ 1
i ̀ t

ω

V

ω
̄

.

Now we examine Rptq for t “ 0, thus

Rp0q “
ω

max

i“1

́

ζi ̀

R

ζ 1
i

ω

V

ω
̄

.

Recall that ́ω ă ζ 1
i ď 0, henceRvjptq “ τìrp0̀tq{ωsω is the greatest quasiω-periodic

release-time function such that (4.44) holds, i.e.,Rvjp0q “ Rδτi∆ω|ω
p0q “ τìr0{ωsω “ τi.

This function corresponds to the operator δτi∆ω|ω.

Proposition 72. Let s “
À

i γ
niδτi P Max

in vγ, δw. The dual residual Ψ5
ωpsq P Tωrrγss of s is

a series defined by

Ψ5
ω

́

à

i
γniδτi

̄

“
à

i
γniδτi∆ω|ωδ

1́ω “ s∆ω|ωδ
1́ω. (4.45)
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Proof. The proof is similar to the proof of Prop. 71, with the difference that instead of finding

the greatest solution we are now looking for the least solution, denoted byΨ5
ωp

À

i γ
niδτiq P

Tωrrγss, of the following inequality

à

i
γniδτi ĺ Ψωpxq “ Ψω

́

à

j
vjγ

ηj
̄

. (4.46)

Again, we show that (4.45) satisfies (4.46) with equality.

Ψω

́

à

i

γνiδτi∆ω|ωδ
1́ω

̄

“
à

i

γ
R

δτi∆ω|ωδ1́ω p0q
δτi “

à

i

γνiδτi ,

since Rδτi∆ω|ωδ1́ωp0q “ τi ̀ rp1 ́ ωq{ωsω “ τi, see (4.8) and (4.9). Taking into account

that Ψω is isotone, it remains to show that

À

i γ
niδτi∆ω|ωδ

1́ω
is the least solution of

à

i

γniδτi “ Ψωpxq “ Ψω

́

à

j

vjγ
ηj
̄

“
à

j

γηjδ
Rvj

p0q
. (4.47)

Clearly, to achieve equality we need ηj “ ni andRvjp0q “ τi. Furthermore, we are looking

for the least vj P Tωrrγss, such that τi “ Rvjp0q. Due to the canonical form Prop. 55 we

can write an ω-periodic T-operator as

Àω
i“1 δ

ζi∆ω|ωδ
ζ 1
i with ́ω ă ζ 1

i ď 0. This operator

corresponds to the release-time function

Rptq “
ω

max

i“1

́

ζi ̀

R

ζ 1
i ̀ t

ω

V

ω
̄

.

Now we examine Rptq for t “ 0, thus

Rp0q “
ω

max

i“1

́

ζi ̀

R

ζ 1
i

ω

V

ω
̄

.

Let us recall that ́ω ă ζ 1
i ď 0, hence Rvjptq “ τi ̀ rpp1 ́ ωq ̀ tq{ωsω is the least

ω-periodic release-time function such that (3.41) holds, i.e., Rvjp0q “ Rδτi∆ω|ωδ1́ωp0q “

τi ̀ rp1 ́ ωq{ωsω “ τi. This function corresponds to the operator δτi∆ω|ωδ
1́ω

.

Example 41. Let us consider the polynomial p “ pδ1∆4|4δ
́1 ‘ δ́2∆4|4qγ0 ‘ pδ5∆4|4δ

́1 ‘

δ2∆4|4qγ2‘pδ5∆4|4‘δ6∆4|4δ
́1qγ4 P Tperrrγsswith a projectionΨ4ppq “ δ1γ0‘δ5γ2‘δ6γ4.

The residual of the projection Ψ4ppq, is given by

Ψ
7

4pΨ4ppqq “ pδ1γ0 ‘ δ5γ2 ‘ δ6γ4q∆4|4.

See Figure 4.11 and Figure 4.12 for a comparison ofp andΨ7

4pΨ4ppqq, as requiredp ĺ Ψ
7

4pΨ4ppqq

(2.17).
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́1
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(b) 3D representation of Ψ
7

4pΨ4ppqq “ pδ1γ0
‘

δ5γ2
‘ δ6γ4

q∆4|4.

Figure 4.11. – Comparison of the polynomial p “ pδ1∆4|4δ
́1

‘ δ́2∆4|4qγ0
‘ pδ5∆4|4δ

́1
‘ δ2∆4|4qγ4

‘

pδ5∆4|4 ‘ δ6∆4|4δ
́1

qγ6
and InjpInj

7
ppqq. For all k P Z the slices in the (input-time/output-

time)-plane of Ψ
7

4pΨ4ppqq cover the slices of p, see Figure 4.12.

Rδ1∆4|4Rδ1∆4|4δ́1‘δ́2∆4|4

t

Rptq

0 2 4 6 8

2

4

6

8

10

12

14

(a) k “ t0, 1u

Rδ5∆4|4Rδ5∆4|4δ́1‘δ2∆4|4

t

Rptq

0 2 4 6 8

2

4

6

8

10

12

14

(b) k “ t2, 3u

Rδ6∆4|4Rδ5∆4|4‘δ6∆4|4δ́1

t

Rptq

0 2 4 6 8

2

4

6

8

10

12

14

(c) k ě 4

Figure 4.12. – Graphical illustration of Ψ
7

4pΨ4ppqq “ pδ1γ0 ‘ δ5γ2 ‘ δ6γ4q∆4|4.
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5
Dioid pET,‘,bq

In this chapter, the dioid pET ,‘,bq is introduced. This dioid is used for the modeling

and the control of Weighted Timed Event Graphs under partial synchronization. The dioid

pET ,‘,bq consists of specific event-variant and time-variant operators, in other words,

it is a composition of the dioids pErrδss,‘,bq and pT rrγss,‘,bq introduced in Chapter 3

and Chapter 4. Note that many results are similar to the results obtained for the dioid

pErrδss,‘,bq and pT rrγss,‘,bq. In particular, just as for periodic elements in Errδss and

T rrγss, a core decomposition is introduced for periodic elements in ET . Again, it is shown

that all relevant operations p‘,b, z̋, {̋q on periodic elements in ET can be reduced to oper-

ations on matrices with entries inMax
in vγ, δw.

5.1. Dioid ET

Let us first recall some results from Section 3.1. The set of antitone mappings Σ : Z Ñ

Zmin is a idempotent commutative monoid, denoted pΣ,‘, ε̃q. An operator is defined as

a lower semi-continuous mapping from the set Σ into itself, see Definition 27. The set of

operators O is a complete dioid denoted pO,‘,bq, see Prop. 8. On this dioid the order

introduced by ‘ is partial and given by, for f1, f2 P O

f1 ľ f2 ô f1 ‘ f2 “ f1,

ô
̀

f1x
̆

ptq ‘
̀

f2x
̆

ptq “
̀

f1x
̆

ptq, @x P Σ, @t P Z,

ô min

́

̀

f1x
̆

ptq,
̀

f2x
̆

ptq
̄

“
̀

f1x
̆

ptq @x P Σ, @t P Z.

Then, two operators f1, f2 P O are equal iff @x P Σ, @t P Z: pf1xqptq “ pf2xqptq. In the

following proposition, some specific operators in O are recalled and the ∆ω|ϖ operator is

redefined.

Proposition 73. The following elementary operators are endomorphism and lower semi-con-
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5. Dioid pET,‘,bq

tinuous mappings and therefore operators in O.

m,b P N ∇m|b : @x P Σ, t P Z
̀

∇m|bpxq
̆

ptq “ m ̂

Yxptq

b

]

, (5.1)

ω,ϖ P N ∆ω|ϖ : @x P Σ, t P Z
̀

∆ω|ϖpxq
̆

ptq “ x
́

ϖ ̂

Yt ́ 1

ω

]

̀ 1
̄

, (5.2)

ν P Z γν : @x P Σ, t P Z
̀

γνpxq
̆

ptq “ ν ̀ xptq, (5.3)

τ P Z δτ : @x P Σ, t P Z
̀

δτpxq
̆

ptq “ xpt ́ τq. (5.4)

Proof. For the proof of (5.3) see the proof of Prop. 9. For the proof of (5.4) see (3.19) and

the following paragraph in Section 3.1.2. Note that the ∇m|b operator is nothing but the

composition µmβb, with µm andβb defined in Prop. 9. The mapping∇m|b is a ‘-morphism,

since first @t P Z, ε̃ptq “ 8 and m,b P N are finite positive integers, thus p∇m|bpε̃qqptq “

m ̂ tε̃ptq{bu “ ε̃ptq. Moreover, for all finite and infinite subsets X Ď Σ,

́

∇m|b

̀à

xPX
x
̆

̄

ptq “ m ̂

Y

̀
À

xPX x
̆

ptq

b

]

“ m ̂

Y

minxPX
̀

xptq
̆

b

]

,

“ min

xPX

̀

m ̂

Yxptq

b

]

̆

“ min

xPX

́

̀

∇m|bpxq
̆

ptq
̄

,

“

́

à

xPX
∇m|bpxq

̄

ptq,

which proves the lower semi-continuous property. Note that in contrast to Prop. 53 in Sec-

tion 4.1 here the ∆ω|ϖ operator is defined on the set Σ instead of Ξ, i.e., the set of isotone
mappings from Z into Zmax. In the current form, it manipulates the domain Z of a mapping

x : Z Ñ Zmin whereas for mappings x̄ P Ξ, x̄ : Z Ñ Zmax the ∆ω|ϖ operator manip-

ulates the codomain Zmax of x̄, see Prop. 53. The ∆ω|ϖ operator defined in (5.2) is lower

semi-continuous and endomorphic. First, we have to prove that, ∆ω|ϖpε̃q “ ε̃. Clearly,

since ω,ϖ P N are finite positive integers then @t P Z, ωtpt ́ 1q{ϖu ̀ 1 P Z. Then

@t P Z, ε̃ptq “ 8 and therefore @t P Z, p∆ω|ϖpε̃qqptq “ ε̃
̀

ϖtpt ́ 1q{ωu ̀ 1
̆

“ 8.

Second, for all finite and infinite subsets X Ď Σ and @t P Z,
́

∆ω|ϖ

̀à

xPX
x
̆

̄

ptq “

́

à

xPX
x
̄́

ϖ ̂

Yt ́ 1

ω

]

̀ 1
̄

due to (5.2),

“
à

xPX
x
́

ϖ ̂

Yt ́ 1

ω

]

̀ 1
̄

due to (3.4),

“
à

xPX

́

∆ω|ϖpxq

̄

ptq due to (5.2).

Note that the identity operator e : pexqptq “ xptq can be written as ∆1|1 and ∇1|1, i.e.,
̀

∆1|1x
̆

ptq “ xp1 ̂ tpt ́ 1q{1u ̀ 1q “ xptq and
̀

∇1|1x
̆

ptq “ 1 ̂ txptq{1u “ xptq.
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5.1. Dioid ET

Remark 28. Note that in analogy with Section 4.1, these operators can be defined on the set Ξ
in the following form,

m,b P N ∇m|b : @x P Ξ, k P Z
̀

∇m|bpxq
̆

pkq “ x
́

b ̂

Qk ̀ 1

m

U

́ 1
̄

, (5.5)

ω,ϖ P N ∆ω|ϖ : @x P Ξ, k P Z p∆ω|ϖxqpkq “

Qxpkq

ϖ

U

ω, (5.6)

ν P Z γν : @x P Ξ, k P Z
̀

γνpxq
̆

pkq “ xpk ́ νq, (5.7)

τ P Z δτ : @x P Ξ, k P Z
̀

δτpxq
̆

pkq “ xpkq ̀ τ. (5.8)

Proposition 74. The elementary operators satisfy the following relations

γν ‘ γν 1

“ γminpν,ν 1q, γνγν 1

“ γν̀ν 1

, (5.9)

δτ ‘ δτ
1

“ δmaxpτ,τ 1q, δτδτ
1

“ δτ̀τ 1

, (5.10)

∆ω|ϖδ
ϖ “ δω∆ω|ϖ ∇m|bγ

b “ γm∇m|b. (5.11)

Proof. For the proof of (5.9) see Prop. 10. For the proof of δτ ‘ δτ
1

“ δmaxpτ,τ 1q
, recall (3.4),

(3.1) and (5.4), then @x P Σ,@t P Z,
̀

pδτ ‘ δτ
1

q
̆

ptq “
̀

pδτxq ‘ pδτ
1

xq
̆

ptq “ pδτxqptq ‘ pδτ
1

xqptq

“ min

̀

xpt ́ τq, xpt ́ τ 1q
̆

“ xpt ́ maxpτ, τ 1qq “
̀

δmaxpτ,τ 1qx
̆

ptq.

For the proof of δτδτ
1

“ δτ̀τ 1

, recall (3.5) and (5.4), then @x P Σ,@t P Z,
̀

pδτδτ
1

qx
̆

ptq “
̀

pδτpδτ
1

xq
̆

ptq “
̀

δτ
1

x
̆

pt ́ τq “ xpt ́ pτ ̀ τ 1qq “
̀

δτ̀τ 1

x
̆

ptq.

For the proof of ∆ω|ϖδ
ϖ “ δω∆ω|ϖ, recall (3.5), (5.2) and (5.4), then first @x P Σ,@t P Z,

̀

∆ω|ϖδ
ϖx

̆

ptq “
̀

∆ω|ϖpδϖxq
̆

ptq “ pδϖxq

́

ϖ
Yt ́ 1

ω

]

̀ 1
̄

“ x
́

ϖ
Yt ́ 1

ω

]

́ ϖ ̀ 1
̄

.

Second,

x
́

ϖ
Yt ́ 1

ω

]

́ ϖ ̀ 1
̄

“ x
́

ϖ
́Yt ́ 1

ω

]

́ 1
̄

̀ 1
̄

“ x
́

ϖ
Yt ́ ω ́ 1

ω

]

̀ 1
̄

“
̀

δω∆ω|ϖx
̆

ptq.

For the proof of∇m|bγ
b “ γm∇m|b, recall that∇m|b “ µmβb, γ

mµm “ µmγ
1
and γ1βb “

βbγ
b
(3.13), therefore µmβbγ

b “ µmγ
1βb “ γmµmβb and∇m|bγ

b “ γm∇m|b.
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5. Dioid pET,‘,bq

Remark 29. (5.11) implies that for 0 ď n ă i,∇m|iγ
n∇i|b “ ∇m|b, since,

p∇m|iγ
n∇i|bxqptq “

[

txptq{bui ̀ n

i

_

m,

“

[

Yxptq

b

]

̀
n

i

_

m,

“

Yxptq

b

]

m, since 0 ď
n

i
ă 1.

Moreover, for ́i ă τ ď 0, ∆ω|iδ
τ∆i|ϖ “ ∆ω|ϖ, since

p∆ω|iδ
τ∆i|ϖxqptq “ pδτ∆i|ϖxq

́

i
Yt ́ 1

ω

]

̀ 1
̄

,

“ p∆i|ϖxq

́

i
Yt ́ 1

ω

]

́ τ ̀ 1
̄

,

“ x

̃

ϖ

[

itpt ́ 1q{ωu ́ τ ̀ 1 ́ 1

i

_

̀ 1

̧

,

“ x

̃

ϖ

[

Yt ́ 1

ω

]

́
τ

i

_

̀ 1

̧

, since 0 ď
́τ

i
ă 1,

“ x
́

ϖ
Yt ́ 1

ω

]

̀ 1
̄

,

“ p∆ω|ϖxqptq.

In general mappings (operators) inO do not commute, i.e., f1, f2 P O and x P Σ in general

f1pf2pxqq ‰ f2pf1pxqq, however, the following proposition gives some properties regarding

the commutation of the elementary operators.

Proposition 75. The operators introduced in Prop. 73 commute according to the following rules,

δ1γ1 “ γ1δ1, ∆ω|ϖ∇m|b “ ∇m|b∆ω|ϖ, (5.12)

∇m|bδ
1 “ δ1∇m|b, ∆ω|ϖγ

1 “ γ1∆ω|ϖ. (5.13)

Proof. For the proof of δ1γ1 “ γ1δ1, recall (3.5), (5.3) and (5.4), then @x P Σ,@t P Z,
̀

pδ1γ1qx
̆

ptq “
̀

δ1pγ1xq
̆

ptq “
̀

γ1x
̆

pt ́ 1q “ 1 ̀ xpt ́ 1q “ 1 ̀
̀

δ1x
̆

ptq,

“
̀

pγ1δ1qx
̆

ptq.

The proofs for the right equation of (5.12) and the equations of (5.13) are similar.
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5.1. Dioid ET

Proposition 76. The∇m|b and the ∆ω|ϖ operator are expressed in the following forms

∇m|b “

ń1
à

i“0

γim∇nm|nbγ
pń1́iqb, (5.14)

∆ω|ϖ “

ń1
à

i“0

δ́iω∆nω|nϖδ
́pń1́iqϖ. (5.15)

Proof. For the proof of (5.14) see Prop. 12 and the proof of (5.15) is similar to the proof of

Prop. 56 in Appendix Section C.2.1.

Example 42. The identity operator e “ ∇1|1∆1|1 is represented with n “ 2 in an extended
form

∇1|1∆1|1 “ p∇2|2γ
1 ‘ γ1∇2|2qp∆2|2δ

́1 ‘ δ́1∆2|2q,

“ ∇2|2∆2|2γ
1δ́1 ‘ δ́1∇2|2∆2|2γ

1 ‘ γ1∇2|2∆2|2δ
́1 ‘ γ1δ́1∇2|2∆2|2.

Definition 50 (Dioid ET). The dioid pET,‘,bq is defined by sums and compositions over the
set tê, ε̂, Ĵ,∇m|b, γ

ν, ∆ω|ϖ, δ
τu with m,b,ω,ϖ P N, ν, τ P Z and addition and multiplica-

tion defined in (3.4) and (3.5).

The dioid pET,‘,bq is a complete subdioid of pO,‘,bq. Again the ‘ operation de-

fines a natural order on ET, therefore for a, b P ET, a ‘ b “ a ô a ľ b. Note

that, in contrast to Errδss and T rrγss, an element s P ET does not have the structure of a

formal power series, see Definition 9. However, a basic element in pET,‘,bq is defined

as γnδτ∇m|b∆ω|ϖγ
n 1

δτ
1

. A basic sum is defined as a finite sum of basic elements in ET,

i.e.,
ÀI

i“0 γ
νiδτi∇mi|bi∆ωi|ϖi

γn 1
iδτ

1
i and an infinite sum

À

i γ
νiδτi∇mi|bi∆ωi|ϖi

γn 1
iδτ

1
i is

called a series.

Proposition 77. A basic element γnδτ∇m|b∆ω|ϖγ
n 1

δτ
1

P ET has a canonical form such that
0 ď n 1 ă b and ́ϖ ă τ 1 ď 0.

Proof. The canonical form is obtained by applying (5.11).

The ordering of two canonical basic elements m1 “ γν1δτ1∇m|b1∆ω|ϖ1
γν 1

1δτ
1
1 , m2 “

γν2δτ2∇m|b2∆ω|ϖ2
γν 1

2δτ
1
2 P ET with equal indicesm,ω can be checked by

m1 ľ m2 ô

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

b1 “ b2 and ϖ1 “ ϖ2 and
́

γν1δτ1 ľ γν2δτ2 and γν 1
1δτ

1
1 ľ γν 1

2δτ
1
2

or γν1̀mδτ1 ľ γν2δτ2 and γν 1
1́b1δτ

1
1 ľ γν 1

2δτ
1
2

or γν1δτ1́ω ľ γν2δτ2 and γν 1
1δτ

1
1̀ϖ1 ľ γν 1

2δτ
1
2

or γν1̀mδτ1́ω ľ γν2δτ2 and γν 1
1́b1δτ

1
1̀ϖ1 ľ γν 1

2δτ
1
2

̄

.
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5. Dioid pET,‘,bq

Proposition 78. [Standard Form] All elements s P ET can be expressed by a finite or infinite
sum of basic elements, i.e., s “

À

i γ
νiδτi∇m|bi∆ω|ϖi

γn 1
iδτ

1
i , such that all basic element have

the samem andω indices, are in the canonical form of (Prop. 77) and are not ordered.

Proof. See Section C.3.1.

The standard form is used to check the ordering of two basic sums. Consider two sums

s1 “
À

i γ
ν1iδτ1i∇m1|b1i

∆ω1|ϖ1i
γ
n 1
1iδ

τ 1
1i and s2 “

À

j γ
ν2jδ

τ2j∇m2|b2j
∆ω2|ϖ2j

γ
n 1
2jδ

τ 1
2j in

the standard form (Prop. 78). Due to (5.14), (5.15) and by choosing ω “ lcmpω1,ω2q and

m “ lcmpm1,m2q, s1 and s2 can be rewritten as

s1 “
à

k

γν1kδτ1k∇m|b1k
∆ω|ϖ1k

γ
n 1
1kδ

τ 1
1k , (5.16)

s2 “
à

l

γν2lδτ2l∇m|b2l
∆ω|ϖ2l

γ
n 1
2lδ

τ 1
2l . (5.17)

Then the sum s1 is greater than or equal to the sum s2 if and only if, every basic element

in (5.17) is smaller than or equal to at least one basic element in (5.16). Clearly, two sums

s1, s2 P ET are equal if s1 ĺ s2 and s2 ĺ s1.

Definition 51. An element s P ET is called pm,b,ωq-periodic if its standard form is written
as
À

i γ
νiδτi∇m|b∆ω|ωγ

ν 1
iδτ

1
i ,i.e., all basic elements in the sum have the samem,b,ω indices.

Furthermore, the gain of s is then defined by Γpsq “ m{b.

The set of periodic operators, denoted by ETper , is a subset of ET.

Definition 52 (Ultimately cyclic series in ETper). A series s P ETper is said to be ultimately
cyclic if it can be written as p ‘ qpγνδτq̊ where ν, τ P N0 and p, q are pm,b,ωq-periodic
finite basic sums in ETper (p and q must have the same period).

5.2. Core Decomposition of Series in ET per

This section introduces the core-form of series in ET per. This core-form is orthogonal to

the core-forms of series s P Em|brrδss and series s 1 P Tperrrγss introduced in Section 3.3 and

Section 4.2. Hence, the following results are orthogonal to the results obtained in Section 3.3

and Section 4.2. However, to improve the readability of this section again all propositions

with proofs in the introduced notation are provided. Note that most of the presented propo-

sitions and proof are similar to those given in Section 3.3 and Section 4.2. Recall that an

ultimately cyclic series s P Em|brrδss can always be expressed asmmQbb withQ a matrix in

Max
in vγ, δw and

mm :“
”

∇m|1 γ1∇m|1 ̈ ̈ ̈ γḿ1∇m|1

ı

, (5.18)

bb :“
”

∇1|bγ
b́1 ̈ ̈ ̈ ∇1|bγ

1 ∇1|b

ıT
. (5.19)
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Respectively, an ultimately cyclic series s P Tperrrγss can always be expressed as dωQpω

again with Q a matrix inMax
in vγ, δw and

dω :“
”

∆ω|1 δ́1∆ω|1 ̈ ̈ ̈ δ1́ω∆ω|1

ı

,

pω :“
”

∆1|ωδ
1́ω ̈ ̈ ̈ ∆1|ωδ

́1 ∆1|ω

ıT
.

Similarly to the core representation of s P Em|brrδss and s 1 P Tperrrγss, in this section, a core

representation for series s P ET per is introduced. It is shown that an ultimately cyclic series

s P ET per can always be written as a productmm,ωQbb,ω whereQ is a matrix inMax
in vγ, δw

and

bb,ω :“
”

∆1|ωδ
1́ωbT

b ̈ ̈ ̈ ∆1|ωbT
b

ıT
, (5.20)

mm,ω :“
”

∆ω|1mm ̈ ̈ ̈ δ1́ω∆ω|1mm

ı

. (5.21)

Based on this representation all operations on series s P ET per can be reduced to operations

on matrices inMax
in vγ, δw. For an illustration of this core-form, see the following example.

Example 43. Consider a series s “ δ2∇3|2∆2|2γ
1δ́1 ‘ pγ3δ3∇3|2∆2|2δ

́1qpγ1δ2q̊. By using
pγ1δ2q̊ “ pe ‘ γ1δ2qpγ2δ4q̊, this series is rephrased as,

s “δ2∇3|2∆2|2γ
1δ́1 ‘

̀

γ3δ3∇3|2∆2|2δ
́1 ‘ γ3δ5∇3|2∆2|2γ

1δ́1
̆

pγ2δ4q̊.

Because of ∆2|2 “ ∆2|1∆1|2 and ∇3|2 “ ∇3|1∇1|2 (Remark 29) one has,

s “ δ2∇3|1∇1|2∆2|1∆1|2γ
1δ́1 ‘

̀

γ3δ3∇3|1∇1|2∆2|1∆1|2δ
́1‘

γ3δ5∇3|1∇1|2∆2|1∆1|2γ
1δ́1pγ2δ4q̊.

Recall, ∇2|1γ
1 “ γ2∇2|1, ∆2|1δ

1 “ δ2∆2|1 (5.11) and the commutation laws for elementary
operators (Prop. 75), therefore s can be rephrased as

s “ ∇3|1∆2|1 δ1
loomoon

M1

∇1|2∆1|2γ
1δ́1‘δ́1∇3|1∆2|1 γ

1δ2pγ1δ2q̊
loooooomoooooon

S1

∇1|2∆1|2δ
́1‘

δ́1∇3|1∆2|1 γ
1δ3pγ1δ2q̊

loooooomoooooon

S2

∇1|2∆1|2γ
1δ́1.

Observe thatM1, S1 and S2 are elements inMax
in vγ, δw, and that the entries of them3,2-vector

(resp. b2,2-vector) appear on the left (resp. right) ofM1, S1, S2. The series s is now expressed in

119



5. Dioid pET,‘,bq

the core representation m3,2Qb2,2 where,

Q “

»

—

—

—

—

—

—

—

—

—

–

δ1 ε ε ε

ε ε ε ε

ε ε ε ε

γ1δ3pγ1δ2q̊ γ1δ2pγ1δ2q̊ ε ε

ε ε ε ε

ε ε ε ε

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

A formal method to obtain the core representation for an arbitrary ultimately cyclic series

s P ET per is given in the following.

Core-Equation for a Series in ET per

The decomposition of an ultimately cyclic series s P ET per is carried out according to the

following equation

s “ mm,ωXbb,ω. (5.22)

This equation is called core-equation. Then, Q P Max
in vγ, δw

mω̂bω
is called a core of s P

ET per, if Q is a solution of (5.22), i.e., s “ mm,ωQbb,ω. In general, there exists several

cores Q which solve (5.22). A solution Q for an arbitrary ultimately cyclic s P ET per can be

obtained as follows. A series s “ p ‘ qpγνδτq̊ P ET per can be expressed as

s “

I
à

i“1

γniδσi∇m|1∆ω|1 γ
n̄iδσ̄i

loomoon

Mi

∇1|b∆1|ωγ
n 1
iδσ

1
i‘

J
à

j“1

γNjδtj∇m|1∆ω|1 γ
̄Njδt̄jpγνδτq̊

looooooomooooooon

Sj

∇1|b∆1|ωγ
N 1

jδt
1
j .

whereMi is a monomial and Sj is a series inMax
in vγ, δw. Furthermore 0 ď ni, Nj ă m, 0 ď

n 1
i, N

1
j ă b and ́ω ă σi, σ

1
i, tj, t

1
j ď 0. In this form, the entries of the mm,ω-vector

appear on the left of monomials Mi and series Sj. Respectively, the entries of the bb,ω-

vector appear on the right of monomialsMi and series Sj. Note that in general, the growing-

term pγνδτq̊
of a series s P ET per does not commute with the ∇1|b∆1|ω (resp. ∇m|1∆ω|1)

operator. To bring the growing-term pγνδτq̊
of a series to the left-hand side of the∇1|b∆1|ω

operator ν must be a multiple of b and τ must be a multiple of ω, see (5.11). However, any

series s P ET per can be rewritten such that the growing-term commutes with ∇1|b∆1|ω by

extending pγνδτq̊
such that, l “ lcmpl1, l2q with l1 “ lcmpν, b, q{ν, l2 “ lcmpτ,ωq{τ

pγνδτq̊ “ pe ‘ γνδτ ‘ ̈ ̈ ̈ ‘ γpĺ1qνδpĺ1qτqpγlνδlτq̊.
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For an illustration see Example 43. We denote the set of monomials byM “ tM1, ̈ ̈ ̈ ,MIu

and the set of series by S “ tS1, ̈ ̈ ̈ , SJu. Furthermore, the subsets Ml,k,g,p (resp. Sl,k,g,p )

are defined as

@l P t0, ̈ ̈ ̈ ,m ́ 1u, @g P t0, ̈ ̈ ̈ , b ́ 1u, @k, p P t0, ̈ ̈ ̈ ,ω ́ 1u,

Ml,k,g,p “ tMi P M| γlδ́k∇m|1∆ω|1Mi∇1|b∆1|ωγ
gδ́p P

I
à

i“1

γniδσi∇m|1∆ω|1Mi∇1|b∆1|ωγ
n 1
iδσ

1
iu,

Sl,k,g,p “ tSj P S| γlδ́k∇m|1∆ω|1Sj∇1|b∆1|ωγ
gδ́p P

J
à

j“1

γNjδtj∇m|1∆ω|1Sj∇1|b∆1|ωγ
N 1

jδt
1
ju. (5.23)

The entry pQqmk̀l̀1,bpώpq́g of the core matrix is then obtained by

pQqmk̀l̀1,bpώpq́g “
à

MPMl,k,g,p

M ‘
à

SPSl,k,g,p

S. (5.24)

Hence, a series s is represented by s “ mm,ωQbb,ω. The entries of the matrix Q are ulti-

mately cyclic series in the dioid pMax
in vγ, δw ,‘,bq.

Properties of mm,ω and bb,ω.

Recall the definition of bb,ω- andmm,ω-vector,

bb,ω :“
”

∆1|ωδ
1́ωbT

b ̈ ̈ ̈ ∆1|ωbT
b

ıT
,

mm,ω :“
”

∆ω|1mm ̈ ̈ ̈ δ1́ω∆ω|1mm

ı

.

Now let us consider ami,ω-vector and a bi,ω-vector with equal indices, i.e., this implies that

the mi,ω-vector and the bi,ω-vector have the same length. Then since, mmbm “ e (3.43)

and (5.14) the scalar product,

mi,ωbi,ω “ mibip∆ω|1∆1|ωδ
1́ω ‘ δ́1∆ω|1∆1|ωδ

2́ω ‘ ̈ ̈ ̈

‘ δ1́ω∆ω|1∆1|ωq

“ mibip∆ω|ωδ
1́ω ‘ ̈ ̈ ̈ ‘ δ1́ω∆ω|ωq

“ e, (5.25)
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5. Dioid pET,‘,bq

The dyadic product bi,ωmi,ω is a particular matrix in Max
in vγ, δw of size iω ̂ iω denoted

by E. Recall that,

E “ bmmm “

»

—

—

—

—

—

–

e γ1 ̈ ̈ ̈ γ1

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
. γ1

e ̈ ̈ ̈ ̈ ̈ ̈ e

fi

ffi

ffi

ffi

ffi

ffi

fl

,

(3.44) in Section 3.3, ∆1|ωδ
́ω “ δ́1∆1|ω and ∆1|ωδ

j∆ω|1 “ e for ́ω ă j ď 0 see Re-

mark 29, hence

E “ bi,ω b mi,ω “

»

—

–

∆1|ωδ
1́ωbi

̈ ̈ ̈

∆1|ωbi

fi

ffi

fl

”

∆ω|1mi ̈ ̈ ̈ δ1́ω∆ω|1mi

ı

,

“

»

—

—

–

∆1|ωδ
1́ω∆ω|1bimi ̈ ̈ ̈ ∆1|ωδ

1́ωδ1́ω∆ω|1bimi
.
.
.

.

.

.

∆1|ω∆ω|1bimi ̈ ̈ ̈ ∆1|ωδ
1́ω∆ω|1bimi

fi

ffi

ffi

fl

,

“

»

—

—

—

—

—

–

E δ́1E ̈ ̈ ̈ δ́1E
.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
. δ́1E

E ̈ ̈ ̈ ̈ ̈ ̈ E

fi

ffi

ffi

ffi

ffi

ffi

fl

. (5.26)

Proposition 79. For E the following relations hold

E b E “ E, (5.27)

Ei,ω b bi,ω “ bi,ω, (5.28)

mi,ω b Ei,ω “ mi,ω. (5.29)

Proof.

Ei,ω b Ei,ω “ bi,ωmi,ωbi,ωmi,ω “ bi,ω b e b mi,ω “ Ei,ω,

Ei,ω b bi,ω “ bi,ωmi,ωbi,ω “ bi,ω b e “ bi,ω,

mi,ω b Ei,ω “ mi,ωbiωmi,ω “ e b mi,ω “ mi,ω.

Corollary 14. Note that E “ E̊, because of EE “ E and E “ I ‘ E.
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5.2. Core Decomposition of Series in ET per

Due to mi,ωbiω “ e (5.25) and EE “ E (Prop. 79), under some conditions the left and

right product of matrices with entries in ET by the mm,ω-vector and the bb,ω-vector are

invertible, see the following proposition.

Proposition 80. ForD P ET 1̂mω and P P ET bω̂1 one has,

mm,ω z̋D “ bm,ω b D, P{̋bb,ω “ P b mb,ω. (5.30)

For O P ET n̂mω and G P ET bω̂n one has

pOEq{̋mm,ω “ OE b bm,ω bb,ω z̋pEGq “ mb,ω b pEGq. (5.31)

Proof. By definition, the residuatedmappingmm,ω z̋D is the greatest solution of the inequal-

ity

mm,ω b X ĺ D. (5.32)

Clearly since mm,ωbm,ω “ e, bm,ωD satisfies (5.32) with equality. It remains to be shown

that bm,ωD is the greatest solution of (5.32). Next, assume that exists X 1 ľ bm,ωD solving

(5.32), i.e.,mm,ω bX 1 ĺ D. Multiplication is order preserving hence multiplication by bm,ω

results in

bm,ωmm,ω b X 1 “ E b X 1 ĺ bm,ωD

Furthermore, X 1 ĺ EX 1
as E “ I ‘ E. Hence, X 1 ĺ bm,ωD and therefore, X 1 “ bm,ωD.

This proofs that bm,ωD is indeed the greatest solution of (5.32). Similarly, X “ P b mb,ω

solvesXbb,ω ĺ Pwith equality. Assume thatX 1 “ Pbmb,ω is a solution, i.e.,X 1bbb,ω ĺ P.

Multiplication bymb,ω gives

X 1 ĺ X 1E ĺ P b mb,ω.

Therefore X 1 “ P b mb,ω and P b mb,ω is indeed the greatest solution.

To prove pOEq{̋mm,ω “ OE b bm,ω, because of bm,ωmm,ω “ E “ EE and Pmm,ω “

P{̋bm,ω (5.30) one has

̀

OE
̆

{̋mm,ω “ pOEbm,ωmm,ωq{̋mm,ω “ ppOEbm,ωq{̋bm,ωq{̋mm,ω.

Since, px{̋aq{̋b “ x{̋pbaq (A.1) andmm,ωbm,ω “ e (see 5.38),

ppOEbm,ωq{̋bm,ωq{̋mm,ω “ pOEbm,ωq{̋pmm,ωbm,ωq “ pOEbm,ωq{̋e “ OEbm,ω.

The proof of bb,ω z̋pEGq “ mb,ω b pEGq is analogous.

Proposition 81. Let s “ mm,ωQbb,ω P ET per, core equation s “ mm,ωXbb,ω has a unique
greatest solution, denoted Q̂ and given by

Q̂ “ Em,ωQEb,ω. (5.33)
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5. Dioid pET,‘,bq

Proof. Consider the inequality mm,ωX̃bb,ω ĺ mm,ωQbb,ω “ s. Recall Prop. 80, therefore

the greatest solution for X̃ is

X̃ ĺ mm,ω z̋mm,ωQbb,ω{̋bb,ω “ bm,ωmm,ωQbb,ωdb,ω

“ Em,ωQEb,ω “ Q̂.

Furthermore, Q̂ solves (5.22)with equality, recall that,mm,ω “ mm,ωEm,ω, bb,ω “ Eb,ωbb,ω

(Prop. 79), therefore,

mm,ωQ̂bb,ω “ mm,ωEm,ωQEb,ωbb,ω “ mm,ωQbb,ω “ s.

Remark 30. Since, E b E “ E (Prop. 79) the greatest core Q̂ satisfies the following relations,

EQ̂ “ EEQE “ Q̂,

Q̂E “ EQEE “ Q̂.

Alternative Core-Form

An alternative core form is defined by replacing themm,ω-vector and bb,ω-vector by

dω,m :“
”

∇m|1dω ̈ ̈ ̈ γḿ1∇m|1dω

ı

, (5.34)

pω,b :“
”

∇1|bγ
b́1pT

ω ̈ ̈ ̈ ∇1|bpT
ω

ıT
. (5.35)

Observes that, the difference between the vectors mm,ω and dω,m (resp. bb,ω and pω,b) is

just the ordering of its entries. Thus, the alternative core equation for an ultimately cyclic

series s P ET per is

s “ dω,mXpω,b. (5.36)

A solution of (5.36) is denoted by U. Note again that U P Max
in vγ, δw

mω̂bω
. Recall the sets

Ml,k,g,p and Sl,k,g,p for an ultimately cyclic series s P ET per (5.23). A solution of (5.36) for s

is then obtained by

@l P t0, ̈ ̈ ̈ ,m ́ 1u, @g P t0, ̈ ̈ ̈ , b ́ 1u, @k, p P t0, ̈ ̈ ̈ ,ω ́ 1u,

pUqωl̀k̀1,ωpb́gq́p “
à

MPMl,k,g,p

M ‘
à

SPSl,k,g,p

S. (5.37)

This alternative core form is sometimes preferable over the core form mm,ωQbb,ω for cal-

culations with s P ET per. Consider a dω,i-vector and the pω,i-vector with same indices, i.e.,
the dω,i-vector and the pω,i-vector the have same size. The scalar product,

dω,ipω,i “ dωpωpµiβiγ
í1 ‘ γ1µiβiγ

í2 ‘ ̈ ̈ ̈

‘ γí1µiβiq “ e. (5.38)
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5.2. Core Decomposition of Series in ET per

Recall that,

N “ pωdω “

»

—

—

—

—

—

–

e δ́1 ̈ ̈ ̈ δ́1

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
. δ́1

e ̈ ̈ ̈ ̈ ̈ ̈ e

fi

ffi

ffi

ffi

ffi

ffi

fl

,

thus the dyadic product,

pω,i b dω,i “

»

—

—

—

—

—

–

N γ1N ̈ ̈ ̈ γ1N
.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
. γ1N

N ̈ ̈ ̈ ̈ ̈ ̈ N

fi

ffi

ffi

ffi

ffi

ffi

fl

. (5.39)

This matrix is denoted byN. Then similar to Prop. 81 the greatest solution of (5.36) isNUN,

which is denoted by Û.

Proposition 82. FormatricesD P ET 1̂mω, P P ET bω̂1,O P ET n̂mω andG P ET bω̂n

one obtains the following results for left and right division by the dω,m- and pω,b-vector.

dω,m z̋D “ pω,m b D, P{̋pω,b “ P b pω,b

pONq{̋dω,m “ ON b dω,m, pω,b z̋pNGq “ pω,b b pNGq.

Proof. The proof is analogous to the proof of Prop. 80.

Core Transformation

The transformation between the two core representations is achieved by reordering the

entries in the core matrix Q (respectively U). The relation between the two cores Q and

U is given by (5.24) and (5.37). Hence, let s “ mm,ωQbb,ω P ET per, then s is written as

dω,mUpω,b, where

@l P t0, ̈ ̈ ̈ ,m ́ 1u, @g P t0, ̈ ̈ ̈ , b ́ 1u, @k, p P t0, ̈ ̈ ̈ ,ω ́ 1u,

pUqωl̀k̀1,ωpb́gq́p “ pQqmk̀l̀1,bpώpq́g.
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By choosing

k “ i ́ 1 ́

Z

i ́ 1

ω

^

ω,

l “

Z

i ́ 1

ω

^

,

p “ ωb ́ j ́

Z

ωb ́ j

ω

^

ω,

g “

Z

ωb ́ j

ω

^

,

one can establish for i P t1, ̈ ̈ ̈ ,mωu, j P t1, ̈ ̈ ̈ , bωu,

pUqi,j “ pQq
mpí1́t í1

ω
uωq̀t í1

ω
ù1,bpώωb̀j̀t

ωb́j
ω

uωq́t
ωb́j

ω
u
. (5.40)

Conversely, let s “ dω,mUpω,b P ET per, then s is written as mm,ωQbb,ω where for i P

t1, ̈ ̈ ̈ ,mωu, j P t1, ̈ ̈ ̈ , bωu

pQqi,j “ pUq
ωpí1́t í1

m
umq̀t í1

m
ù1,ωpb́ωb̀j̀t

ωb́j
b

ubq́t
ωb́j

b
u
. (5.41)

Example 44. Recall the series s “ δ2∇3|2∆2|2γ
1δ́1 ‘ pγ3δ3∇3|2∆2|2δ

́1qpγ1δ2q̊ of Exam-
ple 43. The alternative core-form of s is d2,3Up2,2, where

U “

»

—

—

—

—

—

—

—

—

—

—

—

–

δ1 ε ε ε

γ1δ3pγ1δ2q̊ ε γ1δ2pγ1δ2q̊ ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

ε ε ε ε

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let s “ mm,ωQbb,ω P ET per be an ultimately cyclic series. Clearly, since dω,mpω,b “ e,

we can express s as

s “ dω,mpω,m
loooomoooon

e

mm,ωQbb,ω dω,bpω,b
looomooon

e

.

Clearly, pω,mmm,ωQbb,ωdω,b is a solution of the alternative core equation (5.36). Moreover,

it can be shown that

Û “ pω,mmm,ω
looooomooooon

TQU1

Qbb,ωdω,b
looomooon

TQU2

,
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is the greatest solution of (5.36), for details see Section C.3.2. TQU1
“ pω,mmm,ω and

TQU2
“ bb,ωdω,b are matrices with entries inMax

in vγ, δw, see Section C.3.2. Respectively,

Q̂ “ bb,ωpω,b
looomooon

TUQ1

Udω,mmm,ω
looooomooooon

TUQ2

.

Again, TUQ1
and TUQ2

are matrices with entries inMax
in vγ, δw, see Section C.3.2. The trans-

formation between the core-matrices Q̂ and Û is necessary to express an ultimately cyclic

series s P ET per with a multiple period in the core form.

Proposition 83. A series s “ mm,ωQ̂bb,ω P ET per can be expressed with a multiple period
pm,b, nωq by extending the core matrix Q̂, i.e., s “ mm,ωQ̂bb,ω “ mmn,ωQ̂

1bbn,ω, where
Q̂ 1 P Max

in vγ, δw
mnω̂bnω and is given by

Q̂ 1 “

»

—

—

–

∆1|nδ
1́ωQ̂∆n|1 ̈ ̈ ̈ ∆1|nδ

1́ωQ̂δ1́ω∆n|1
...

...

∆1|nQ̂∆n|1 ̈ ̈ ̈ ∆1|nQ̂δ1́ω∆n|1

fi

ffi

ffi

fl

.

Proof. See Section C.3.2

Proposition 84. A series s “ dω,mÛpω,b P ET per can be expressed with a multiple period
pnm,nb,ωq by extending the core matrix Û, i.e., s “ dω,mÛpω,b “ dnω,mÛ

1pnω,b, where
Û 1 P Max

in vγ, δw
nmω̂nbω and is given by

Û 1 “

»

—

—

–

∇1|nγ
ń1Û∇n|1 ̈ ̈ ̈ ∇1|nγ

ń1Ûγń1∇n|1
...

...

∇1|nÛ∇n|1 ̈ ̈ ̈ ∇1|nÛγń1∇n|1

fi

ffi

ffi

fl

.

Proof. The proof is analogous to the proof of Prop. 83, given in Section C.3.2.

Therefore, a series s “ mm,ωQ̂bb,ω can be expressed as mn1m,n2ωQ̂bn1b,n2ω with a

multiple period pn1m,n1b, n2ωq.

5.2.1. Calculation with the Core Decomposition

This section illustrates how to perform the basic operations p‘,b, z̋, {̋q on series in ET per,

based on the core decomposition.
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Sum and Product of Series in ET per

Due to Prop. 83 and Prop. 84, by extending the core-form if necessary, two ultimately

cyclic series s, s 1 P ET per with equal gain can be expressed with their least common period,

i.e., s “ mm,ωQ̂bb,ω, s
1 “ mm,ωQ̂

1bb,ω. Then observe that matrices Q̂ and Q̂ 1
have equal

dimensions.

Proposition 85 (Sum of Series). Let s “ mm,ωQ̂bb,ω, s
1 “ mm,ωQ̂

1bb,ω P ET per, be two
ultimately cyclic series, then the sum s ‘ s 1 “ mm,ωQ̂

2bb,ω, where Q̂
2

“ Q̂ ‘ Q̂ 1, is again
an ultimately cyclic series in ET per.

Proof.

s ‘ s 1 “ mm,ωQ̂bb,ω ‘ mm,ωQ̂
1bb,ω “ mm,ωpEQ̂E ‘ EQ̂ 1

Eqbb,ω

“ mm,ωEpQ̂ ‘ Q̂ 1
qE

loooooomoooooon

Q̂2

bb,ω

Clearly, the entries of the core matrices Q̂, Q̂ 1
are ultimately cyclic series inMax

in vγ, δw and

because of Theorem 2.6 the sum of two ultimately cyclic series in Max
in vγ, δw is again an

ultimately cyclic series. Therefore, Q̂2
is composed of ultimately cyclic series inMax

in vγ, δw

and thus s ‘ s 1 “ dωQ̂
2pω is an ultimately cyclic series in ET per.

Again, because of Prop. 83 and Prop. 84, two ultimately cyclic series s, s 1 P ET per can be

written such that s is pm,b,ωq-periodic and s 1
is pb, b 1,ωq-periodic, i.e., s “ mm,ωQ̂bb,ω

and s 1 “ mb,ωQ̂bb 1ω, where Q̂ P Max
in vγ, δw

mω̂bω
and Q̂ P Max

in vγ, δw
bω̂b 1ω

.

Proposition 86 (Product of Series). Let s “ mm,ωQ̂bb,ω P ET per and s 1 “ mb,ωQ̂bb 1ω P

ET per, be two ultimately cyclic series, then the product s b s 1 “ mm,ωQ̂
2bb 1,ω, where Q̂

2
“

Q̂Q̂ 1, is again an ultimately cyclic series in ET per.

Proof. Recall that bb,ωmb,ω “ E (5.26) and Q̂E “ Q̂ (Remark 30), then

s b s 1 “ mm,ωQ̂bb,ωmb,ωQ̂
1bb 1,ω “ mm,ωQ̂EQ̂ 1bb 1,ω

“ mm,ωQ̂Q̂ 1bb 1,ω.

Furthermore, because of EE “ E (Prop. 79),

Q̂Q̂ 1
“ EQ̂EEQ̂ 1

E “ Q̂2
.

Recall that, the entries of the core matrices Q̂, Q̂ 1
are ultimately cyclic series in Max

in vγ, δw

and because of Theorem 2.6 the sum and product of ultimately cyclic series in Max
in vγ, δw

are again ultimately cyclic series in Max
in vγ, δw. Therefore, entries of the matrix Q̂2

are

ultimately cyclic series inMax
in vγ, δw and the product s b s 1

is an ultimately cyclic series in

ET per.
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Proposition 87. Let s “ mm,ωQ̂bm,ω P ET per be an ultimately cyclic series, then

s̊ “ mm,ωQ̂
̊bm,ω. (5.42)

is again an ultimately cyclic series in ET per.

Proof. In this case, Γpsq “ 1 means that Q̂ is a square matrix. The Kleene star of a series in

the core representation can be written as,

s̊ “ e ‘ mm,ωQ̂bm,ω ‘ mm,ωQ̂bm,ωmm,ωQ̂bm,ω ‘ ̈ ̈ ̈

Recall that, e “ mm,ωbm,ω (5.25), E “ bm,ωmm,ω (5.26) and EQ̂ “ Q̂ Remark 30,

s̊ “ mm,ωbm,ω ‘ mm,ωQ̂bm,ω ‘ mm,ωQ̂
2bm,ω ‘ ̈ ̈ ̈

“ mm,ωpI ‘ Q̂ ‘ Q̂2
‘ ̈ ̈ ̈ qbm,ω

“ mm,ωQ̂
̊bm,ω

Again, due to Theorem 2.6 the Kleene star, sum, and product of ultimately cyclic series in

Max
in vγ, δw are ultimately cyclic series in Max

in vγ, δw and therefore, s̊ “ mm,ωQ̂
̊bm,ω is

an ultimately cyclic series in ET per.

Note that Q̂̊
is not the greatest core of s̊

as Q̂̊
ĺ EQ̂̊

E. In general, multiplication does

not distribute with respect to ^ in the dioid pET ,‘,bq. However, as shown for the dioid

pErrδss,‘,bq in Lemma 2 and Lemma 3, distributivity holds for left multiplication by the

mm,ω-vector and right multiplication by the bb,ω-vector for specific matrices with entries

in ET .

Lemma 6. Let Q1,Q2 be two matrices of appropriate dimension, then

mm,ωpEQ1 ^ EQ2q “ mm,ωEQ1 ^ mm,ωEQ2,

pQ1E ^ Q2Eqbb,ω “ Q1Ebb,ω ^ Q2Ebb,ω.

Proof. The proof is similar to the proof of Lemma 2. Recall that e “ mm,ωbm,ω (4.19), E “

bm,ωmm,ω (4.20) andE “ EE Prop. 60. Moreover, recall that inequality cpa^bq ĺ ca^cb

holds for a, b, c elements in a complete dioid, see (2.2). Now let us define q1 “ mm,ωEQ1

and q2 “ mm,ωEQ2, then

q1 ^ q2 “ epq1 ^ q2q “ mm,ωbm,ωpq1 ^ q2q ĺ mm,ωpbm,ωq1 ^ mm,ωq2q.

Inserting q1 “ mm,ωEQ1 and q2 “ mm,ωEQ2 lead to,

mm,ωpbm,ωq1 ^ mm,ωq2q “ mm,ωpbm,ωmm,ωEQ1 ^ bm,ωmm,ωEQ2q,

“ mm,ωpEEQ1 ^ EEQ2q,

“ mm,ωpEQ1 ^ EQ2q.
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5. Dioid pET,‘,bq

Finally,

mm,ωpEQ1 ^ EQ2q ĺ mm,ωEQ1 ^ mm,ωEQ2 “ q1 ^ q2.

Hence, equality holds throughout. The proof for pQ1E^Q2Eqbb,ω “ Q1Ebb,ω^Q2Ebb,ω

is similar.

Proposition 88. Let s “ mm,ωQ̂bb,ω, s
1 “ mm,ωQ̂

1bb,ω P ET per be two ultimately cyclic
series, then s^s 1 “ mm,ωQ̂

2bb,ω P ET per is an ultimately cyclic series, where Q̂2
“ pQ̂^Q̂ 1

q

is again a greatest core.

Proof. Again, this proof is similar to the proof of Prop. 34. Let us recall that Q̂ “ EQ̂E, then

according to Lemma 4 we can write

s ^ s 1 “ mm,ωQ̂bb,ω ^ mm,ωQ̂
1bb,ω

“ mm,ωEQ̂Ebb,ω ^ mm,ωEQ̂ 1
Ebb,ω “ mm,ωpEQ̂E ^ EQ̂ 1

Eqbb,ω

“ mm,ωpQ̂ ^ Q̂ 1
qbb,ω.

It remains to be shown that Q̂2
“ pQ̂ ^ Q̂ 1

q is a greatest core. First, E “ E̊
, therefore,

I ‘ E “ E, and Q̂2
ĺ EQ̂2

E. Then, according to Lemma 4,

EQ̂2
E “ EpQ̂ ^ Q̂ 1

qE “ bm,ωmm,ωpQ̂ ^ Q̂ 1
qbb,ωmb,ω

“ bm,ωpmm,ωQ̂bb,ω ^ mm,ωQ̂
1bb,ωqmb,ω.

Recall, cpa ^ bq ĺ ca ^ cb and pa ^ bqc ĺ ac ^ bc (2.2), therefore

bm,ωpmm,ωQ̂bb,ω ^ mm,ωQ̂
1bb,ωqmb,ω

ĺ bm,ωmm,ωQ̂bb,ωmb,ω ^ bm,ωmm,ωQ̂
1bb,ωmb,ω “ Q̂ ^ Q̂ 1

“ Q̂2
.

Hence, equality holds throughout.

Division in ET per

Proposition 89. Let s “ mm,ωQ̂bb,ω, s
1 “ mm,ωQ̂

1bb 1,ω be ultimately periodic series in
ET per where s is pm,b,ωq-periodic and s 1 is pm,b 1,ωq-periodic then

s 1 z̋s “ mb 1,ωpQ̂ 1
z̋Q̂qbb,ω,

is an ultimately cyclic series in ET per.
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5.2. Core Decomposition of Series in ET per

Proof. First, it is shown that

Q̂ 1
z̋Q̂ “ Eb 1,ωpQ̂ 1

z̋Q̂qEb,ω. (5.43)

For this,

́

Eb 1,ω

́

Q̂ 1
z̋Q̂

̄̄

Eb,ω “

́

Eb 1,ω z̋

́

Eb 1,ω

́

Q̂ 1
z̋Q̂

̄̄̄

Eb,ω,

since: E z̋pEQ̂q “ EQ̂

“

́

Eb 1,ω z̋

́

Eb 1,ω

́́

Q̂ 1
Eb 1,ω

̄

z̋Q̂
̄̄̄

Eb,ω,

since: Q̂ “ Q̂E

“

́

Eb 1,ω z̋

́

Eb 1,ω

́

Eb 1,ω z̋

́

Q̂ 1
z̋Q̂

̄̄̄̄

Eb,ω,

since: pabq z̋x “ b z̋ pa z̋xq (A.5)

“

́

Eb 1,ω z̋

́

Q̂ 1
z̋Q̂

̄̄

Eb,ω,

since: a z̋ pa pa z̋xqq “ a z̋x (A.4)

“

́́

Q̂ 1
Eb 1,ω

̄

z̋Q̂
̄

Eb,ω “

́

Q̂ 1
z̋Q̂

̄

Eb,ω,

since: pabq z̋x “ b z̋ pa z̋xq (A.5) and Q̂ “ Q̂E

“

́́

Q̂ 1
z̋
̀

Q̂{̋Eb,ω

̆

̄

Eb,ω

̄

{̋Eb,ω,

since: pQ̂Eq{̋E “ Q̂E

“

́́́

Q̂ 1
z̋Q̂

̄

{̋Eb,ω

̄

Eb,ω

̄

{̋Eb,ω,

since: pa z̋xq{̋b “ a z̋px{̋bq (A.6)

“

́

Q̂ 1
z̋Q̂

̄

{̋Eb,ω,

since: ppx{̋aqaq{̋a “ x{̋a (A.4)

“ Q̂ 1
z̋
̀

Q̂{̋Eb,ω

̆

“ Q̂ 1
z̋Q̂,

since: pa z̋xq{̋b “ a z̋px{̋bq (A.6) and

Q̂{̋E “ Q̂E “ Q̂ .
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Second,

́

mm,ωQ̂
1bb 1,ω

̄

z̋
̀

mm,ωQ̂bb,ω

̆

“

́

Q̂ 1bb 1,ω

̄

z̋
̀

mm,ω z̋pmm,ωQ̂bb,ωq
̆

,

because of (A.5),

“

́

Q̂ 1bb 1,ω

̄

z̋
̀

bm,ωmm,ωQ̂bb,ω

̆

,

because of (5.30),

“

́

Q̂ 1bb 1,ω

̄

z̋
̀

Q̂bb,ω

̆

,

as bm,ωmm,ωQ̂ “ Q̂ Remark 30,

“

́

Q̂ 1bb 1,ω

̄

z̋
̀

Q̂{̋mb

̆

,

from (5.31) and Remark 30,

“ bb 1,ω z̋

́

Q̂ 1
z̋pQ̂{̋mbq

̄

,

because of (A.5),

“ bb 1,ω z̋

́

pQ̂ 1
z̋Q̂q{̋mb

̄

,

because of (A.6),

“ mb 1,ωpQ̂ 1
z̋Q̂qbb,ω,

because of (5.31) and (5.43).

Due to Theorem 2.6, the quotient Q̂ z̋Q̂ 1
is a matrix composed of ultimately cyclic series

in Max
in vγ, δw and therefore the s 1 z̋s “ mm,ωpQ̂ 1

z̋Q̂qbb,ω is an ultimately cyclic series in

ET per.

Proposition 90. Let s “ mm,ωQ̂bb,ω, s 1 “ mm 1,ωQ̂
1bb,ω be ultimately cyclic series in

ET per where s is pm,b,ωq-periodic and s 1 is pm 1, b,ωq-periodic then

s{̋s 1 “ mm,ωpQ̂ 1
{̋Q̂qbm 1,ω,

is an ultimately cyclic series in ET per.

Proof. The proof is analogous to the proof of Prop. 89.

Matrices with entries in ET per

In analogy with Section 3.4 the operations p‘,b, ̊, z̋, {̋q can be generalized to matrices

with entries in ET per.
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6
Model of Discrete Event Systems

In this chapter, Timed Event Graphs (TEGs) and theirweighted extension,Weighted Timed

Event Graphs (WTEGs) are studied. TEGs and WTEGs are a subclass of timed Petri nets,

which are commonly used tomodel timedDiscrete Event Systems (DESs), where the dynamic

behavior is only governed by synchronization and saturation effects. Whereas the behavior

of TEGs is event-invariant, due to the weight on the arcs in WTEGs, WTEGs exhibit event-

variant behavior. In the first part of this chapter Petri nets, TEGs and WTEGs are recalled.

Next, time-variant TEGs are studied. Two time-variant extensions of TEGs are considered

in this chapter. First, TEGs are expanded with a specific form of synchronization, which is

referred to as partial synchronization (PS) [20] and is associated with transitions in TEGs.

Second, the time-variant behavior is modeled with a time-variant holding time of places

in TEGs. This leads to the introduction of Periodic Time-variant Event Graphs (PTEGs).

The second part of this chapter focuses on dioid models for TEGs, WTEGs, TEGs under PS,

and PTEGs. Clearly, the earliest functioning of TEGs can be described by linear equations

over some dioids, e.g., the (max,+)-algebra. Due to the event-variant (resp. time-variant)

behavior, this is not the case for WTEGs (resp. PTEGs). However, the input-output behavior

ofWTEGs can be described by ultimately cyclic series in the dioid pErrδss,‘,bq, respectively

for PTEGs and TEGs under periodic PS in the dioid pTperrrγss,‘,bq). In Section 6.2, the

modeling process of TEGs andWTEGs in the dioids pMax
in vγ, δw ,‘,bq and pErrδss,‘,bq is

presented. This section is mainly based on [16, 17, 65, 66]. Section 6.2.4 studies Timed Event

Graphs under Partial Synchronization, which were first introduced in [20]. In this section it

is shown how the earliest functioning of a TEG under periodic PS can bemodeled in the dioid

pTperrrγss,‘,bq. In Section 6.2.6, partial synchronization is introduced for WTEGs. Again,

it is shown that under some constraints the earliest functioning of WTEGs under periodic

PS can be modeled in the dioid pET ,‘,bq. Some ideas, results, and figures presented in this

chapter have appeared previously in [66, 65, 67, 68, 69].

6.1. Peti Nets and Timed Event Graphs

In the following, necessary facts on Petri nets TEGs and WTEGs are restated, for a com-

prehensive overview for Petri nets in general see, e.g., [54, 9] and in particular for TEGs

[1, 40], for WTEGs respectively [16, 50, 63]. Note also that, equivalent graphical models for

WTEGs are known as SDF graphs. SDF graphs are used in the field of computer science, for

instance to model data flow applications in embedded systems. For a detailed description on
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6. Model of Discrete Event Systems

SDF graphs see, e.g., [26, 44, 61].

Definition 53. A Petri net graph is a directed bipartite graph N “ pP, T,wq, where:
— P “ tp1, p2, . . . , pnu is the finite set of places.
— T “ tt1, t2, . . . , tmu is the finite set of transitions.
— w : pP ̂ Tq Y pT ̂ Pq Ñ N0 is the weight function.

A :“ tppi, tjq|wppi, tjq ą 0u Y tptj, piq|wptj, piq ą 0u is the arc set, and W P Zn̂m
,

where pWqi,j “ wptj, piq ́ wppi, tjq, is the incidence matrix of the Petri net graph N .

Furthermore,

—
‚pi :“ ttj P T |ptj, piq P Au is the set of upstream transitions of pi,

— p‚
i :“ ttj P T |ppi, tjq P Au is the set of downstream transitions of place pi.

Conversely,

—
‚tj :“ tpi P P|ppi, tjq P Au is the set of upstream places of transition tj,

— t‚
j :“ tpi P P|ptj, piq P Au is the set of downstream places of transition tj.

A Petri net consists of a Petri net graphN and a vector of initial markingsM0 P Nn
0 , i.e. an

initial distribution of tokens over places inN . A transition tj can fire, iff @pi P ‚tj, pMqi ě

wppi, tjq. If a transition tj fires, the marking is changing according to M 1 “ M ̀ pWq:,j,

where M and M1
are the markings before and after the firing of tj. A potential firing

sequence can be encoded by a vector t P Nm
0 (called Parikh vector), where ptqi gives the

number of firings of ti in the sequence. E.g., for the Petri net shown in Figure 6.1, a firing

sequence t1t2t2t3 is described by t “ r1 2 1sT . If the encoded firing sequence can actually

occur when marking is M, the new marking is obtained as M 1 “ M ̀ Wt. A Petri net

is said to be bounded if the marking in all places is bounded. Moreover, a Petri net is said to

be live if any transition can ultimately fire from any reachable marking [63]. The structural

properties of a Petri net can be analyzed by linear algebraic techniques. In particular, the

right and left null spaces of the incidence matrixW reveal invariants of the net structure.

Definition 54. A vector ξ is called T(ransition)-semiflow if ξ P Nm̂1 andWξ “ 0, where 0
denotes the zero vector.

Note that a T-semiflows is a strictly positive integer vector. A T-semiflow, therefore, de-

scribes a firing sequence which involves all transitions in the Petri net and, if it can occur

at marking M, leaves the latter invariant, i.e., M “ M ̀ Wξ. It can then of cause be

repeated indefinitely and is therefore also called repetitive vector.

Example 45. Consider the Petri net shown in Figure 6.1. The incidence matrix of the corre-
sponding Petri net graph is

W “

»

—

–

2 ́1 0

0 1 ́2

́1 0 1

fi

ffi

fl

.
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6.1. Peti Nets and Timed Event Graphs

Then the vector ξ “ r1 2 1sT is a T-semiflow for the Petri net shown in Figure 6.1, sinceWξ “ 0

and all entries of ξ are strictly positive integers. The initial marking of the Petri net is M0 “

r0 0 1s. Clearly, the firing of ξ, i.e. the firing of the sequence t1t2t2t3, results again in the
marking M0 “ r0 0 1s.

p1 p2

p3

2 2
t1 t3t2

Figure 6.1. – Simple Petri net with a T-semiflow ξ “ r1 2 1sT .

A timed Petri net with holding times is a triple pN ,M0,ϕq, where pN ,M0q is a Petri

net and ϕ P Nn
0 represents the holding times of the places, i.e., pϕqi is the time a token has

to remain in place pi before it contributes to the firing of a transition in p‚
i . We can divide

the set of transitions of a Petri net into input, output and internal transitions. Input tran-

sitions are transitions without upstream places. Output transitions are transitions without

downstream places and internal transitions are transitions with both upstream and down-

stream places. A single-input and single-output (SISO) Petri net has exactly one input and

one output transition. If a Petri net has several input or output transitions it is referred to as

multiple-input and multiple-output (MIMO) Petri net.

6.1.1. Weighted Timed Event Graphs

Definition 55. A timed Petri net (N ,M0,ϕ) is called Weighted Timed Event Graph, if every
place has exactly one upstream and one downstream transition i.e., @pi P P : |p‚

i | “ |‚pi| “ 1.

Definition 56. An (ordinary) Timed Event Graph is a WTEG, where all arcs have weight 1,
i.e., @ppi, tjq, ptj, piq P A, wppi, tjq “ wptj, piq “ 1.

Definition 57 (Earliest Functioning Rule). AWTEG is operating under the earliest functioning
rule if all internal and output transitions fire as soon as they are enabled.

Let ti and ti be the unique upstream respectively downstream transition of place pi, i.e.,

ttiu “‚ pi and ttiu “ p‚
i .

Definition 58. ti Ñ pi Ñ ti is said to be a basic directed path, denoted by πi. The gain of πi

is

Γpπiq “
wpti, piq

wppi, tiq
.
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Hence, the gain of a basic directed path is a positive rational number. It is interpreted as

follows: if the upstream transition ti fireswppi, tiq times, this depositswpti, piq ̂wppi, tiq

tokens in place pi, and this, in true, contribute to wpti, piq firings of the downstream tran-

sition ti.

Definition 59. A directed path is a sequence π “ πi1 ̈ ̈ ̈πiq with ij ‰ ik, j, k P t1, ̈ ̈ ̈ , qu,
such that ij “ ij̀1,@j P t1, ̈ ̈ ̈ , q ́ 1u. Its gain is the product of the gain of its constituent
basic directed paths, i.e.,

Γpπq “

q
ź

j“1

Γpπijq.

It should be clear that every path in an ordinary TEG has gain 1.

Definition 60. A WTEG is called
— strongly connected, if @tj, tl P T there exists a directed path from tj to tl.
— consistent if there exists a T-semiflow.

In this thesis, only WTEGs are considered since a non-consistent WTEG is either not live

or not bounded [63].

Proposition 91. Let pN ,M0,ϕq ba a consistent WTEG with T-semiflow ξ. Then the diverted
directed path π “ πi1 ̈ ̈ ̈πiq has gain

Γpπq “
pξqiq

pξqi1

.

Proof. According to the definition of T-semiflows, ξ is a positive integer vector such that

Wξ “ 0, (6.1)

where W P Zn̂m
is the incidence matrix of the WTEG. Lines ij, j P t1, ̈ ̈ ̈ , qu of (6.1)

read as follows:

wptij , pijqpξqij ́ wppij , tij̀1
qpξqij̀1

“ 0, for j “ 1, ̈ ̈ ̈ , q ́ 1

wptij , pijqpξqij ́ wppij , tijqpξqij
“ 0, for j “ q.

Equivalently,

pξqij̀1

pξqij

“
wptij , pijq

wppij , tij̀1
q

“ Γpπijq, for j “ 1, ̈ ̈ ̈ , q ́ 1

pξqiq

pξqiq

“
wptiq , piqq

wppiq , tiqq
“ Γpπiqq.
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Therefore:

Γpπq “

q
ź

j“1

Γpπijq “
pξqiq

pξqi1

.

A WBTEG, introduced in [16], is defined as follows.

Definition 61 (Weight-Balanced Timed Event Graph). Two paths π “ πi1 ̈ ̈ ̈πiq and π 1 “

πi 1
1

̈ ̈ ̈πi 1
q
are called parallel if they start and end in the same transition, i.e., if i1 “ i 1

1 and

iq “ i
1

q. A WTEG is called Weight-Balanced Timed Event Graph (WBTEG), if all parallel paths
have identical gain.

Proposition 92. A consistent WTEG is a WBTEG.

Proof. Let π “ πi1 ̈ ̈ ̈πiq and π 1 “ πi 1
1

̈ ̈ ̈πi 1
q
be parallel paths. Then according to Prop. 91

and Definition 61,

Γpπq “
pξqiq

pξqi1

“

pξq
i

1

q

pξqi 1
1

“ Γpπ 1q.

Remark 31. Note that in general, the opposite is not true, i.e. consistent WTEGs are a strict
subclass of WBTEG.

Example 46. Figure 6.2a shows a consistentWBTEG, where Figure 6.2b depicts a non-consistent
one. Note that the only difference is the weight of arc pt1, p2q. In Figure 6.2a, wpt1, p2q “ 4,
while in Figure 6.2b wpt1, p2q “ 1. In case (a) this leads to an incidence matrix

W “

»

—

—

—

—

—

—

—

—

—

–

3 0 0 0 ́1

4 0 0 ́1 0

0 ́2 3 0 0

0 0 4 ́1 0

0 0 0 0 0

0 ́2 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

W has rank 4 and the vector ξ “ r2 3 2 8 6sT satisfiesWξ “ 0 and is therefore a T-semiflow.
It can be easily checked that the firing of ξ “ r2 3 2 8 6sT results again in the initial marking
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M0 “ r0 0 0 0 3 1sT . In case (b) the incidence matrix is

W “

»

—

—

—

—

—

—

—

—

—

–

3 0 0 0 ́1

1 0 0 ́1 0

0 ́2 3 0 0

0 0 4 ́1 0

0 0 0 0 0

0 ́2 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and rank W “ 5. Therefore no T-semiflow exists and the WBTEG is not consistent. The opera-
tion of this WBTEG leads to an irreversible accumulation of tokens in the system, i.e. after the
firing of any transition, the initial markingM0 cannot be reached anymore.

t1
t5

t3

t2

t4

p5

p3p2

p6p1

p4

3 2

1

1

4

3 3

2

24

(a) A consistent WBTEG.

t1
t5

t3

t2

t4

p5

p3p2

p6p1

p4

3 2

1

1

4

3 3

2

2

(b) The WBTEG which is not consistent.

Figure 6.2. – Examples for consistent and non-consistent WBTEG.

Transformation of consistent WTEGs to TEGs

A consistent WTEG can be transformed into an "equivalent" TEG [53, 55]. Moreover, in

[61] a similar transformation for SDF graphs was introduced. This transformation is based

on the T-semiflow of a consistent WTEG. Each transition in the WTEG is duplicated by

its corresponding entry in the T-semiflow. This transformation is useful to do performance

evaluation for consistentWTEGs. For instance, in [55] it was shown that the throughput, i.e.,
the maximal firing rate of transitions, of a consistent WTEG is the same than the throughput

of its transformed TEG. A drawback of the transformation is that the number of transitions

and places can significantly increase for the transformed TEG. More precisely, the number

of transitions in the transformed TEG is |ξ| and the number of places is at most 2|ξ|, where

|ξ| is the 1-norm of the T-semiflow of the original consistent WTEG. Moreover, note that

the |ξ| can grow exponentially independent of the net size of the WTEG, for more details
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see [55]. For an illustration of this transformation see the following example. The TEG was

obtained based on the algorithm published in [61].

Example 47. Consider the consistent WTEG shown in Figure 6.3. Its incidence matrix is

W “

»

—

—

—

—

—

—

—

—

—

–

1 ́2 0 0

3 0 ́1 0

0 0 0 0

0 0 0 0

0 3 0 ́1

0 0 1 ́2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The vector ξ “ r2 1 6 3sT is a T-semiflow for the WTEG, since

Wξ “

»

—

—

—

—

—

—

—

—

—

–

1 ́2 0 0

3 0 ́1 0

0 0 0 0

0 0 0 0

0 3 0 ́1

0 0 1 ́2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

2

1

6

3

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

0

0

0

0

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

This WTEG can be transformed into the TEG shown in Figure 6.4. The transition t1 in Fig-

t1 t4

t2

t3

2

2

1

1 2

2

3

3

Figure 6.3. – A simple consistent WTEG, example is taken from [16].

ure 6.3 is duplicated twice, since the first entry of ξ being 2. The transition t1 corresponds to the
transitions t11 and t12 in the corresponding TEG (Figure 6.4). Respectively, transition t2 corre-
sponds to transition t21 , transition t3 is duplicated 6 times and corresponds to the transitions
t31 , t32 , t33 , t34 , t35 , t36 and transition t4 is duplicated 3 times and corresponds to transitions
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2

2
2

1

1

1

1

1

1

1

1

1

1

1

1

t11

t12

t31

t32

t33

t34

t35

t36

t21

t41

t42

t43

Figure 6.4. – Transformed TEG corresponding to the consistent WTEG shown in Figure 6.3.
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t1 t2 t3

p1 p2

(a) standard TEG.

ω

ta

t1 t2 t3

p1 p2

p3

(b) TEG with PS.

Sω

t1 t2 t3

p1 p2

(c) PS by signal Sω.

Figure 6.5. – (a) standard TEG. (b) PS of t2 by ta, triggered everyω time units. (c) equivalent PS expressed by

a signal Sω.

t41 , t42 , t43 . Clearly, this transformation significantly increases the number of transitions in the
corresponding TEG.

6.1.2. Timed Event Graphs under Partial Synchronization

To express systems with time-variant behaviors, a new form of synchronization, called PS,

has been introduced for TEGs [20, 21, 22]. Unlike exact synchronization, where two transi-

tions t1, t2 can only fire if both transitions are simultaneously enabled, PS of transition t1 by

transition t2 means that t1 can fire only when transition t2 fires, but t1 does not influence

the firing of t2. TEGs under PS provide a suitable model for some time-variant discrete event

systems. In the following, a brief introduction is given.

Considering the TEG in Figure 6.5a, assuming the earliest functioning rule, incoming to-

kens in place p1 are immediately transferred to place p2 by the firing of transition t2, as

the holding time of place p1 is zero. Note that zero holding times are, by convention, not

indicated in visual illustrations of TEGs. In contrast, Figure 6.5b illustrates a TEG with PS

of transition t2 by transition ta. This means that t2 can only fire if ta fires, but the firing

of ta does not depend on t2. In this example, place p3 (equipped with a holding time of

ω) and transition ta, together with the corresponding arcs, constitute an autonomous TEG.

Under the earliest functioning rule, the firing of transition ta generates a periodic signal Sω

with a period ω P N. Therefore, the PS of t2 by ta can also be described by a predefined

signal Sω: Z ÞÑ t0, 1u, enabling the firing of t2 at times t where Sωptq “ 1. The signal

Sωptq “ 1 if t P tjω, with j P Zu and 0 otherwise.

Definition 62. A Timed Event Graph under Partial Synchronization is a TEG where some
internal and output transitions are subject to partial synchronization.

Note that the assumption that only internal and output transitions are subject to PS is

not restrictive since it is always possible to add new input transitions and extend the set of

internal transitions by the former input transitions. In [21], ultimately periodic signals are

considered for PS of transitions. It was shown that the behavior of a TEG under PS can be
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described by recursive equations in a state space form. This thesis focuses on (immediately)

periodic signals for PS of transitions.

Definition 63. A periodic signal S : Z Ñ t0, 1u is defined by a string tn0, n1, ̈ ̈ ̈ , nIu P N0

and a periodω P N, such that

Sptq “

$

&

%

1 if t P tn0 ̀ ωj, n1 ̀ ωj, ̈ ̈ ̈ , nI ̀ ωj |j P Zu,

0 otherwise,

where the string tn0, n1, ̈ ̈ ̈ , nIu is strictly ordered, i.e., @i P t1, ̈ ̈ ̈ , Iu, ní1 ă ni, and
nI ă ω.

Example 48. The signal

S1ptq “

$

&

%

1 if t P ẗ ̈ ̈ ,́3, 0, 1, 4, 5, 8, 9, ̈ ̈ ̈ u,

0 otherwise,

is a periodic signal with a period ω “ 4 and a string t0, 1u. Therefore,

S1ptq “

$

&

%

1 if t P t0 ̀ 4j, 1 ̀ 4j |j P Zu,

0 otherwise.
(6.2)

In the following, only PS of transitions by periodic signals as given in Definition 63 are

considered. Such a PS is called periodic PS. Considering only periodic PS allows us to model

the earliest functioning of a Timed Event Graph under Partial Synchronization (TEGPS) in

the dioid pT rrγss,‘,bq, see Chapter 4. In particular, we can show that the transfer behavior

of a TEG under periodic PS is described by a rational power series of an ultimately cyclic

form in this dioid. Note that focusing on periodic signals for a PS of a transition is not overly

restrictive as periodic schedules are common in many applications.

Example 49. Such periodic timing phenomena occur for instance in traffic networks. As an
example, let us consider a crossroad which is controlled by a traffic light. A vehicle can only cross
during the green phase. If it reaches the crossing during this phase, it can immediately proceed.
But if it reaches the cross in the red phase, it has to wait for the next green phase. The vehicle is
delayed by a time that depends on its time of arrival. Under the assumption that the behavior of
the traffic light is periodic, the crossroad can be modeled as a TEGPS where the timing behavior
of the traffic light is described by a periodic PS. For instance, the TEGPS given in Figure 6.6 with
the signal,

S2ptq “

$

&

%

1 if t P t0 ̀ 4j, 1 ̀ 4j |j P Zu,

0 otherwise,
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models such a time-variant behavior of a crossroad. According to the signal S2, at time instances
t0, 1, 4, 5, ̈ ̈ ̈ u the traffic light is green and the vehicle can proceed without being delayed.
In contrast at time instances t2, 3, 6, 7, ̈ ̈ ̈ u the traffic light is red and the vehicle is delayed
by one or two time unit.

S2

t1 t2 t3

p1 p2

Figure 6.6. – Traffic light model with a PS.

6.1.3. Periodic Time-variant Event Graphs

An alternative way tomodel periodic time-variant behavior with TEGs is to consider time-

variant holding times in places. Then holding times of places depending on the firing times

of their upstream transitions. More precisely, the holding time Hptq is time-variant and

immediately periodic, i.e. Hpt ̀ ωq “ Hptq. The current delay is then determined by the

firing time t of the corresponding upstream transition. Such a time-variant holding time is

described by a periodic function H : Z Ñ Z, called holding-time function, which is defined

as follows.

Definition 64 (Holding-time function H). A holding-time function H : Z Ñ Z is an ω-
periodic function, i.e. Dω P N, @t P Z : Hptq “ Hpt ̀ ωq.

Hence, @j P Z

Hptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n0 if t “ 0 ̀ ωj,

n1 if t “ 1 ̀ ωj,
.
.
.

nώ1 if t “ pω ́ 1q ̀ ωj,

(6.3)

where for i P t0, ̈ ̈ ̈ ,ω ́ 1u, ni P Z are the holding times in each period.

The short form of a holding-time function is defined as a string xn0 n1 ̈ ̈ ̈nώ1y. The

period ω is implicitly given by the number of elements in the string. For the modeling

process of TEGs in the (max,+)-algebra, it is necessary that tokens must enter and leave each
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place in the same order [1]. In other words, a placemust respect FIFO behavior. This property

leads to the following constraint on holding-time functions

@t P Z, Hpt ̀ 1q ̀ 1 ě Hptq. (6.4)

A holding-time function which respects (6.4) is called FIFO holding-time function. More-

over, a holding-time function is called causal if all holding times are nonnegative, i.e., @i P

t0, ̈ ̈ ̈ ,ω ́ 1u, ni P N0.

Definition 65 (Periodic Time-variant Event Graph). A PTEG is a TEGwhere the holding times
of places are given by causal FIFO holding-time functions.

Example 50. Consider the PTEG in Figure 6.7a where the holding time of p1 is changing ac-
cording to, @j P Z

H1ptq “ x0 0 2 1y “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if t “ 0 ̀ 4j,

0 if t “ 1 ̀ 4j,

2 if t “ 2 ̀ 4j,

1 if t “ 3 ̀ 4j.

This holding-time function satisfies (6.4) hence the holding time is such that tokens enter and
leave place p1 in the same order. In contrast, let us consider the TEG in Figure 6.7b, where
the holding time of place p2 is changing according to H2ptq “ x3 0 2 1y. In this case, tokens
which enter the place p2 at time instant t “ 0 enable the firing of transition t4 at time instant
0 ̀ H2p0q “ 3. Tokens which enter the place p2 at time instant t “ 1 immediately enable the
firing of t4, since H2p1q “ 0. The function H2 violates the FIFO condition of p2, and therefore
the TEG in Figure 6.7b is not in the class of PTEGs.

t1 t2

x0 0 2 1y

p1

(a)

t3 t4

x3 0 2 1y

p2

(b)

Figure 6.7. – In (a) H1 “ x0 0 2 1y satisfies the FIFO condition. In (b) H2 “ x3 0 2 1y violates the

FIFO condition.

Definition 66 (Release-time function R). A release-time function R : Zmax Ñ Zmax is an
isotone function defined as,

Rptq “

$

’

’

’

&

’

’

’

%

́8 if t “ ́8,

Hptq ̀ t if t P Z,

8 if t “ 8,
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where H is a FIFO holding-time function. A release-time function is called causal if Rptq ě

t, @t P Zmax.

AsHpt ̀ 1q ̀ 1 ě Hptq, it follows that

Rpt ̀ 1q “ Hpt ̀ 1q ̀ t ̀ 1 ě Hptq ̀ t “ Rptq,

i.e.R is isotone. The release-time function can be seen as an alternative representation of the

time-variant behavior of a place in a PTEG. This function describes the time when a token in

a place is available to contribute to the firing of the downstream transition of the place. The

argument of this function is the time t when the token enters the place and its value is the

time when the token is available to leave the place. By defining ni “ n̄i ̀ i, we can express

a release-time function as

Rptq “ Hptq ̀ t “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n0 ̀ ωj if t “ 0 ̀ ωj, with j P Zmax

n1 ̀ ωj if t “ 1 ̀ ωj, with j P Zmax

.

.

.

nώ1 ̀ ωj if t “ pω ́ 1q ̀ ωj, with j P Zmax.

(6.5)

Clearly, nonnegative holding-times ni (causal holding-time functions) lead to causality ofR.

Example 51 (PTEG). Figure 6.8 shows a PTEG with holding-time functions of places p1, p2, p3

given by

H1 “ x0 0 2 1y, H2 “ x1y, H3 “ x1 3 2 1y.

The corresponding release-time functions are, @j P Zmax

R1ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 ̀ 4j if t “ 0 ̀ 4j,

1 ̀ 4j if t “ 1 ̀ 4j,

4 ̀ 4j if t “ 2 ̀ 4j,

4 ̀ 4j if t “ 3 ̀ 4j,

R2ptq “ 1 ̀ t,

R3ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 ̀ 4j if t “ 0 ̀ 4j,

4 ̀ 4j if t “ 1 ̀ 4j,

4 ̀ 4j if t “ 2 ̀ 4j,

4 ̀ 4j if t “ 3 ̀ 4j.
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t1 t2 t3

x1y

x1 3 2 1y

x0 0 2 1y

p1 p2

p3

Figure 6.8. – PTEG with holding-time functions of places p1, p2, p3 expressed in the short form at

each place.

t

Rptq

1 2 3 4 5 6

1

2

3

4

5

6

R1ptq

R3ptq

(a) Release-time functions

t

Hptq

1 2 3 4 5 6

1

2

3

4

5

6
H1ptq

H3ptq

(b) Holding-time functions

Figure 6.9. – Release-time functionR1,R3 and holding-time functionsH1,H3 of places p1, p3.

In this example, place p2 has a constant holding time, whereas the holding times of places p1

and p3 are changing periodically with period 4. R1,R3, respectivelyH1,H3, are illustrated in
Figure 6.9a, respectively, Figure 6.9b. The place p1 can be interpreted as the model of a traffic
light which is green for time instants t0, 1, 4, 5, ̈ ̈ ̈ u and red for time instants t2, 3, 6, 7, ̈ ̈ ̈ u.
Therefore, if a car arrives at times 2, 6, ̈ ̈ ̈ it has to wait for 2 time instants, if it arrives at times
3, 7, ̈ ̈ ̈ , it has to wait for 1 time instant.

Remark 32. The behavior of a TEG under periodic PS operating under the earliest function-
ing rule can be modeled by an "equivalent" PTEG. For this, the time-variant delays caused by
periodic PSs of the transitions are shifted to the upstream places of the transitions. For instance
consider the simple TEG shown in Figure 6.10 with a periodic PS of transition t2 by an arbitrary
periodic signal S2, see Definition 63. To this signal a release-time functionRS : Zmax Ñ Zmax

S2

τ

t1 t2p1

Figure 6.10. – Simple TEGPS with a periodic PS of t2.
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is associated, defined by, @j P Zmax,

RS2ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n0 ̀ ωj if pnI ́ ωq ̀ ωj ă t ď n0 ̀ ωj,

n1 ̀ ωj if n0 ̀ ωj ă t ď n1 ̀ ωj,
...

nI ̀ ωj if nÍ1 ̀ ωj ă t ď nI ̀ ωj,

(6.6)

The value of RS2 can be interpreted as the next time when the signal S2 enables the firing of
the corresponding transition. Clearly, anω-periodic signal S leads to a corresponding function
RS which satisfies @t P Zmax,RSpt ̀ ωq “ ω ̀ RSptq. Then the time-variant delay caused
by the periodic PS is modeled by the holding-time function

Hp1ptq “ RSpt ̀ τq ́ t

of the upstream place p1 of transition t2. As the place p1 may already have a constant holding
time τ, this holding time must be considered by the transformation, i.e. the argument of RS

must be shifted by τ time units.

Example 52. The function RS1ptq (Figure 6.11b) associated with the signal S1 (Figure 6.11a)
given in Example 48 is

RS1ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

́8 if t “ ́8

0 ̀ 4j if ́ 3 ̀ 4j ă t ď 0 ̀ 4j, with j P Zmax

1 ̀ 4j if 0 ̀ 4j ă t ď 1 ̀ 4j, with j P Zmax

8 if t “ 8.

t

S1ptq

́3́2́1 1 2 3 4 5 6 7 8

1

2

(a) S1

t

RS1
ptq

́3́2́1 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(b) RS1
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Then, for τ “ 1 the release-time function of place p1 is given by, for j P Zmax,

Rp1ptq “ RS1pt ̀ τq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 ̀ 4j if t “ 0 ̀ 4j,

4 ̀ 4j if t “ 1 ̀ 4j,

4 ̀ 4j if t “ 2 ̀ 4j,

4 ̀ 4j if t “ 3 ̀ 4j.

Finally,Hp1ptq “ Rp1ptq ́ t “ x1 3 2 1y.

Remark 33. Conversely, the earliest functioning of a PTEG can be modeled by a TEG under
periodic PS. Therefore, release-time functions associated with places in the PTEG are converted
to periodic signals. Consider the following simple PTEG with a release-time function

t1 t2

Rptq

p1

Figure 6.12. – Simple PTEG with release-time functionRptq of place p1.

Rptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n0 ̀ ωj if t “ 0 ̀ ωj, with j P Zmax

n1 ̀ ωj if t “ 1 ̀ ωj, with j P Zmax

...

nώ1 ̀ ωj if t “ pω ́ 1q ̀ ωj with j P Zmax.

First, this function is partitioned into a constant offset τ and a remaining causal release-time
function,

Rptq “ τ ̀ R 1ptq “
ώ1
min

i“0
pni ́ iq ̀

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n 1
0 ̀ ωj if t “ 0 ̀ ωj,

n 1
1 ̀ ωj if t “ 1 ̀ ωj,
...

n 1
ώ1 ̀ ωj if t “ pω ́ 1q ̀ ωj.

where @i P t0, ̈ ̈ ̈ ,ω ́ 1u, n 1
i “ ni ́ τ and τ “ minpni ́ iq. Then, the PTEG shown

in Figure 6.12 can be modeled by the TEG under periodic PS shown in Figure 6.13, where the
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periodic signals S0, S1, ̈ ̈ ̈ , Sώ1 are given by, @j P Z

S0ptq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1 if t P t R 1p0q ̀ ωj,

maxpR 1p0q, 1q ̀ ωj,

̈ ̈ ̈ ,

maxpR 1p0q,ω ́ 1q ̀ ωju

0 otherwise.

S1ptq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

1 if t P t maxpR 1p1q ́ ω, 0q ̀ ωj,

R 1p1q ̀ ωj,

maxpR 1p1q, 2q ̀ ωj,

̈ ̈ ̈

maxpR 1p1q,ω ́ 1q ̀ ωju

0 otherwise.
...

Sώ1ptq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

1 if t P t maxpR 1pω ́ 1q ́ ω, 0q ̀ ωj,

maxpR 1pω ́ 1q ́ ω, 1q ̀ ωj,

̈ ̈ ̈

maxpR 1pω ́ 1q ́ ω,ω ́ 2q ̀ ωj,

R 1pω ́ 1q ̀ ωju

0 otherwise.

A similar problem is studies in [19][Chapter 4.5], there realizability for series in the dioid
pF ̄N vγw ,‘,bq is discussed. This dioid pF ̄N vγw ,‘,bq is an alternative to the dioid
pTperrrγss,‘,bq to model TEG under PS.

Example 53. Consider the simple PTEG shown in Figure 6.14a with a holding time function
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S0

S1

Sώ1

τ

.

.

.

.

.

.

Figure 6.13. – TEG under periodic PS associated with the PTEG of Figure 6.12.

x1 0 2 2y of place p1. The release-time function to x1 0 2 2y is

Rp1ptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 ̀ 4j if t “ 0 ̀ 4j, with j P Zmax,

1 ̀ 4j if t “ 1 ̀ 4j, with j P Zmax

4 ̀ 4j if t “ 2 ̀ 4j, with j P Zmax

5 ̀ 4j if t “ 3 ̀ 4j, with j P Zmax.

For this example, τ “ 0, since n1 ́ 1 “ 1 ́ 1 “ 0, and therefore R 1
p1

ptq “ Rp1ptq. Then the
periodic signals S0, S1, S2 and S3 are

S0ptq “

$

&

%

1 if t P t1 ̀ 4j, 1 ̀ 4j, 2 ̀ 4j, 3 ̀ 4j |j P Zu,

0 otherwise.

S1ptq “

$

&

%

1 if t P t0 ̀ 4j, 1 ̀ 4j, 2 ̀ 4j, 3 ̀ 4j |j P Zu,

0 otherwise.

S2ptq “

$

&

%

1 if t P t0 ̀ 4j, 1 ̀ 4j, 4 ̀ 4j, 4 ̀ 4j |j P Zu,

0 otherwise.

S3ptq “

$

&

%

1 if t P t1 ̀ 4j, 1 ̀ 4j, 4 ̀ 4j, 5 ̀ 4j |j P Zu,

0 otherwise.
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These signals are simplified to

S0ptq “

$

&

%

1 if t P t1 ̀ 4j, 2 ̀ 4j, 3 ̀ 4j |j P Zu,

0 otherwise.

S1ptq “

$

&

%

1 if t P t0 ̀ 4j, 1 ̀ 4j, 2 ̀ 4j, 3 ̀ 4j |j P Zu,

0 otherwise.

S2ptq “

$

&

%

1 if t P t0 ̀ 4j, 1 ̀ 4j |j P Zu,

0 otherwise.

S3ptq “

$

&

%

1 if t P t1 ̀ 4j, 2 ̀ 4j |j P Zu,

0 otherwise.

Note that the transition subjected to PS by the signals S0,S1,S2,S3 are placed in parallel paths,
see Figure 6.13. Therefore, the path with the signal S1 is redundant and can be removed. Then,
the earliest functioning of the PTEG shown in Figure 6.14a is modeled by the TEG under periodic
PS shown in Figure 6.14b.

t1 t2

x1 0 2 2y

p1

(a) Simple PTEG with holding-time function

x1 0 2 2y.

S0

S2

S3

t1 t2

(b) TEG under periodic PS by the signals

S0,S2,S3.

Figure 6.14. – In (a) PTEG and in (b) TEG under periodic PS, both models have the same input/output

behavior when operating under the earliest functioning rule.

Indeed Remark 33 shows that the earliest functioning of a PTEG can be modeled by a

TEG under periodic PS. However as indicated in Example 53, PTEGs can model certain

time-variant behavior in a more compact form. Finally, let us note that PTEGs can be seen

as the counterpart to Cyco-Weighted Timed Event Graphs (CWTEGs) [18]. CWTEGs are

an extension of WTEGs, where weighs on the arcs are changing periodically depending on

firing sequences of transitions attached to these arcs [18]. A similar extension is known for
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SDF Graphs, called Cyclo-Static Synchronous Data-Flow (CSDF) Graphs. This system class

was studied, e.g. in [2, 24, 57].

6.2. Dioid Model of Timed Event Graphs

6.2.1. Dater and Counter

In analogy with [1], in the following dater and counter functions are briefly introduced.

For a more exhaustive representation, the reader is invited to consult [1][Chap. 5]. An event

can be seen as an instantaneous action, such as the push of a button, the start of a production

process or the successive firings of a transition in a Petri net. For timed DESs the occurrences

of an event can be described by a sequence generated by an increasing counting mechanism

over time. For instance, the successive firings of a transition in a Petri net can be described

by a time sequence, e.g. pk0, t0qpk0 ̀1, t1qpk0 ̀2, t2q ̈ ̈ ̈ , where the firings are enumerated

starting from an arbitrary value k0 P Z. Then the pair pki, tiq is interpreted as: The firing

numbered by ki has taken place at time ti. For instance, the sequence p0, 2q, p1, 3q, p2, 3q,

where k0 is chosen to 0, means the first firing of a transition, numbered by 0, has taken place

at time instant 2, the second and third firings numbered by 1 and 2 have taken place at time

instant 3. This kind of sequences can either be represented by a dater function k ÞÑ dpkq

in the "event-domain" or equivalently as a counter function t ÞÑ cptq in the "time-domain".

The following section introduces dater and counter functions for the purpose of modeling

WTEGs (resp. PTEGs) in dioids.

Dater

A dater is defined as a mapping d : Z Ñ Zmax, k ÞÑ dpkq, where the index k P Z numbers

the consecutive firings of a transition starting from an initial value k0 “ 0 and dpkq is the

time when the firing numbered by k has taken place. It is important to mention that by

convention the first firing of a transition is numbered by 0. Therefore, dpkq is the time when

the pk ̀ 1qst firing of the transition has taken place. More precisely,

dpkq “

$

’

’

’

&

’

’

’

%

́8 (resp. ε), if k ă 0,

̀8 (resp. J), if the pk ̀ 1qst firing never took place,

P Z, if the pk ̀ 1qst firing occurred at time dpkq.

Note that, the time is given by a discrete value dpkq P Zmax rather than by a continuous

value in R. Furthermore, it should be clear that dater functions are naturally isotone. An
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6.2. Dioid Model of Timed Event Graphs

impulse is represented as a specific dater function given by,

Ipkq “

$

&

%

́8 (resp. ε), for k ă 0,

0 (resp. e), for k ě 0.
(6.7)

According to the representation of a dater function, this means an infinity of firings of the

corresponding transition at time t “ 0.

Dater and Series inMax
in vγ, δw

Proposition 93 ([1]). A dater function d : Z Ñ Zmax can be expressed as a series sd P

Max
in vγ, δw, such that,

sd “

́

à

tkPZ|́8ădpkqằ8u

γkδdpkq
̄

‘

́

à

tkPZ|dpkq“̀8u

γkδ̊
̄

. (6.8)

Therefore, the series inMax
in vγ, δw corresponding to an impulse Ipkq, see (6.7), is the unit

element e “ γ0δ0 in the dioid pMax
in vγ, δw ,‘,bq. For a more detailed description of the

transformation, see e.g.[1, 13].

Counter

A counter is defined as a mapping c : Z Ñ Zmin, t Ñ cptq, where the time t P Z is given

by a discrete value and cptq is the accumulated number of firings strictly before time t.

cptq “

$

’

’

’

&

’

’

’

%

ď 0, if no firing occurred strictly before or at time t,

̀8 (resp. ε), if an infinity of firings occurred strictly before time t,

P N, exact cptq firings occurred strictly before time t.

For instance the following counter function,

cptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 for t ď 1,

1 for t “ 2,

3 for t “ 3,

4 for t ě 4,

is interpreted as: No firing before time 1. The first firing is at time t “ 1, the second and

third firing at time t “ 2. The fourth firing at time t “ 3 and after time t “ 4 there is no
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6. Model of Discrete Event Systems

additional firing. In contrast to dater function, counter functions are antitone rather than

isotone. An impulse is represented as a specific counter function Iptq, defined as

Iptq “

$

&

%

0 (resp. e) for t ď 0,

̀8 (resp. ε) for t ą 0.
(6.9)

Counter and Series inMax
in vγ, δw

As for dater functions, counter functions can be represented as series in Max
in vγ, δw, see

[1, 13]. The counter functions c canonically associated with a series sc P Max
in vγ, δw is such

that

sc “

́

à

ttPZ|́8ăcptqằ8u

γcptqδt
̄

‘

́

à

tkPZ|cptq“́8u

pγ́1q̊δt
̄

. (6.10)

Then the series in Max
in vγ, δw associated with the impulse Iptq, see (6.9), is again the unit

element e “ γ0δ0 in the dioid pMax
in vγ, δw ,‘,bq.

Notation

Expressing counter and dater functions as series in Max
in vγ, δw is convenient for calcula-

tions with transfer function models of TEGs inMax
in vγ, δw. From now on a counter function

is denoted by a small letter with a tilde and the associated series inMax
in vγ, δw by a small let-

ter, e.g., x̃ denotes the counter function canonically associatedwith the series x P Max
in vγ, δw.

Respectively, a dater function is denoted by a small letter with a bar and the associated series

inMax
in vγ, δw by a small letter, e.g., x̄ denotes the dater function canonically associated with

the series x P Max
in vγ, δw.

6.2.2. Dioid Model of ordinary Timed Event Graphs

In this section dioid models for TEGs are recalled. For a more detailed representation,

see e.g., [1, 40, 36]. For the purpose of modeling a TEG, a dater function x̄ : Z Ñ Zmax is

associated with each transition. x̄pkq gives the time (or date) when the transition fires the

pk ̀ 1qst time, recall that the first firing is numbered by 0, see Section 6.2.1.

Example 54. Consider the TEG of Figure 6.15. By assigning ū1pkq (resp. ū2pkq) to the input
transition t1 (resp. t2), x̄1pkq (resp. x̄2pkq) to internal transition t3 (resp. t4) and ȳpkq to the
output transition t5, the behavior of the TEG can be described by the following inequalities

x̄1pkq ě maxpx̄2pk ́ 2q, ū1pkq ̀ 1, ū2pk ́ 1q ̀ 3q,

ȳpkq ě x̄2pkq ě x̄1pkq ̀ 2.

If the TEG operates under the earliest functioning rule, its behavior is described by equations
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t1

t2

t3 t4 t5

1

3

2

Figure 6.15. – A simple TEG.

instead of inequalities,

x̄1pkq “ maxpx̄2pk ́ 2q, ū1pkq ̀ 1, ū2pk ́ 1q ̀ 3q,

ȳpkq “ x̄2pkq “ 2 ̀ x̄1pkq. (6.11)

Obviously, due to themax operation, these equations are nonlinear in conventional algebra. In
the (max,+)-algebra, the system (6.11) is expressed as

x̄1pkq “ x̄2pk ́ 2q ‘ 1ū1pkq ‘ 3ū2pk ́ 1q,

ȳpkq “ x̄2pkq “ 2x̄1pkq. (6.12)

It is easy to see that the equations in (6.12) are linear. Therefore, the system in (6.12) is also called
"max-plus linear system". With the event-shift operator γ and time shift operator δ, system
(6.12) can be expressed by x̄1 “ γ2x̄2 ‘ δ1ū1 ‘γ1δ3ū2, ȳ “ x̄2 “ δ2x̄1. Or, equivalently, with
x̄ “ rx̄1 x̄2sT and ū “ rū1 ū2sT , in matrix form x̄ “ Ax̄ ‘ Bū; ȳ “ Cx̄, where

A “

«

ε γ2

δ2 ε

ff

, B “

«

δ1 γ1δ3

ε ε

ff

, C “

”

ε e

ı

.

Due to Theorem 2.1, the least solution for the output ȳ is given by, ȳ “ Hū, with transfer
function matrix

H “ CÅB “

”

δ3pγ2δ2q̊ γ1δ5pγ2δ2q̊

ı

.

For some applications, it is more convenient to model the evolution of a TEG in the "time-

domain" rather than in the "event-domain". Then a counter function x̃ : Z Ñ Zmin is

associated with each transition of the TEG. Recall that the counter value x̃ptq describes the

accumulated number of firings strictly before time t. The earliest functioning of a TEG is

then described by a linear model in the (min,+)-algebra instead of the (max,+)-algebra, see

the following example.

Example 55. Consider the TEG of Figure 6.15, by assigning the counter function ũ1ptq (resp.
ũ2ptq) to the input transition t1 (resp. t2), x̃1ptq (resp. x̃2ptq) to internal transition t3 (resp. t4)
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and ỹptq to the output transition t5, the earliest functioning of the TEG can be described by

x̃1ptq “ minpx̃2ptq ̀ 2, ũ1pt ́ 1q, ũ2pt ́ 3q ̀ 1q,

ỹptq “ x̃2ptq “ x̃1pt ́ 2q. (6.13)

Then in the (min,+)-algebra, the system given in (6.13) is expressed as

x̃1ptq “ 2x̃2ptq ‘ ũ1pt ́ 1q ‘ 1ũ2pt ́ 3q,

ỹptq “ x̃2ptq “ x̃1pt ́ 2q. (6.14)

Again by considering the time- and event-shift operators, the system can be rephrased in the
dioid pMax

in vγ, δw ,‘,bq. Let x̃ “ rx̃1 x̃2sT and ũ “ rũ1 ũ2sT , then the system (6.13) is
represented in matrix form x̃ “ Ax̃ ‘ Bũ; ỹ “ Cx̃, where

A “

«

ε γ2

δ2 ε

ff

, B “

«

δ1 γ1δ3

ε ε

ff

, C “

”

ε e

ı

.

Note that the Max
in vγ, δw model of a TEG is the same in the counter and dater representation.

Therefore, the transfer function matrix for the counter representation is again,

H “ CÅB “

”

δ3pγ2δ2q̊ γ1δ5pγ2δ2q̊

ı

.

Output Computation and Impulse Response of Timed Event Graphs

In the following, it is shown how to compute the output of a SISO TEG based on its transfer

function h P Max
in vγ, δw. Note that the following results can be easily extended to MIMO

TEGs. As a SISO TEG is a time-invariant and event-invariant system, its transfer function

h satisfies γ1h “ hγ1
and δ1h “ hδ1. Moreover, similarly to conventional systems theory,

the system response hI to an impulse I describes the complete transfer behavior of the

corresponding SISO TEG [1, 13]. Therefore, the transfer function h P Max
in vγ, δw of the

system is the series in Max
in vγ, δw corresponding to the impulse response hI , see Prop. 93.

Then the output dater function ȳ induced by an input dater function ū is nothing but the

(max,+)-convolution of the impulse response and the input, i.e.,

ȳpkq “
à

nPZ
phIqpk ́ nqūpnq.

By expressing this input and output dater functions as series y, u P Max
in vγ, δw the output

y induced by the input u is obtained by

y “ h b u,

or equivalent, the output dater function ȳ is obtained by

ȳpkq “
̀

ph b uqI
̆

pkq.
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6.2.3. Dioid Model of Weighted Timed Event Graphs

In the last section, it was shown how the earliest functioning of an ordinary TEG can

be modeled linearly in the (max,+)-algebra as well as in the (min,+)-algebra. Moreover, the

transfer behavior of an ordinary TEG refers to an ultimately cyclic series inMax
in vγ, δw. Un-

fortunately, the weights on the arcs of WTEG lead to event-variant behavior. Therefore, the

earliest functioning of a WTEG can in general not be modeled by linear equations in the

(max,+)-algebra nor in the (min,+)-algebra. However, in [16] it was shown that the input-

output behavior of WTEGs is described by series in Errδss. See Chapter 3 for the definition

of the dioid pErrδss,‘,bq. In the following the modeling process of consistent WTEGs based

on operators in Errδss is recalled. Moreover, let us recall the core decomposition of periodic

elements in Errδss, Section 3.3. Based on this decomposition the dynamic behavior of a con-

sistent WTEG can be decomposed into an event-variant and an event-invariant part. This

event-invariant part is described by amatrix with entries inMax
in vγ, δw. As the event-variant

part is invertible, see Prop. 28, the tools for performance evaluation introduced for ordinary

TEGs in the dioid pMax
in vγ, δw ,‘,bq can be applied to the more general class of consistent

WTEGs.

For the purpose of modeling a consistent WTEG in the dioid pErrδss,‘,bq a counter func-

tion x̃ : Z Ñ Zmin is associated with each transition. Recall that an operator in Errδss is

defined as a mapping from the set of counter functions into itself, Section 3.1. Then for a

consistent WTEG operating under the earliest functioning rule, the firing relation between

transitions can be described by operators in Em|brrδss (the subset of periodic operators in

Errδss). Consider a basic path πi : ti Ñ pi Ñ ti. The influence of transition ti on transition

ti is described by the following operator,

x̃i “ βwppi,tiqδ
pϕqiγpM0qiµwpti,piqx̃i, (6.15)

where x̃i and x̃i refer to the counter functions of transition ti and ti,wpti, piq andwppi, tiq

are weights of the arcs pti, piq and ppi, tiq, pϕqi is the holding time of place pi and pM0qi

is the initial marking of pi. As E-operators and the time-shift operator commute,

βwppi,tiqδ
pϕqiγpM0qiµwpti,piq “ βwppi,tiqγ

pM0qiµwpti,piqδ
pϕqi .

For instance, consider the following basic path, the firing relation between t1 and t2 corre-

p1

3
t1 t2

2
1

Figure 6.16. – A basic path π1 : t1 Ñ p1 Ñ t2.

sponds to an operator representation x̃2 “ β2γ
1µ3δ

1x̃1.
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6. Model of Discrete Event Systems

Remark 34. Observe that the gain of the path π1 : t1 Ñ p1 Ñ t2 coincides with the gain
of the operator β2γ

1µ3δ
1, i.e., Γpπ1q “ Γpβ2γ

1µ3δ
1q “ 3{2. This holds for any path in a

consistent WTEG [16].

Based on the operator representation of a basic path (6.15), the firing relation between

internal, input and output transitions in a consistent WTEG can be described by:

x̃ “ Ax̃ ‘ Bũ, ỹ “ Cx̃, (6.16)

where x̃ (resp. ũ, ỹ) refers to the vector of counter functions of internal (resp. input, output)

transitions andA,B andC are matrices with entries in Em|brrδss of appropriate size. Clearly,

ÅB is the least solution of the implicit equation in (6.16), Theorem 2.1. Therefore the trans-

fer function matrix of a consistent WTEG is obtained byH “ CÅB. Moreover, this matrix

is a consistent matrix with entries in Em|brrδss, see the following propositions.

Proposition 94 ([16]). For a g inputs and p outputs WBTEG, the entries of the transfer matrix
H “ CÅB are ultimately cyclic series in Em|brrδss.

Proposition 95. Let (N ,M0,ϕ) be a consistentWTEGwith g input and p output transitions,
then its transfer matrixH P Em|brrδssp̂g is consistent.

Proof. Since consistent WTEGs are a strict subclass of WBTEGs (Prop. 92) the transfer func-

tion matrix H is composed of ultimately cyclic series in Em|brrδss, see Prop. 94. It remains

to show that H P Em|brrδssp̂g
is consistent. Recall, Remark 34 the gain of a path is equiva-

lent to the gain of its operational representation. Moreover, N admits a T-semiflow ξ, with

subvectors ξti “ rξi1 ̈ ̈ ̈ ξigs associated with input transitions and ξto “ rξo1 ̈ ̈ ̈ ξops as-

sociated with output transitions. Due to Prop. 91, the relation between gain and T-semiflow

must hold for all paths in N . Therefore, the gain matrix ΓpHq is of rank 1 and is given by

ΓpHq “

”

ξo1 ̈ ̈ ̈ ξop

ıT ”
1
ξi1

̈ ̈ ̈ 1
ξig

ı

,

“

»

—

—

—

–

ξo1
ξi1

̈ ̈ ̈
ξi1
ξig

.

.

.

.

.

.

ξop
ξig

̈ ̈ ̈
ξop
ξig

fi

ffi

ffi

ffi

fl

.

Example 56. [This example is taken from [16]] Consider the consistent WTEG in Figure 6.3. By
assigning the counter function ũ1 to the input transition t1, the counter function x̃ “ rx̃1 x̃2sT

to the internal transition t2 and t3 and the counter function ỹ to the output transition t4, the
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firing relations are written down as,

x̃ “

«

γ1δ2 ε

ε γ2δ1

ff

x̃ ‘

«

β2δ
2

µ3

ff

ũ

ỹ “

”

µ3 β2γ
1δ1

ı

x̃.

Solving the implicit equation leads to the following transfer function of the system.

h “µ3β2δ
2 ‘ pγ2µ3β2γ

1 ‘ γ3µ3β2qδ3 ‘ γ3µ3β2δ
4 ‘ pγ4µ3β2γ

1 ‘ γ6µ3β2qδ5

‘ pγ5µ3β2γ
1 ‘ γ6µ3β2qδ6 ‘ pγ1δ1q̊

̀

pγ6µ3β2γ
1 ‘ γ8µ3β2qδ7

̆

(6.17)

This transfer function h describes the firing relation between input transition t1 and output
transition t4 and has a graphical representation given in Figure 6.18a. For example, in the case
where the consistent WTEG is describing a production line, this transfer function describes the
relation between incoming raw materials and finished parts. The left asymptotic growth rate
of this transfer series is pγ1δ1q̊ therefore the maximal throughput of the system is 1 piece per
time unit. The gain of the transfer series is Γphq “ 3

2 and therefore in average 2 input pieces
generate 3 output pieces.

Example 57. The core representation of the transfer function (6.17) obtained in Example 56 is
given by

h “ m3Qb2,

“ m3

»

—

–

γ2δ7pγ1δ3q̊ δ2 ‘ γ1δ4 ‘ γ2δ6 ‘ γ3δ8pγ1δ3q̊

γ1δ5pγ1δ3q̊ ϵ

δ3 γ2δ7pγ1δ3q̊

fi

ffi

fl

b2.

This core representation is realized in the consistent WTEG shown in Figure 6.17. Note that
the realization has two basic paths from the input transition t1 to the first layer of internal
transitions pt2, t3q. These two paths represent the b2-vector and both paths have gain 1{2. Fur-
thermore, the realized WTEG has three basic paths between the last layer of internal transitions
pt8, t9, t10q and the output transition t11. These three paths represent the m3-vector and all
three paths have gain 3. Moreover, the core matrix Q is realized by the internal transitions and
all paths between them. Clearly, the entries of the core matrix are elements inMax

in vγ, δw, there-
fore the internal transitions pt2, ̈ ̈ ̈ , t10q together with the paths between them constitute an
ordinary TEG. Moreover, observe that the event variant behavior of this WTEG is only modeled
by the realization of the b2- and m3-vector and that holding times are only attached to places
between internal transitions. Subsequently, the internal dynamics are modeled by an ordinary
TEG.
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Figure 6.17. – Realization of the core-representation of the transfer function (6.17).
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Output Computation and Impulse Response of Consistent Weighted Timed Event
Graphs

As shown in Section 6.2.2 the impulse response of an ordinary TEG describes its complete

transfer behavior. However, this is not the case for a consistent WTEG, because they are

event-variant systems. In general for a consistentWTEGwith transfer functionh P Em|brrδss,

γ1h ‰ hγ1
. In [17] it is shown that the impulse response of a consistent WTEG with a

transfer function h “
À

iwiδ
ti P Em|brrδss can be obtained by

à

i

wiδ
tiIptq “

à

i

γFwi
p0qδtiIptq “

à

i

Ipt ́ tiq b Fwi
p0q.

This impulse response is a sum of time- and event-shifted impulses and gives us partial

information about the transfer behavior of the consistent WTEG. Indeed, it can be shown

that the complete transfer behavior can be constructed from a finite set of event-shifted

impulse responses, for a more exhaustive presentation see [17]. The following remark gives

a link between the impulse response of a consistent SISOWTEG and the zero slice mapping,

Ψm|b : Em|brrδss Ñ Max
in vγ, δw, introduced in Section 3.2.

Remark 35. Given a transfer function h P Em|brrδss, then Ψm|bphq is the series inMax
in vγ, δw

associated with the impulse response phIq, i.e.,
̀

hI
̆

ptq “
̀

Ψm|bphqI
̆

ptq.

As consistent WTEGs are event-variant, the output ỹ induced by an arbitrary input ũ is

not simply the (min,+)-convolution of the impulse response hI with the input ũ. To compute

the response to an arbitrary input counter function ũ, this counter function is represented

as a sum of time- and event-shifted impulses. The output of the system is then obtained by

the sum of these time- and event-shifted impulses responses. Differently stated, let ũ be a

counter function with a corresponding series u “
À

i γ
νiδti P Max

in vγ, δw and h P Em|brrδss

be the transfer function of a consistent WTEG, then

ỹptq “
̀

hũ
̆

ptq “

̃

h
́

à

i

γνiδtiI
̄

̧

ptq,

as h is lower semi-continuous,

ỹptq “

́

à

i

h
̀

γνiδtiI
̆

̄

ptq.

A more convenient way to obtain the output of a consistent WTEG is to represent the input

counter function ũ and the output counter function ỹ as series u, y P Max
in vγ, δw.

Proposition 96. For a consistent SISO WTEG with an pm,bq-periodic transfer function h P

Em|brrδss and an input u P Max
in vγ, δw, the output y P Max

in vγ, δw is obtained by

y “ Ψm|b

̀

h b Injpuq
̆

.
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Proof. First, let us recall the canonical injection fromMax
in vγ, δw into Errδss, see Section 3.2,

thus we can represent the input u P Max
in vγ, δw as an element in Em|brrδss. Then,

ỹptq “
̀

hũ
̆

ptq “
̀

hpuIq
̆

ptq “
̀

hpInjpuqIq
̆

ptq

“
̀

ph b InjpuqqI
̆

ptq.

Due to Remark 35, this is equivalent to y “ Ψm|b

̀

h b Injpuq
̆

.

Clearly, Prop. 96 can be extended to a consistent MIMO WTEG with a transfer function

matrix H P Em|brrδssp̂g
.

Example 58. The series yI P Max
in vγ, δw corresponding to the impulse response of the consis-

tent WTEG shown in Figure 6.2b with a transfer function (6.17) is given by

yI “ Ψ3|2

́

µ3β2δ
2 ‘ pγ2µ3β2γ

1 ‘ γ3µ3β2qδ3 ‘ γ3µ3β2δ
4‘

pγ4µ3β2γ
1 ‘ γ6µ3β2qδ5 ‘ pγ5µ3β2γ

1 ‘ γ6µ3β2qδ6‘

pγ1δ1q̊
̀

pγ6µ3β2γ
1 ‘ γ8µ3β2qδ7

̆

̄

“ δ2 ‘ γ2δ3 ‘ γ3δ4 ‘ γ4δ5 ‘ γ5δ6 ‘ γ6δ7pγ1δ1q̊

“ δ2 ‘ γ2δ3pγ1δ1q̊.

This series yI corresponds to the slice at the (I-count) value 0 in the graphical representation of
the transfer function h, see Figure 6.18b.

Example 59. Consider the input u “ δ1 ‘γ1δ4pγ2δ2q̊ P Max
in vγ, δw for a consistent WTEG

with a transfer series h “ pµ3β2γ
1 ‘ γ2µ3β2qδ1pγ1δ1q̊. For this input, the response y P

Max
in vγ, δw of the WTEG is given by

y “ Ψ3|2ph b Injpuqq

“ Ψ3|2

́

pµ3β2γ
1‘ γ2µ3β2qδ1pγ1δ1q̊b

́

δ1‘γ1δ4pγ2δ2q̊
̄̄

“ Ψ3|2

̀̀

pµ3β2γ
1 ‘ γ2µ3β2qδ2 ‘ pγ2µ3β2γ

1 ‘ γ3µ3β2qδ5
̆

pγ1δ1q̊
̆

“ pδ2 ‘ γ2δ5qpγ1δ1q̊

“ δ2 ‘ γ1δ3 ‘ γ2δ5pγ1δ1q̊.

6.2.4. Dioid Model of Timed Event Graphs under Partial Synchronization

Unlike ordinary TEGs, TEGs under PS are time-variant systems. Therefore, their earliest

functioning cannot be modeled as a (max,+)-linear nor a (min,+)-linear system. However, the

operators introduced in Chapter 4 are suitable to model the input-output behavior of TEGs

under periodic PS. More precisely, the time-variant behavior caused by a periodic PS of a
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Figure 6.18. – (a) 3D representation of the transfer function (6.17) of the consistent WTEG given in Figure 6.3.

(b) the gray slice at (I-count) value 0 in the (O-count{t-shift)-plane corresponds to the impulse

response phIqptq of the system.

transition can be modeled in the dioid pT ,‘,bq, see Chapter 4. To show this, recall that a

periodic signal S can be associated with a release-time function RS : Zmax Ñ Zmax, see

(6.6). To prove that a periodic PS of a transition (i.e. the PS is specified by a periodic signal

S) admits an operator representation in T , it has to be shown that an operator v P T exists,

such thatRv “ RS.

Proposition 97. A periodic partial synchronization of a transition by signal S in Definition 63
has an operator representation in T , given by

v “δn0∆ω|ωδ
́nI ‘ δn1́ω∆ω|ωδ

́n0 ‘ ̈ ̈ ̈ ‘ δnÍω∆ω|ωδ
́npÍ1q . (6.18)

Proof. Let us recall that a periodic signal S corresponds to a quasi-periodic functionRS, see

(6.6). Moreover, there is an isomorphism between the function Rv and the T-operator v. It

remains to show that Rv “ RS. The functionRv is given by

Rvptq “ max

̀

n0 ̀

Qt ́ nI

ω

U

ω, n1 ́ ω ̀

Qt ́ n0

ω

U

ω, ̈ ̈ ̈

̈ ̈ ̈ , nI ́ ω ̀

Qt ́ npÍ1q

ω

U

ω
̆

. (6.19)

To show equality, Rv is evaluated for intervals defined in (6.6). E.g., for the interval pnI ́
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ωq ̀ ωj ă t ď n0 ̀ ωj, observe that

Qt ́ ni

ω

U

“ j, i “ 0, ̈ ̈ ̈ I,

hence

Rvptq “ max

̀

n0 ̀ jω, n1 ́ ω ̀ jω, ̈ ̈ ̈ , nI ́ ω ̀ jω
̆

“ n0 ̀ jω.

Second, for pn0 ̀ ωjq ă t ď n1 ̀ ωj, one has

Qt ́ ni

ω

U

“

$

&

%

j ̀ 1, for i “ 0

j, for i “ 1, ̈ ̈ ̈ , I,

hence

Rvptq “ max

̀

n0 ̀ jω, n1 ̀ jω, n2 ́ ω ̀ jω, ̈ ̈ ̈

̈ ̈ ̈ , nI ́ ω ̀ jω
̆

“ n1 ̀ jω.

By going through the remaining intervals defined in (6.6) it is established that,

Rvptq “ RSptq, @t P Zmax.

Example 60. Consider the TEG under periodic PS shown in Figure 6.19, where the signal S1 is
given in (6.2) in Example 48. The dater function x̄1pkq (resp. x̄2pkq) is associated with transition
t1 (resp. t2). According to Prop. 98, the behavior of the periodic PS of transition t2 is modeled
by the following operator:

vS1
“ δ0∆4|4δ

́1 ‘ δ́3∆4|4δ
́0 “ δ́3∆4|4 ‘ ∆4|4δ

́1,

where the latter equality holds as δ0 “ e. This operator describes the firing relation between t1
and t2, i.e. x̄2 “ pδ́3∆4|4 ‘∆4|4δ

́1qx̄1. Therefore, x̄2pkq “ maxṕ3̀ rx̄1pkq{4s4, rpx̄1pkq ́

1q{4s4q.

Remark 36. Due to the influence of the PS, this firing relation between t1 and t2 is time-
variant. Note again that, x̄1pkq indicates the pk ̀ 1qst firing of t1. Then for instance, if the
pk̀1qst firing of t1 is at time instant x̄1pkq “ 1, then the pk̀1qst firing of t2 is at x̄2pkq “ 1,
i.e., we have no delay. In contrast, if the pk̀ 1qst firing of t1 is at time instant x̄1pkq “ 2, then
the pk ̀ 1qst firing of t2 is at x̄2pkq “ 4, and the delay is 2.
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S1

t1 t2p1

Figure 6.19. – Simple TEG with a periodic PS of t2.

t2 t3 t4

11

S2

p3 p4

p2

t1 p1

Figure 6.20. – Example of a TEG under periodic PS.

A TEG under periodic PS operating under the earliest functioning rule admits a represen-

tation in Tperrrγss, given by,

x̄ “ Ax̄ ‘ Bū, ȳ “ Cx̄, (6.20)

where x̄ (resp. ū, ȳ) refers to the vector of dater functions of internal (resp. input, output)

transitions. The matrices A P Tperrrγssn̂n, B P Tperrrγssn̂g
and C P Tperrrγssp̂n

describe

the influence of transitions on each other, encoded by operators in Tperrrγss. Let ti Ñ pi Ñ ti
constitute a basic path. The influence of transition ti on transition ti is coded as an operator

vtiδ
pϕqiγpM0qi

where vti is the operator representation of the signal Si corresponding to the PS of ti (see

Example 60), pϕqi is the holding time of place pi and pM0qi is the initial marking of pi.

Example 61. Consider the TEGPS in Figure 6.20 with PS of transition t2 by the signal

S2ptq “

$

&

%

1 if t P t1 ̀ 2j |j P Zu,

0 otherwise.

As ω “ 2, I “ 0, n0 “ 1 according to Prop. 98 vS2 “ vt2 “ δ1∆2|2δ
́1. For the path

t3 Ñ p2 Ñ t2, the influence of t3 on transition t2 corresponds to an operator representa-
tion vt2δ

0γ2 “ vt2γ
2 “ δ1∆2|2δ

́1γ2. Moreover, by assigning a dater function ūpkq (resp.
x̄1pkq, x̄2pkq, ȳpkq) to transition t1 (resp. t2, t3, t4), the earliest functioning of the TEGPS is
described by x̄ “ Ax̄ ‘ Bū; ȳ “ Cx̄, where

A “

«

ε δ1∆2|2δ
́1γ2

δ1 ε

ff

, B “

«

δ1∆2|2δ
́1

ε

ff

, C “

”

ε δ1
ı

.
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6.2.5. Dioid Model of Periodic Time-variant Event Graphs

As for TEGs under periodic PS the earliest functioning of PTEGs can be modeled in the

dioid pT rrγss,‘,bq.

Proposition 98. A release-time function Rptq, as given in (6.5), can be expressed by a T-
operator v P T in the following form:

v “δn0∆ω|ωδ
1́ω ‘ δn1́ω∆ω|ω ‘ δn2́ω∆ω|ωδ

́1‘

. . . ‘ δnώ1́ω∆ω|ωδ
2́ω. (6.21)

Proof. First recall that release-time functions are isotone, therefore in (6.5), nώ1 ́ ω ď

n0 ď n1 ď ̈ ̈ ̈ ď nώ1 ď n0 ̀ ω. Moreover, recall that the release-time function

Rδσ∆ω|ωδσ
1 ptq of an operator δσ∆ω|ωδ

σ 1

is defined by

Rδσ∆ω|ωδσ
1 ptq “ σ ̀

Qt ̀ σ 1

ω

U

ω,

where t “ x̄pkq is a date. Thus,Rv associated with (6.21) is

Rvptq “ maxpn0 ̀

Qt ́ pω ́ 1q

ω

U

ω,n1 ́ ω ̀

Q t

ω

U

ω,

̈ ̈ ̈ , nω-1 ́ ω ̀

Qt ́ pω ́ 2q

ω

U

ωq. (6.22)

We can evaluate the expression (6.22) for all dates t. If we choose t “ jω, @j P Zmax, we

can show that:

Rvpjωq “ maxpn0 ̀

Q jω ́ pω ́ 1q

ω

U

ω,n1 ́ ω ̀

Q jω

ω

U

ω,

̈ ̈ ̈ , nω-1 ́ ω ̀

Q jω ́ pω ́ 2q

ω

U

ωq

“ maxpn0 ̀ jω, n1 ́ ω ̀ jω, ̈ ̈ ̈ , nω-1 ́ ω ̀ jωq

“ n0 ̀ jω.

Similarly, we can show, that @i “ t1, ̈ ̈ ̈ , pω ́ 1qu,

Rvpi ̀ jωq “ max

́

n0 ̀

Q i ̀ jω ́ pω ́ 1q

ω

U

ω,n1 ́ ω ̀

Q i ̀ jω

ω

U

ω,

̈ ̈ ̈ , nω-1 ́ ω ̀

Q i ̀ jω ́ pω ́ 2q

ω

U

ω
̄

“ ni ̀

Q i ̀ jω ́ pω ́ 1q

ω

U

ω

“ ni ̀ jω.
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Hence we have shown that,

Rvptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n0 ̀ ωj if t “ 0 ̀ ωj,

n1 ̀ ωj if t “ 1 ̀ ωj,
.
.
.

nώ1 ̀ ωj if t “ pω ́ 1q ̀ ωj.

Corollary 15. SinceHptq “ Rptq ́ t, the T-operator associated with a holding-time function
xn0 n1 ̈ ̈ ̈ nώ1y can be obtained by

p “ δn0∆ω|ωδ
1́ω ‘

ώ1
à

i“1

δnìpíωq∆ω|ωδ
1́i.

Note that the operator representation of a causal release-time function R, i.e. Rptq ě t,

leads to a periodic and causal T-operator.

Example 62. Consider H1ptq “ x0 0 2 1y given in Example 51. This holding-time function
corresponds to an operator given by

v “δ0∆4|4δ
́3 ‘ δ́3∆4|4δ

0 ‘ δ0∆4|4δ
́1 ‘ δ0∆4|4δ

́2,

“δ́3∆4|4δ
0 ‘ δ0∆4|4δ

́1 ‘ δ0∆4|4δ
́2 ‘ δ0∆4|4δ

́3,

“δ́3∆4|4 ‘ ∆4|4pδ́1 ‘ δ́2 ‘ δ́3q “ δ́3∆4|4 ‘ ∆4|4δ
́1,

because of (4.10): δ́1 ‘ δ́2 ‘ δ́3 “ δ́1. Respectively, H3ptq “ x1 3 2 1y corresponds to the
operator ∆4|4 ‘ δ1∆4|4δ

́3.

We can use T-operators and the event shift operator γ to describe the transfer behavior

of PTEGs. The firing-relation between the two transitions ti, ti in Figure 6.21 is represented

ti ti

Hi

pM0qi

pi

Figure 6.21. – Simple PTEG with holding-time function.

by x̄i “ viγ
pM0qi x̄i, where pM0qi is the initial marking in place pi, vi is the T-operator

associated with the holding-time function Hi of place pi and x̄i, x̄i are the dater functions
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associated with ti, ti. Thus, the relation between input, output and internal transitions of a

general PTEG can be modeled by

x̄ “ Ax̄ ‘ Bū, ȳ “ Cx̄,

where x̄ (resp. ū, ȳ) refers to a vector of dater functions of the n internal (resp. m input, p

output) transitions of the PTEG. The relations between internal transitions can be modeled

by a system matrixA P Tperrrγssn̂n
, the relation between input and internal transitions by

an input matrix B P Tperrrγssn̂m
, and the relation between internal and output transitions

by an output matrix C P Tperrrγssp̂n
.

Example 63. Consider the PTEG in Figure 6.8 of Example 51. The firing relation between its
transitions can be modeled by

x “

”

p∆4|4 ‘ δ1∆4|4δ
́3qγ2

ı

x ‘

”

δ́3∆4|4 ‘ ∆4|4δ
́1

ı

u,

y “

”

δ1
ı

x,

where ∆4|4 ‘ δ1∆4|4δ
́3 and δ́3∆4|4 ‘ ∆4|4δ

́1 are the T-operators corresponding to H3 “

x1 3 2 1y andH1 “ x0 0 2 1y, see Example 62.

Transfer Functions Matrices for TEGs under periodic PS and PTEGs

Theorem6.1 (Transfer functionmatrix of PTEG). The input-output behavior of a g-input and
p-output PTEG can be described by a transfer function matrix H P Tperrrγssp̂g of ultimately
cyclic series in Tperrrγss. This transfer function matrix is obtained byH “ CÅB.

Proof. The holding-time functions in PTEGs correspond to causal periodic T-operators, see

Prop. 98. As every monomial/polynomial in Tperrrγss is a specific ultimately cyclic series, the

entries of the A, B and C matrices are ultimately cyclic series in Tperrrγss. The sum (resp.

product, Kleene star) of ultimately cyclic series in Tperrrγss are again ultimately cyclic series

in Tperrrγss, see Prop. 65 (resp. Prop. 66, Prop. 67). Thus, the transfer matrix CÅB is also

composed of ultimately cyclic series in Tperrrγss.

Corollary 16. For a g-input p-output TEG under periodic PS, see Definition 63, the transfer
function matrix is given by H “ CÅB P Tperrrγssp̂g. Moreover, the entries of the transfer
function matrix H are ultimately cyclic series in Tperrrγss.

Example 64. Let us recall the TEG under periodic PS given in Example 61, the transfer function
for this system is obtained by

h “ CÅB “

”

ε δ1
ı

«

ε δ1∆2|2δ
́1γ2

δ1 ε

ff̊ «

δ1∆2|2δ
́1

ε

ff

“ δ1pÅq2,1δ
1∆2|2δ

́1,
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where pÅq2,1 “ pδ2∆2|2δ
́1γ2q̊δ1, see (2.11). To express h as an ultimately cyclic series we

rewrite pÅq2,1 in the core-form and compute the Kleene star based on the core matrix Q̂ P

Max
in vγ, δw with the toolbox MinmaxGD [32]. Recall Prop. 33, therefore

pÅq2,1 “
̀

d2

«

γ2δ1 ε

ε ε

ff

p2

̆̊
δ1 “ d2

̀

N

«

γ2δ1 ε

ε ε

ff

N
̆̊p2δ

1

“ d2

«

pγ2δ1q̊ γ2pγ2δ1q̊

γ2δ1pγ2δ1q̊
e ‘ γ4δ1pγ2δ1q̊

ff

p2δ
1.

Then, after multiplication,

h “ δ3pγ2δ2q̊∆2|2δ
́1.

Example 65. Consider the PTEG in Figure 6.8 of Example 51. We can describe the firing relation
between input transition t1 and output transition t3 by a transfer function in Tperrrγss, i.e.
ȳ “ hū, where

h “ δ1rpδ1∆4|4δ
́3 ‘ ∆4|4qγ2s̊pδ́3∆4|4 ‘ ∆4|4δ

́1q

“ pγ4δ4q̊
́

pδ1∆4|4δ
́1 ‘ δ́2∆4|4q ‘ pδ1∆4|4 ‘ δ2∆4|4δ

́1qγ2
̄

.

Impulse Responses of TEGs under periodic PS and PTEGs

As shown in Section 6.2.2, the impulse response of a TEG system provides complete knowl-

edge of the input-output behavior [1]. In contrast, the impulse response of a PTEG (resp.

TEGPS) is not sufficient to describe its complete behavior, because it is a time-variant sys-

tem. The moment when the impulse is applied matters. One single impulse gives only partial

information. In order to obtain the complete knowledge, we need the system responses of

ω consecutive time-shifted impulses, i.e. δτI, τ P t0, ̈ ̈ ̈ ,ω ́ 1u. Each single response

corresponds then to one slice in the 3D representation of the transfer function. The impulse

response for a SISO PTEG (resp. TEGPS) with a transfer function h “
À

i viγ
ni P Tperrrγss

is obtained by

̀

hI
̆

pkq “
̀
à

i

viγ
niI

̆

pkq “
̀
à

i

δRvi
p0qγniI

̆

pkq “
à

i

̀

Ipk ́ niq b Rvip0q
̆

.

Note that the impulse response is a sum of time- and event-shifted impulses. Moreover,

recall the zero slice mapping Ψω : Tperrrγss Ñ Max
in vγ, δw, Section 4.4, therefore the series

Ψωphq P Max
in vγ, δw corresponds to the impulse response

̀

hI
̆

pkq of the system.
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Example 66 (Transfer function and impulse response). Consider the PTEG in Figure 6.8 of
Example 51 with a transfer function obtained in Example 65.

h “pγ4δ4q̊
́

δ1∆4|4δ
́1 ‘ δ́2∆4|4 ‘ pδ1∆4|4 ‘ δ2∆4|4δ

́1qγ2
̄

“

́

δ1∆4|4δ
́1 ‘ δ́2∆4|4

̄

γ0 ‘

́

δ1∆4|4 ‘ δ2∆4|4δ
́1
̄

γ2‘

́

δ5∆4|4δ
́1 ‘ δ2∆4|4

̄

γ4 ‘

́

δ5∆4|4 ‘ δ6∆4|4δ
́1
̄

γ6 ‘ ̈ ̈ ̈

This transfer function has a graphical representation, see Figure 6.22a. The response of an im-
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Figure 6.22. – (a) transfer function h of Example 65. (b) the gray slice at input time 1 (resp. time 5) (event-shift{

output-time)-plane correspond to the response to an impulse at time 1: δ1I (resp. time 5: δ5I)
of the system.

pulse at time 1, i.e. hδ1I , is pδ2 ‘ δ5γ2qpγ4δ4q̊I . This response corresponds to the slice at
input-time 1 (event-shift/output-time)-plane in Figure 6.22b. Furthermore, the system response
to an impulse at time 5 is pδ5 ‘ δ6γ2qpγ4δ4q̊I . Therefore, the 3D representation of a transfer
function in h P Tperrrγss is interpreted as the juxtaposition of its time-shifted impulse responses.

Output computation

Again, as PTEGs (resp. TEGs under PS) are time-variant systems, the output to an arbitrary

input dater function cannot simply be obtained by the (max,+)-convolution of the impulse

response and the input. To compute the output of a PTEG (resp. TEG under periodic PS)

caused by input dater function ū, this input dater function ū is expressed as a series u P
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6.2. Dioid Model of Timed Event Graphs

Max
in vγ, δw. Since, pMax

in vγ, δw ,‘,bq is a subdioid of pTperrrγss,‘,bq and by using the

canonical injection Inj, the input can be represented as a series Injpuq P Tperrrγss. The output

y P Max
in vγ, δw of the system is then computed as follows

y “ Ψω

̀

h b Injpuq
̆

. (6.23)

Example 67. Recall the transfer function h “ δ3pγ2δ2q̊∆2|2δ
́1 of the TEGPS shown in

Figure 6.20. Moreover, consider the input dater function,

ūpkq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

́8 for k ă 0;

0 for k “ 0;

2 for k “ 1, 2;

3 for k “ 3, 4, 5, 6;

8 for k ě 7.

The series u P Max
in vγ, δw to this dater function is u “ γ0δ0‘γ1δ2‘γ3δ3‘γ7δ̊. The output

y P Max
in vγ, δw of the system is then

y “ Ψω

̀

h b Injpuq
̆

“ Ψω

̀

δ3pγ2δ2q̊∆2|2δ
́1 b pγ0δ0 ‘ γ1δ2 ‘ γ3δ3 ‘ γ7δ̊q

̆

“ Ψω

̀

δ3∆2|2δ
́1pγ2δ2q̊ b pγ0δ0 ‘ γ1δ2 ‘ γ3δ3 ‘ γ7δ̊q

̆

“ Ψω

̀

pδ3∆2|2δ
́1 ‘ δ5∆2|2δ

́1γ1 ‘ δ6∆2|2δ
́1γ3qpγ2δ2q̊

‘ δ3∆2|2δ
́1γ7pγ2δ2q̊δ̊

̆

“ Ψω

̀

pδ3∆2|2δ
́1 ‘ δ5∆2|2δ

́1γ1 ‘ δ6∆2|2δ
́1γ3qpγ2δ2q̊ ‘ δ3∆2|2δ

́1γ7δ̊
̆

“ pδ3 ‘ δ5γ1 ‘ δ6γ3qpγ2δ2q̊ ‘ δ3γ7δ̊

“ pδ3 ‘ δ5γ1qpγ2δ2q̊ ‘ δ3δ̊γ7

“ pδ3 ‘ δ5γ1 ‘ δ7γ3 ‘ δ9γ5 ‘ δ11γ7 ‘ ̈ ̈ ̈ q ‘ δ3δ̊γ7

“ δ3 ‘ δ5γ1 ‘ δ7γ3 ‘ δ9γ5 ‘ δ̊γ7.
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Moreover, y is the series inMax
in vγ, δw associated with the dater function,

ȳpkq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

́8 for k ă 0;

3 for k “ 0;

5 for k “ 1, 2;

7 for k “ 3, 4;

9 for k “ 5, 6;

8 for k ě 7.

output ȳpkq

input ūpkq

count

time

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 6.23. – System response ȳ to the input ū.

6.2.6. Dioid Model of Weighted Timed Event Graphs under periodic Partial
Synchronization

In analogy to the modeling process of consistent WTEGs in the dioid pErrδss,‘,bq and

Timed Event Graphs under Partial Synchronization (TEGsPS) in the dioid pTperrrγss,‘,bq,

the earliest functioning of consistent WTEGs under periodic PS can be modeled in the dioid

pET ,‘,bq. For this, a counter function is associated with each transition. Then the in-

fluence of transitions on each other are coded as operators in ET , see Chapter 5 for the

definition of the dioid pET ,‘,bq.

PS and Counters

Section 6.2.4 describes how the time-variant behavior of a periodic PS is expressed in the

"event-domain" based on dater functions. In the following, a periodic PS is expressed in

the "time-domain" based on counter functions. For this the ∆ω|ϖ is redefined as a mapping

from the set Σ into itself, see (5.2). Moreover, recall that Σ is the set of antitone mappings
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from Z into Zmin. This redefinition of the ∆ω|ϖ operator allows to model the event- and

time-variant behavior of consistent WTEGs under periodic PS in the dioid pET ,‘,bq.

Example 68. Consider the simple TEGPS, shown in Figure 6.24, with a periodic PS of transition
t2 by,

S2 “

$

&

%

1 if t P t0 ̀ 3ju,

0 otherwise.
(6.24)

Moreover, x̃1 and x̃2 are counter functions associated to the transitions t1 and t2. Table 6.1

S1

t1 t2p1

Figure 6.24. – Simple TEGPS with a periodic PS of t2.

gives the response x̃2 induced by the counter function x̃1 under the assumption that the TEGPS
is operating under the earliest functioning rule. Recall that the value x̃ptq of a counter function

t x̃1ptq x̃2ptq

-1 0 0

0 0 0

1 0 0

2 1 0

3 1 0

4 2 2

5 2 2

6 2 2

7 3 3

8 3 3

.

.

.

.

.

.

.

.

.

Table 6.1. – Response x̃2 induced by the counter function x̃1.

gives the accumulated number of firings strictly before time t. Therefore, the counter function
x̃1 is interpreted as, no firing of transition t1 before time t “ 1. Exactly one firing at time t “ 1

and one additional firing at time t “ 3 (resp. time t “ 6). The counter function x̃2 is interpreted
as, no firing of transition t2 before time t “ 3. Two firings at time t “ 3 and one additional
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firing at time t “ 6. Observe that, a firing of a transition at time t is represented in the counter-
function ta time t ̀ 1. Or differently, x̃pt ́ 1q gives the accumulated number of firings up to
(including) time t. Hence, the firing relation between transition t1 and t2 is described by,

x̃2ptq “ x̃1

́Yt ́ 1

3

]

̂ 3 ̀ 1
̄

.

To describe the time-variant behavior of a PS caused by an arbitrary periodic signal S , a
function KSptq : Z Ñ Z is associated to this periodic signal S . This function is defined by,

@j P Z,

KSptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n0 ̀ ωj if n0 ̀ ωj ă t ď n1 ̀ ωj,

n1 ̀ ωj if n1 ̀ ωj ă t ď n2 ̀ ωj,
.
.
.

nI ̀ ωj if nI ̀ ωj ă t ď pno ̀ ωq ̀ ωj.

(6.25)

Again, if the signal S is ω-periodic then the corresponding function KSptq satisfies @t P

Z, KSpt̀ωq “ ὼKSptq. The value ofKSptq can be interpreted as the last time when the

signal S enabled the firing of the corresponding transition. Then the firing relation between

t1 and t2 is described by

x̃2ptq “ x̃1
̀

KS2ptq ̀ 1
̆

, (6.26)

where KS2 is associated to the signal S2.

Example 69. Recall Example 68 with the signal S2 given in (6.24). The function KS2ptq asso-
ciated with S2 is then, sinceω “ 3 and nI “ 0,

KS2ptq “ 3j, if 3j ă t ď 3 ̀ 3j,

“

Yt ́ 1

3

]

̂ 3.

Therefore, x̃2ptq “ x̃1ptpt ́ 1q{3u ̂ 3 ̀ 1q.

To prove that a periodic PS of a transition admits an operator representation in the dioid

pET ,‘,bqwemust show that an operator v P ET exists such that, vx̃1ptq “ x̃1
̀

KS2ptq̀1
̆

.

For this recall the definition of the ∆ω|ϖ operator and the δτ operator in ET , see Prop. 73,

ω,ϖ P N ∆ω|ϖ : @x̃ P Σ, t P Z
̀

∆ω|ϖpxq
̆

ptq “ x̃
́

ϖ ̂

Yt ́ 1

ω

]

̀ 1
̄

,

τ P Z δτ : @x̃ P Σ, t P Z
̀

δτpx̃q
̆

ptq “ x̃pt ́ τq.

We have to show that the behavior of a periodic PS can be expressed by sum and composition

of the δτ and ∆ω|ω operators.
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Proposition 99. A periodic partial synchronization of a transition by signal S , see Defini-
tion 63, has an operator representation in ET , given by

vS “δn0∆ω|ωδ
́nI ‘ δn1́ω∆ω|ωδ

́n0 ‘ ̈ ̈ ̈ ‘ δnÍω∆ω|ωδ
́npÍ1q . (6.27)

Proof. This proof is similar to the proof of Prop. 97. There a periodic PS is modeled by an

operator in T .

̀

vSx̃
̆

ptq “
̀

pδn0∆ω|ωδ
́nI ‘ δn1́ω∆ω|ωδ

́n0 ‘ ̈ ̈ ̈ ‘ δnÍω∆ω|ωδ
́npÍ1qqx̃

̆

ptq

Because of (3.4) and (3.1),

̀

vSx̃
̆

ptq “
̀

δn0∆ω|ωδ
́nI x̃

̆

ptq ‘
̀

δn1́ω∆ω|ωδ
́n0 x̃

̆

ptq ‘ ̈ ̈ ̈

̈ ̈ ̈ ‘
̀

δnÍω∆ω|ωδ
́npÍ1q x̃

̆

ptq,

“ min

́

̀

δn0∆ω|ωδ
́nI x̃

̆

ptq,
̀

δn1́ω∆ω|ωδ
́n0 x̃

̆

ptq, ̈ ̈ ̈

̈ ̈ ̈ ,
̀

δnÍω∆ω|ωδ
́npÍ1q x̃

̆

ptq
̄

.

Recall (5.2) and (5.4), therefore

̀

vSx̃
̆

ptq “ min

́

x̃
́

ω
Yt ́ n0 ́ 1

ω

]

̀ nI ̀ 1
̄

, x̃
́

ω
Yt ́ n1 ̀ ω ́ 1

ω

]

̀ n0 ̀ 1
̄

,

̈ ̈ ̈ , x̃
́

ω
Yt ́ nI ̀ ω ́ 1

ω

]

̀ nÍ1 ̀ 1
̄̄

“ x̃
́

min

́

ω
Yt ́ n0 ́ 1

ω

]

̀ nI ̀ 1,ω
Yt ́ n1 ̀ ω ́ 1

ω

]

̀ n0 ̀ 1, ̈ ̈ ̈

̈ ̈ ̈ ,ω
Yt ́ nI ̀ ω ́ 1

ω

]

̀ nÍ1 ̀ 1
̄̄

“ x̃
́

min

́

ω
Yt ́ n0 ́ 1

ω

]

̀ nI ̀ 1,ω
Yt ́ n1 ́ 1

ω

]

̀ n0 ̀ ω ̀ 1, ̈ ̈ ̈

̈ ̈ ̈ ,ω
Yt ́ nI ́ 1

ω

]

̀ nÍ1 ̀ ω ̀ 1
̄̄

.

Recall (6.26), it remains to show that

̀

vSx̃
̆

ptq “ x̃pKSptq̀1q. For this
̀

vSx̃
̆

ptqq is evaluated

for intervals defined in (6.25). E.g. for the interval n0 ̀ ωj ă t ď n1 ̀ ωj observe that,

Yt ́ ni ́ 1

ω

]

“

Qt ́ ni ́ ω

ω

U

because of tn{ωu “ rpn ́ ω ̀ 1q{ωs.

“

$

&

%

j for i “ 0

j ́ 1 for i “ 1, ̈ ̈ ̈ , I

hence,

̀

vSx̃
̆

ptq “ x̃
̀

min

̀

ωj ̀ nI ̀ 1,ωj ̀ n0 ̀ 1, ̈ ̈ ̈ ,ωj ̀ nÍ1 ̀ 1
̆̆

“ x̃pn0 ̀ ωj ̀ 1q.
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Second, for n1 ̀ ωj ă t ď n2 ̀ ωj,

Yt ́ ni ́ 1

ω

]

“

Qt ́ ni ́ ω

ω

U

“

$

&

%

j for i “ 0, 1

j ́ 1 for i “ 2, ̈ ̈ ̈ , I

and therefore,

̀

vSx̃
̆

ptq “ x̃
̀

min

̀

ωj ̀ nI ̀ 1,ωpj ̀ 1q ̀ n0 ̀ 1,ωj ̀ n1 ̀ 1, ̈ ̈ ̈ ,ωj ̀ nÍ1

̆̆

“ x̃pn1 ̀ ωj ̀ 1q.

By going through the remaining intervals it is shown that,

̀

vSx̃
̆

ptq “ x̃pKSptq ̀ 1q,

where KSptq is given by, @j P Z

KSptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n0 ̀ ωj if n0 ̀ ωj ă t ď n1 ̀ ωj,

n1 ̀ ωj if n1 ̀ ωj ă t ď n2 ̀ ωj,
.
.
.

nI ̀ ωj if nI ̀ ωj ă t ď pno ̀ ωq ̀ ωj.

Modeling of consistent WTEGs under periodic PS in ET
Let us consider a basic path ti Ñ pi Ñ ti in a consistent WTEG with a periodic PS of

transition ti by a signal Si. The influence of transition ti on transition ti is described by the

following operator,

x̃i “ vti∇1|wppi,tiqδ
pϕqiγpM0qi∇wpti,piq|1x̃i,

where x̃i and x̃i refer to the counter functions of transition ti and ti, vti is the operator

representation of the signal Si corresponding to the PS of ti, wpti, piq and wppi, tiq are

weights of the arcs pti, piq and ppi, tiq, pϕqi is the holding time of place pi and pM0qi is

the initial marking of pi. For instance, consider the basic path given in Figure 6.25, with a

PS of transition t2 by the periodic signal

S2ptq “

$

&

%

1 if t P t1 ̀ 3j, 2 ̀ 3ju,

0 otherwise.
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p1

3

t1 t2

2

S2

5

Figure 6.25. – A simple WTEG with a periodic PS of transition t2.

As ω “ 3, I “ 1, n0 “ 1 and n1 “ 2 according to Prop. 99, vS2 “ vt2 “ δ1∆3|3δ
́2 ‘

δ́1∆3|3δ
́1

. Therefore,

x̃2 “ vt2∇1|2δ
5γ3∇3|1x̃1

“ pδ1∆3|3δ
́2 ‘ δ́1∆3|3δ

́1q∇1|2δ
5γ3∇3|1x̃1

“ pδ4∆3|3 ‘ δ5∆3|3δ
́2q∇1|2∇3|1γ

1x̃1

since, γ3∇3|1 “ ∇3|1γ
1
, δ1∆3|3δ

3 “ δ4∆3|3 and δ́1∆3|3δ
4 “ δ5∆3|3δ

́2

“ pδ4∆3|3 ‘ δ5∆3|3δ
́2qpγ3∇3|2 ‘ γ1∇3|2γ

1qx̃1

since,∇1|2∇3|1 “ p∇3|6γ
4 ‘ γ1∇3|6γ

2 ‘ γ2∇3|6qp∇6|2γ
1 ‘ γ3∇6|2q

“ ∇3|2γ
1 ‘ γ1∇3|2

“ pδ4γ3∆3|3∇3|2 ‘ δ5γ3∆3|3∇3|2δ
́2 ‘ δ4γ1∆3|3∇3|2γ

1 ‘ δ5γ1∆3|3∇3|2δ
́2γ1qx̃1.

Observe that δ4γ3∆3|3∇3|2 ‘ δ5γ3∆3|3∇3|2δ
́2 ‘ δ4γ1∆3|3∇3|2γ

1 ‘ δ5γ1∆3|3∇3|2δ
́2γ1

is

the standard form, which was introduced in Prop. 78. Clearly based on this operator repre-

sentation for a basic path, the earliest functioning of a consistent WTEG under periodic PS

can be described by

x̃ “ Ax̃ ‘ Bũ, ỹ “ Cx̃,

where x̃ (resp. ũ, ỹ) refers to the vector of counter functions of internal (resp. input, output)

transitions and A,B and C are matrices with entries in ET per of appropriate size.

Theorem 6.2. For a consistent g-input p-output WTEG under periodic PSs, see Definition 63,
the transfer function matrix is given by H “ CÅB P ET per

p̂g. Moreover, the entries of the
transfer function matrix H are ultimately cyclic series in ET per.

Proof. First, periodic PS of a transition by a periodic signal refers to a periodic ET -operator,

see Prop. 99. Then, as every basic sum in ET per is a specific ultimately cyclic series, the

entries of the A, B and C matrices are ultimately cyclic series in ET per. The sum (resp.

product, Kleene star) of ultimately cyclic series in ET per are again ultimately cyclic series

in ET per, see Prop. 85 (resp. Prop. 86, Prop. 87). Hence, the entries of the transfer matrix

CÅB are ultimately cyclic series in ET per.
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Example 70. Consider the consistent WTEG shown in Figure 6.26 with a PS of transition t2 by
the signal

S2ptq “

$

&

%

1 if t P t1 ̀ 2ju,

0 otherwise.

t2 t3 t4

11

S2

p3 p4

p2

t1 p1

2

2

Figure 6.26. – Example of a WTEG under periodic PS.

The earliest functioning of the system is modeled by

x “ Ax ‘ Bu; y “ Cx, (6.28)

where,

A “

«

ε δ1∆2|2δ
́1∇1|2γ

3

∇2|1δ
1 ε

ff

, B “

«

δ1∆2|2δ
́1

ε

ff

, C “

”

ε δ1
ı

.

Solving the implicit equation (6.28) leads to the transfer function of the system,

h “ CÅB “

”

ε δ1
ı

«

ε δ1∆2|2δ
́1∇1|2γ

3

∇2|1δ
1 ε

ff̊ «

δ1∆2|2δ
́1

ε

ff

“ δ1pÅq2,1δ
1∆2|2δ

́1.

Let us recall (2.11), hence pÅq2,1 “ pγ2δ2∇2|2∆2|2γ
1δ́1q̊∇2|1δ

1. Then

pγ2δ2∇2|2∆2|2γ
1δ́1q̊ “ e ‘ γ2δ2∇2|2∆2|2γ

1δ́1

‘ γ2δ2∇2|2∆2|2γ
1δ́1γ2δ2∇2|2∆2|2γ

1δ́1

‘ ̈ ̈ ̈

Recall, Remark 29 hence,

pγ2δ2∇2|2∆2|2γ
1δ́1q̊ “ e ‘ γ2δ2∇2|2∆2|2γ

1δ́1

‘ γ2δ2γ2δ2∇2|2∆2|2γ
1δ́1

‘ ̈ ̈ ̈
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and thus pγ2δ2∇2|2∆2|2γ
1δ́1q̊ “ e ‘ γ2δ2pγ2δ2q̊∇2|2∆2|2γ

1δ́1. Finally,

h “ δ1
̀

e ‘ γ2δ2pγ2δ2q̊∇2|2∆2|2γ
1δ́1

̆

∇2|1δ
1δ1∆2|2δ

́1

“ δ3∇2|1∆2|2δ
́1 ‘ γ2δ5pγ2δ2q̊∇2|1∆2|2δ

́1.
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7
Control

In this chapter, some control problems for Weighted Timed Event Graphs (WTEGs), Peri-

odic Time-variant Event Graphs (PTEGs) and Timed Event Graphs (TEGs) under periodic

partial synchronization (PS) are addressed. Over the last three decades, several control

strategies have been established for TEGs, among them are optimal feedforward control

[12, 51], state feedback, output feedback control [15, 25, 47, 34, 48], and observer-based con-

trol [33, 35, 36]. In [51], an optimal control strategy for TEGs has been studied. For this

control strategy, an output reference signal for a system is assumed to be a priori known,

and the controller aims to schedule the input events of the system as late as possible, but

under the restriction that output events do not occur later than specified by the reference

signal. In the context of manufacturing systems, this strategy is called "just-in-time" produc-

tion. In [25], an output feedback strategy for TEGs is introduced which leads to a strongly

connected closed-loop system. The controller inserts additional places to the system with a

sufficient amount of initial tokens such that a given throughput of the closed-loop system

can be guaranteed. In [15, 46], model reference control was introduced for TEGs. The pur-

pose of the controller is to modify the system dynamics such that the system matches as

close as possible the behavior of the reference model. The key difference to optimal con-

trol, where an optimal input is computed and then is chosen directly as the control action, is

that the (potentially unknown) input is first filtered and then applied to the system. In the

following, optimal control, as well as model reference control, are generalized to the case of

consistentWTEGs, PTEGs, and TEGs under periodic PS. Subsequently, it is shown that these

control problems can be reduced to the case of ordinary TEGs. Therefore, the existing tools

for control synthesis for ordinary TEGs can be directly applied to consistentWTEGs, PTEGs,

and TEGs under periodic PS. Some ideas, results, and figures presented in this chapter have

appeared previously in [66, 65, 68, 69].

7.1. Optimal Control

Optimal Control for WTEGs

For a consistent WTEGwith a transfer function h P Em|brrδss, the optimal control problem

can be stated by the inequality

z̃ptq ľ
̀

hũ
̆

ptq, (7.1)
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where z̃ is a counter function describing the desired output schedule - a priori known signal

- and ũ is the unknown input - a counter function describing the input schedule - that we

want to optimize under the "just-in-time" criterion. Let us recall the calculation of a system

output in Prop. 96 and the relation between counter functions andMax
in vγ, δw series. Hence,

(7.1) can be written as,

z ľ Ψm|bph b Injpuqq, (7.2)

where z, u are series in Max
in vγ, δw corresponding to the counter functions z̃ and ũ. Note

that for h P Em|brrδss and u P Max
in vγ, δw , Injpuq P E1|1rrδss and thus the product h b

Injpuq P Em|brrδss, see Prop. 18. In other words, the periodicity of h and h b Injpuq are the

same. Finding the optimal input in (7.2), according to the "just-in-time" criterion, amounts

to compute the following sum

à

u

␣

u|Ψm|bph b Injpuqq ĺ z
(

.

Proposition 100. The greatest solution of z ľ Ψm|bph b Injpuqq, (7.2), is given by

uopt “ Inj
7ph z̋Ψ

7

m|b
pzqq.

Proof. Since h P Em|brrδss and Ψ
7

m|b
pzq P Em|brrδss, i.e., they have the same period, u “

h z̋Ψ
7

m|b
pzq P Eb|brrδss is pb, bq-periodic, see Prop. 20, which is the required form for a po-

tential non zero solution of Inj
7puq, see Prop. 22.

Example 71. Let us consider the consistent WTEG of Example 56 with a transfer function
h P E3|2rrδss given by

h “µ3β2δ
2 ‘ pγ2µ3β2γ

1 ‘ γ3µ3β2qδ3 ‘ γ3µ3β2δ
4 ‘ pγ4µ3β2γ

1 ‘ γ6µ3β2qδ5

‘ pγ5µ3β2γ
1 ‘ γ6µ3β2qδ6 ‘ pγ1δ1q̊

̀

pγ6µ3β2γ
1 ‘ γ8µ3β2qδ7

̆

.

Moreover, consider the following reference counter function,

z̃ptq “

$

’

’

’

&

’

’

’

%

0 for t ď 3,

3 for 4 ď t ď 6,

4 ̀ j for 7 ̀ 2j ď t ď 8 ̀ 2j with j P N0.

This counter function corresponds to the series z “ δ3 ‘ γ3δ6pγ1δ2q̊ P Max
in vγ, δw. Then

Ψ
7

3|2
pzq “ µ3β2δ

3 ‘ pγ1δ2q̊pγ3µ3β2δ
6q and

uopt “ Inj
7ph z̋Ψ

7

3|2
pzqq “ e ‘ γ1δ1 ‘ γ2δ4pγ2δ6q̊.
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The response y of the consistent WTEG to the optimal input uopt is

y “ Ψ3|2ph b Injpuoptqq “ δ3 ‘
̀

γ3δ6 ‘ γ5δ7
̆

pγ3δ6q̊.

This series corresponds to the counter function,

ỹptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 for t ď 3,

3 for 4 ď t ď 6,

5 ̀ 3j for t “ 7 ̀ 6j with j P N0,

6 ̀ 3j for 8 ̀ 6j ď t ď 12 ̀ 6j with j P N0.

Figure 7.1 illustrates the reference output z̃ and the system output ỹ resulting from the optimal
input ũ. Note that in (min,+) the order is reversed, one can see that, in Figure 7.1 it is indeed
true that z̃ ľ ỹ. For all t, the number of outputs ỹptq is greater than the wanted outputs z̃ptq.
In other words, if we number the events, then the pk̀ 1qst output ȳ occurs before or at the time
instant of the pk ̀ 1qst wanted output z̄.

reference z̃ptq

output ỹptq
time

count

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

7

8

9

Figure 7.1. – Comparison between the reference output z̃ and the system response ỹ to the optimal

input ũ. As required, the condition z̃ ľ ỹ is satisfied.

Optimal Control for TEGs under periodic PS

Similarly to optimal control of consistent WTEGs, for a TEG under periodic PS (resp. a

PTEG) with a transfer function h P Tperrrγss the optimal control problem can be stated by

the inequality

z̄pkq ľ
̀

hū
̆

pkq, (7.3)

where z̄ is a dater function describing the desired output schedule (a priori known signal)

and ū is the unknown input schedule, which is supposed to be optimized under the "just-in-

time" criterion. Let us recall the calculation of a system output in (6.23) where the input and
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output are represented as series in the dioidMax
in vγ, δw. Then (7.3) is rephrased as

z ľ Ψωph b Injpuqq, u, z P Max
in vγ, δw , h P Tperrrγss, (7.4)

where the series z, u P Max
in vγ, δw correspond to the dater functions z̄ and ū.

Proposition 101. The greatest solution of z ľ Ψωph b Injpuqq, (7.4), is given by

uopt “ Inj
7ph z̋Ψ7

ωpzqq.

Proof. The proof is similar to the proof of Prop. 100.

Example 72. Let us consider the TEG under periodic PS of Example 64 with a transfer function
h P Tperrrγss given by

h “ δ3pγ2δ2q̊∆2|2δ
́1.

Moreover, consider the following reference dater function,

z̄pkq “

$

’

’

’

&

’

’

’

%

́8 for k ă 0,

3 for k “ 0, 1,

6 ̀ 2j for k “ 2 ̀ j with j P N0.

This dater function corresponds to the series z “ δ3 ‘ γ2δ6pγ1δ2q̊ P Max
in vγ, δw. Then

Ψ
7

2pzq “ δ3∆2|2 ‘ pγ1δ2q̊pγ2δ6∆2|2q and

uopt “ Inj
7
̀

h z̋Ψ
7

2pzq
̆

“ δ1 ‘ γ2δ3pγ1δ2q̊.

The response y of the TEG under periodic PS to the optimal input uopt is

y “ Ψ2ph b Injpuoptqq “ δ3 ‘ γ2δ5pγ1δ2q̊.

This series corresponds to the dater function,

ȳpkq “

$

’

’

’

&

’

’

’

%

́8 for k ă 0,

3 for k “ 0, 1,

5 ̀ 2j for k “ 2 ̀ j with j P N0.

Figure 7.2 illustrates the reference output z̄ and the system output ȳ resulting from the optimal
input ūopt, clearly z̄ ľ ȳ.
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reference z̄pkq

output ȳpkq
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Figure 7.2. – Comparison between the reference output z̄ and the system response ȳ to the optimal

input ū. As required, the condition z̄ ľ ȳ is satisfied.

7.2. Model Reference Control

Inmany applications, it is desirable to control the system such that a given referencemodel

is matched. The control problem is then to modify the system dynamics such that for any

input the output of the system matches as close as possible the output of the reference. In

the following, a feedforward and an output feedback approach are presented to solve the

problem of model reference control for consistent WTEGs (resp. PTEG, TEGsPS). For this, it

is considered that the input/output behavior of the consistent WTEG (resp. PTEG, TEGPS)

is described by a transfer function matrix H with entries in Em|brrδss (resp. with entries in

Tperrrγss).

7.2.1. Feedforward

In Figure 7.3 an open-loop control structure is given. In this structure, a prefilter, described

by a matrix P P Em|brrδssĝg
, is placed at the input of the system H P Em|brrδssp̂g

. The

control input is chosen to ũ “ Pṽ, where ṽ denotes the external inputs. The transfer matrix

of the overall system is thenH b P and the output ỹ is, therefore

ỹ “
̀

H b P
̆

pṽq.

The referencemodel can be specified by a consistent transfer functionmatrixG P Em|brrδssp̂g
.
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7. Control

P H
ṽ ũ ỹ

Figure 7.3. – Open-loop control structure with a prefilter P and plant model H.

The control problem is then to find a prefilter P for a plant model H such that the overall

systemHP satisfies,

HP ĺ G. (7.5)

Moreover, we are looking for the greatest possible prefilter P in order to guaranty the op-

timal behavior under the "just-in-time" criterion. As H and G are matrices with entries in

Em|brrδss and Em|brrδss is a strict subset of the complete dioid pErrδss,‘,bq, residuation the-

ory is suitable to obtain the greatest solution for P in (7.5). Therefore, the optimal prefilter

is

Popt “ H z̋G. (7.6)

To realize the prefilter by a consistentWTEG and to guarantee that the overall system is again

consistent, P must be designed such that P and HP are consistent matrices with entries in

Em|brrδss. Hence, the matrices H and P must satisfy Prop. 44. This leads to the following

restrictions on the reference model G.

Proposition 102. Let H P Em|brrδssp̂g and G P Em|brrδssp̂g be to consistent matrices, then
the open loop transfer matrix HPopt, with Popt “ H z̋G, is a consistent matrix with entries in
Em|brrδss, if and only if, Dc P Q, c ą 0 such that,

cΓpGqk,1 “ ΓpHqk,1, @k P 1, ̈ ̈ ̈ , p. (7.7)

In other words, all columns of ΓpGq must be linearly dependent to all columns of ΓpHq (recall
that ΓpHq and ΓpGq have rank 1).

Proof. This follows immediately from Prop. 48.

Moreover, note that Popt may not be causal, i.e. the matrix is not realizable by a consistent

WTEG. Hence the optimal causal pm,bq-periodic prefilter P̀
opt is obtained by

P̀
opt “ Pr

̀

m|b

̀

H z̋G
̆

,

where Pr
̀

m|b
: Em|brrδss Ñ È

m|b
rrδss is the causal projection, see Remark 14. Note that as

shown in Example 26 the obtained causal prefilter is in general only the greatest pm,bq-

periodic causal prefilter. In the particular case, where the optimal non-causal prefilter sat-

isfies Remark 15, the greatest pm,bq-periodic causal prefilter is the greatest causal prefilter

which satisfies Pr
̀

m|b
pPoptq ĺ Popt.
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7.2. Model Reference Control

Example 73. Let us consider the consistent WTEG of Figure 6.2a with a transfer matrix H

given by

H “

«

pµ3β2γ
1 ‘ γ2µ3β2qδ1pγ1δ1q̊ µ3β2δ

2

µ4β1 µ4β1δ
3

ff

,

with a gain matrix

ΓpHq “

«

3
2

3
2

4 4

ff

.

The reference model is specified by the following matrix

G “

«

δ2pγ3δ2q̊µ3β4 δ2pγ3δ2q̊µ3β2

δ2pγ2δ2q̊µ2β1 δ4pγ4δ2q̊µ4β1

ff

with a gain matrix

ΓpGq “

«

3
4

3
2

2 4

ff

.

Clearly, ΓpGq has rank 1 and all columns of ΓpGq and ΓpHq are linearly dependent, since

2 ̂

«

3
4

2

ff

“

«

3
2

4

ff

.

Thus, the specification G satisfies the structural property, given by (7.7), and therefore it is
an admissible reference model for the plant H. The optimal prefilter Popt is given by

pPoptq1,1 “β2γ
1 ‘ pγ1µ2β4γ

1 ‘ γ2µ2β4qδ1 ‘ pγ1δ1q̊pγ2µ2β4δ
2q,

pPoptq1,2 “e ‘ pγ1δ1q̊pγ1µ2β2δ
1q,

pPoptq2,1 “β2γ
1δ́1‘γ1β2‘γ2µ2β4δ

1‘pγ2µ2β4γ
1‘γ3µ2β4qδ2‘pγ2δ2q̊pγ4µ2β4δ

4q,

pPoptq2,2 “e ‘ pγ2δ2q̊pγ2µ2β2δ
2q.

The optimal causal pm,bq-periodic prefilter P̀
opt is given by

P̀
opt “ Pr

̀

m|b

̀

H z̋G
̆

,

with

pP̀
optq1,1 “β2γ

1 ‘ pγ1µ2β4γ
1 ‘ γ2µ2β4qδ1 ‘ pγ1δ1q̊pγ2µ2β4δ

2q,

pP̀
optq1,2 “e ‘ pγ1δ1q̊pγ1µ2β2δ

1q,

pP̀
optq2,1 “γ1β2 ‘ γ2µ2β4δ

1 ‘ pγ2µ2β4γ
1 ‘ γ3µ2β4qδ2 ‘ pγ2δ2q̊pγ4µ2β4δ

4q,

pP̀
optq2,2 “e ‘ pγ2δ2q̊pγ2µ2β2δ

2q.
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7. Control

Note that in this case the greatest causal p2, 4q-periodic (resp. p2, 2q-periodic) prefilter, it is the
greatest causal prefilter, since all coefficients of the optimal non-causal prefilter Popt are smaller
than or equal to µ2β4, (resp. µ2β2). A graphical representation of the overall system is given
in Figure 7.4.

Remark 37. (Optimal prefilter for PTEGs and TEGs under periodic PS) Clearly, the design
process for an optimal prefilter for a PTEG (resp. TEG under periodic PS) with a transfer function
matrix H P Tperrrγssp̂g is analogous. For these systems, the reference model is specified by a
matrixG P Tperrrγssp̂g. Note that in the case of PTEGs the reference model can be freely chosen
to any matrix G P Tperrrγssp̂g. There is no additional condition as in the case of consistent
WTEG. Therefore, the optimal causal prefilter is obtained by,

P̀
opt “ Pr

̀
̀

H z̋G
̆

.

7.2.2. Feedback

Feedback control allows the system to react on unforeseen disturbances during runtime.

One approach is output feedback, which leads to the control structure shown in Figure 7.5.

The closed-loop transfer function matrix to this control structure is given by

H̄ “ HpFHq̊P. (7.8)

As in the feedforward case, the reference model is as well specified by a consistent transfer

function matrix G P Em|brrδssp̂g
. The control problem is then to find an output feedback

F and a prefilter P for a plant model H P Em|brrδssp̂g
such that the closed-loop system H̄

satisfies H̄ ĺ G. According to the definition of the Kleene star, the closed-loop system can

be written as H̄ “ HpI ‘ FH ‘ pFHq2 ‘ ̈ ̈ ̈ qP this implies that the prefilter P must satisfy

the following inequality

HP ‘ HFHP ‘ HpFHq̊P ̈ ̈ ̈ ĺ G. (7.9)

Clearly, P must satisfy the first element of the sum, i.e.,

HP ĺ G. (7.10)

The greatest solution of (7.10) is given by Popt “ H z̋G, see (7.6), furthermore in [34] it is

shown that thisPopt is also the greatest solution forP in (7.9). Therefore, the optimal prefilter

is equivalent to the optimal prefilter in the feedforward case. Again, in order to guaranty that

the overall system is consistent, the reference model G and the transfer function matrix H

of the plant must satisfy (7.7). It remains to find the greatest feedback F such that

HpFHq̊Popt ĺ G. (7.11)
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Figure 7.4. – Overall system with a prefilter.
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P + H •

F

ṽ ũ ỹ

Figure 7.5. – Closed-Loop structure with plant modelH, feedback F and prefilter P.

Proposition 103 ([34]). The greatest solution of the inequalityHpFHq̊Popt ĺ G is given by

Fopt “ pPopt{̋Poptq{̋H.

Proof. By left division byH and right division by Popt the inequalityHpFHq̊Popt ĺ G can

be written as

pFHq̊ ĺ pH z̋Gq{̋Popt “ Popt{̋Popt.

Since Popt{̋Popt “ pPopt{̋Poptq
̊
we obtain

FH ĺ Popt{̋Popt.

Therefore, the greatest solution Fopt for the feedback F in (7.11) (resp. (7.9)) is

Fopt “ pPopt{̋Poptq{̋H.

Finally, we check whether Fopt and the closed-loop transfer matrix HpFoptHq̊Popt are

consistent matrices with entries in Em|brrδss.

Proposition 104. The optimal feedback Fopt “ pPopt{̋Poptq{̋H, with Popt “ H z̋G and
the closed-loop system transfer matrix HpFoptHq̊Popt are consistent matrices with entries in
Em|brrδss, if and only if the transfer function matrixH and the reference modelG satisfy (7.7).

Proof. Recall that ΓpGq “ gcgr and ΓpHq “ hchr with gc,hc P Qp̂1
and gr,hr P Q1̂m

.

Then because of (3.60),

ΓpPoptq “ ΓpH z̋Gq “ h̄c
pgcq1

phcq1
gr,
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7.2. Model Reference Control

where h̄c “ rpphrq1q́1 pphrq2q́1 ̈ ̈ ̈ pphrqmq́1sT . Then ΓpPoptq “ pcpr, where pc “ h̄c

and pr “ pgcq1{phcq1gr. Because of (3.61),

ΓpPopt{̋Poptq “ pc

pprq1

pprq1
p̄r,

where p̄r “ rpppcq1q́1 pppcq2q́1 ̈ ̈ ̈ pppcqmq́1s. Clearly pprq1{pprq1 “ 1 and therefore

ΓpPopt{̋Poptq “ pcp̄r and as

p̄r “

”

pppcq1q́1 pppcq2q́1 ̈ ̈ ̈ pppcqmq́1

ı

“

”

ppphrq1q́1q́1 ppphrq2q́1q́1 ̈ ̈ ̈ ppphrqmq́1q́1

ı

“

”

phrq1 phrq2 ̈ ̈ ̈ phrqm

ı

“ hr

Then ΓpPopt{̋Poptq “ h̄chr. Therefore, the matrices Popt{̋Popt and H satisfy Prop. 49 and

Fopt is a consistentmatrixwith entries in Em|brrδss. Furthermore, ΓpFoptq “ ΓppPopt{̋Poptq{̋Hq “

h̄ch̄r and thus ΓpFoptqi,j “ pΓpHqj,iq
́1

.

Then recall (5), hence

ΓpHFoptq “ hcphrq1ph̄cq1h̄r,

“ hchcphrq1pphrq1q́1h̄r “ hch̄r.

Second,

ΓpHFoptHq “ hcph̄rq1phcq1hr

“ hcpphcq1q́1phcq1hr

“ hchr “ ΓpHq.

This implies that the sumH ‘ HFoptH ‘ ̈ ̈ ̈ is again a consistent matrix and therefore the

closed-loop transfer matrix HpFoptHq̊Popt is consistent as well.

Again in order to guaranty that Fopt is realizable by a consistent WTEG only the causal

part is considered:

F̀
opt “ Pr

̀

m|b

̀

Fopt
̆

“ Pr
̀

m|b

̀

pPopt{̋Poptq{̋H
̆

.

Then again as indicated in Example 26 the obtained causal feedback is in general only the

greatest pm,bq-periodic causal feedback. However, if the entries of Fopt satisfy the condition

laid out in Remark 15, then the greatest pm,bq-periodic causal feedback Pr
̀

m|b
pFoptq is the

greatest causal feedback which satisfies Pr
̀

m|b
pFoptq ĺ Fopt.
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Remark 38. (Neutral Feedback) A particular case of model reference control is to consider the
transfer function matrix H as the reference model, i.e., G “ H. The optimal pm,bq-periodic
feedback F̀

opt “ Pr
̀

m|b
pH z̋H{̋Hq is the one which delays all firings of input transitions as much

as possible while preserving the transfer behavior of the system. It is said neutral for this reason.
This feedback minimizes internal stock without slowing down the system.

Example 74. Recall Example 73 with the reference model

G “

«

δ2pγ3δ2q̊µ3β4 δ2pγ3δ2q̊µ3β2

δ2pγ2δ2q̊µ2β1 δ4pγ4δ2q̊µ4β1

ff

,

the transfer function matrix,

H “

«

pµ3β2γ
1 ‘ γ2µ3β2qδ1pγ1δ1q̊ µ3β2δ

2

µ4β1 µ4β1δ
3

ff

.

and the optimal prefilter Popt with,

pPoptq1,1 “β2γ
1 ‘ pγ1µ2β4γ

1 ‘ γ2µ2β4qδ1 ‘ pγ1δ1q̊pγ2µ2β4δ
2q,

pPoptq1,2 “e ‘ pγ1δ1q̊pγ1µ2β2δ
1q,

pPoptq2,1 “β2γ
1δ́1‘γ1β2‘γ2µ2β4δ

1‘pγ2µ2β4γ
1‘γ3µ2β4qδ2‘pγ2δ2q̊pγ4µ2β4δ

4q,

pPoptq2,2 “e ‘ pγ2δ2q̊pγ2µ2β2δ
2q.

The optimal feedback Fopt of the closed-loop system is computed by

Fopt “ pPopt{̋Poptq{̋H,

which results in

pFoptq1,1 “ pγ1δ1q̊pγ1µ2β3δ
́1q,

pFoptq1,2 “ β4δ
́3 ‘ pγ1δ1q̊pγ1µ2β8δ

́2q,

pFoptq2,1 “ γ1µ2β3δ
́3 ‘ pγ1µ2β3γ

1 ‘ γ2µ2β3qδ́2 ‘ pγ2δ2q̊pγ2µ2β3q,

pFoptq2,2 “ β4δ
́3 ‘ pγ2δ2q̊pγ2µ2β8δ

́1q.

Then optimal causal feedback F̀
opt of the closed-loop system is

F̀
opt “ Pr

̀

m|b

̀

pPopt{̋Poptq{̋H
̆

“

«

γ2pγ1δ1q̊µ2β3 γ3pγ1δ1q̊µ2β8

γ2pγ2δ2q̊µ2β3 γ4δ1pγ2δ2q̊µ2β8

ff

.

Again, note that for this example the greatest p2, 3q-periodic (resp. p2, 8q-periodic) causal feed-
back F̀

opt is the greatest causal feedback. The closed-loop system with the prefilter and feedback
is shown in Figure 7.6.
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Figure 7.6. – Overall system with a prefilter and a feedback.
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Example 75. Consider the PTEG given in Figure 6.8 with transfer function,

h “ δ1rpδ1∆4|4δ
́3 ‘ ∆4|4qγ2s̊pδ́3∆4|4 ‘ ∆4|4δ

́1q.

For this system, the neutral "just-in-time" feedback is:

fopt “ h z̋h{̋h

“ pγ4δ4q̊ppδ́3∆4|4δ
́1 ‘ ∆4|4δ

́2q ‘ p∆4|4δ
́1 ‘ δ1∆4|4δ

́2qγ2q

After the causal projection,

f̀
opt “ Pr

̀pfoptq “ pγ4δ4q̊pp∆4|4δ
́1‘ δ1∆4|4δ

́2qγ2‘ pδ1∆4|4δ
́1‘ δ4∆4|4δ

́2qγ4q.

Recall the control law u “ f̀
opty ‘ v. To realize the feedback f̀

opt, f
̀
opty is written as

ρ “ f̀
opty

“ pγ4δ4q̊
”

p∆4|4δ
́1 ‘ δ1∆4|4δ

́2qγ2 ‘ pδ1∆4|4δ
́1 ‘ δ4∆4|4δ

́2qγ4

ı

y.

The former expression is the solution of the following implicit equation

ρ “

”

γ4δ4
ı

ρ ‘

”

p∆4|4δ
́1 ‘ δ1∆4|4δ

́2qγ2 ‘ pδ1∆4|4δ
́1 ‘ δ4∆4|4δ

́2qγ4

ı

y.

From this expression the feedback f̀
opt can be implemented by a PTEG as follows: The feedback

has one transition, denoted by tc, associated with the dater-function ρ. Because of operator γ4δ4

transition tc is attached with a self-loop, constituted by place pc1 with 4 initial tokens and a
constant holding time of 4 time units. The polynomial p∆4|4δ

́1‘δ1∆4|4δ
́2qγ2‘pδ1∆4|4δ

́1‘

δ4∆4|4δ
́2qγ4 describes the influence of the plant output transition t3 onto the transition tc of the

feedback. Observe that we have two monomials, therefore we obtain two parallel paths between
t3 and tc, each with one place. First, p∆4|4δ

́1 ‘δ1∆4|4δ
́2qγ2 is described by the place pc2 and

the arcs pt3, pc2q and ppc2, tcq. Because of the exponent of γ2 the place pc2 contains 2 initial
tokens. The holding-time function of pc2 is determined by the T-operator ∆4|4δ

́1 ‘ δ1∆4|4δ
́2

as follows:

Hpc2
ptq “ max

́

R∆4|4δ
́1ptq,Rδ1∆4|4δ

́2ptq
̄

́ t,

“ max

̂R

t ́ 1

4

V

4, 1 ̀

R

t ́ 2

4

V

4

̇

́ t,

“ x1 0 2 2y

Respectively, pδ1∆4|4δ
́1 ‘ δ4∆4|4δ

́2qγ4 is described by the place pc3 and the arcs pt3, pc3q

and ppc3, tcq. Because of the exponent of γ4 the place pc3 contains 4 initial tokens. Moreover,
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the holding-time-function of pc3 is

Hpc3ptq “ max

́

Rδ1∆4|4δ
́1ptq,Rδ4∆4|4δ

́2ptq
̄

́ t,

“ max

̂

1 ̀

R

t ́ 1

4

V

4, 4 ̀

R

t ́ 2

4

V

4

̇

́ t,

“ x4 3 3 5y

The controller is connected to the plant input transition t1 via the arcs ptc, pc4q and ppc4, t1q.
Finally, transition tv is associated with the new input v and is connected to the plant input
transition t1 via the arcs ptv, pvq and ppv, t1q. Figure 7.7 illustrates the closed-loop system. The
feedback keeps the number of tokens in places p1, p2 as small as possible, while the throughput
of the system is preserved.

p1 p2t2t1 t3

x0 0 2 1y

x1 3 2 1y

p3

x1 0 2 2y

x4y

pc1

tc pc2

x4 3 3 5y

pc3

tv pv

pc4

Feedback

Figure 7.7. – Closed loop system.

Clearly, model reference control can be generalized to consistent WTEGs under periodic

PS. In this case the reference model is specified in the dioid pET ,‘,bq and must satisfy a

similar condition as given in Prop. 102.

Remark 39. Finally, note that an alternative interpretation for causality of transfer functions in
Max

in vγ, δw was introduced in [7]. In short, this causal transfer functions h P Max
in vγ, δw may

contain monomials γnδτ, for which the exponents of γ are in Z, see Remark 7. Then to realize
such a transfer function by a TEG, negative tokens must be introduced. A similar alternative
interpretation can be given for transfer functionsh P Em|brrδss, thenh “

À

iPZwiδ
i, withwi ľ

wì1 is a causal transfer function, if for all i ă 0, wi “ ε. Hence, h may contain monomials,
for which the coefficientwi ľ µmβb, e.g., γ́1µmβbγ

́2. Again to give a realization of such a
transfer function negative tokens must be considered.
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8
Conclusion

Timed Event Graphs (TEGs) are a subclass of Discrete Event Systems (DESs) whose be-

haviors are solely described by synchronization phenomena. An advantage of TEGs is that

they have linear expressions in some tropical algebras called dioids [1, 40]. Therefore, TEGs

are considered popular tools for analyzing systems governed by synchronization, such as

complex manufacturing processes, transport networks, and computer systems. Over the last

decades, a comprehensive linear system theory for TEGs has been developed where basic

concepts of traditional system theory such as state space representation, spectral analysis

and transfer functions have been adapted to TEGs [1, 40]. However, many applications have

event-variant and time-variant behavior, which cannot be described by an ordinary TEG.

Therefore, TEGs have been extended by introducing integer weights on the arcs. This leads

to Weighted Timed Event Graphs (WTEGs) which are suitable to model event-variant phe-

nomena in DESs. Similarly, to express some time-variant behavior, TEGs were expanded

by a weaker form of synchronization called partial synchronization (PS). Clearly, WTEGs

and TEGs under PS can express a wider class of systems compared to ordinary TEGs, but

cannot be described as a linear system in dioids anymore. Nevertheless, transfer functions

were introduced for WTEGs and TEGs under PS in specific dioids. These dioids are based on

a specific set of operators. In this thesis, WTEGs and TEGs under PS are studied in a dioid

framework, in particular, the control of these systems in dioids is addressed.

The first contribution relates to the modeling of WTEGs in dioids. Based on the dioid

pErrδss,‘,bq a decomposition model is introduced for consistent WTEGs, in which the

event-variant part and the event-invariant part are separated. The event-invariant part is

modeled by a matrix with entries inMax
in vγ, δw. Moreover, it is shown that the event-variant

part is invertible, hence the problem of model reference control for consistentWTEGs can be

reduced to the case of ordinary TEGs. Furthermore, it is shown that all relevant operations

p‘,b, z̋, {̋q on periodic elements in the dioid pErrδss,‘,bq can be reduced to operations on

matrices with entries in Max
in vγ, δw. In analogy to consistent WTEGs, consistent matrices

are defined in the dioid pErrδss,‘,bq. A matrix with entries in Errδss is called consistent if

its entries are periodic and its gain matrix has rank 1. It is shown that a consistent WTEG

admits a consistent transfer function matrix with periodic entries in Errδss. Moreover, the

conditions under which product, sum, and quotient of consistent matrices are again consis-

tent matrices are elaborated. This is needed for control synthesis; e.g., when we compute

a controller in the dioid pErrδss,‘,bq, the computed matrix must be consistent in order to

obtain a controller realizable by a consistent WTEG.
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8. Conclusion

The secondmain contribution of this work is to show that the input/output behavior of Pe-

riodic Time-variant Event Graphs (PTEGs) (resp. TEGs under periodic PS) can be described

by ultimately cyclic series in a new dioid denoted pTperrrγss,‘,bq. Just like WTEGs, a de-

composition model is introduced for PTEGs, where the transfer function is decomposed into

a time-variant part and a time-invariant part. The time-variant part is invertible and there-

fore many tools for performance analysis and controller synthesis, developed for ordinary

TEGs, can be directly applied to PTEGs. Moreover, in this work, the impulse response of a

PTEG (resp. TEGs under periodic PS) and the relation to its transfer function is discussed. It

is shown that the transfer function of the system can be interpreted as the juxtaposition of its

time-shifted impulse responses. In general, for computations in the dioid pTperrrγss,‘,bq, it

is shown that all relevant operations p‘,b, z̋, {̋q on elements in Tperrrγss can be reduced to

operations on matrices with entries inMax
in vγ, δw.

The third main contribution is motivated by modeling a class of event-variant and time-

variant DESs in the same dioid setting. The dioid pET ,‘,bq was introduced which can be

seen as the combination of the dioids pErrδss,‘,bq and pT rrγss,‘,bq. It was shown that the

transfer behavior of WTEGs under periodic PS can be described by ultimately cyclic series in

ET . Moreover, the decomposition model can be applied to consistent WTEG under periodic

PS as well. Thus, many tools developed for TEGs can be applied to analyze and to control

consistent WTEGs under periodic PS.

Finally, it is shown how this transfer function representation ofWTEGs, PTEGs, and TEGs

under periodic PS can be used to solve some control problems for these systems. Optimal

control was studied in which a reference output is defined for the system and an optimal

input is computed, which schedules all input events as late as possible under the constraint

that the output events occur not later than defined by the reference. The second control

approach which was extended to WTEGs, PTEGs, and TEGs under periodic PS is model

reference control. Here the reference model is specified by a transfer function matrix in

the dioid pErrδss,‘,bq, respectively for PTEGs and TEGs under periodic PS in the dioid

pTperrrγss,‘,bq. The controller, based on this reference, modifies the system dynamics such

that the system matches the behavior of the reference model as close as possible. To achieve

this, an output feedback and a prefilter are computed and realized. For consistent WTEGs,

the specified referencemodelmust satisfy some additional conditions regarding its gain. This

is needed to obtain an admissible prefilter and feedback which are realizable by consistent

WTEGs. Note that this is not the case for ordinary TEGs.

In the following, some suggestions for further work are given. Second order theory for

TEGs is useful to obtain tight bounds for the number of tokens in places and the sojourn times

of tokens in places when TEGs are operating under the earliest functioning rule [13]. For

this method the TEG is modeled in the dioid pMax
in vγ, δw ,‘,bq, then residuation theory is

applied to obtain these bounds [13]. It is of interest to study second-order theory for WTEGs

(resp. PTEGs) based on their dioid model in pErrδss,‘,bq (resp. pTperrrγss,‘,bq).

For consistent WTEGs the transfer function can be interpreted as a juxtaposition of its

event-shifted impulse responses. Similarly, for TEGs under periodic PS, the transfer function
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can be interpreted as a juxtaposition of its time-shifted impulse responses. The relation of the

impulse responses and the transfer function of a WTEG under periodic PS can be addressed

in further works. For TEGs many control approaches beyond optimal control and model

reference control, studied in this thesis, were investigated. Among them are robust control

[45], control of TEG under additional time constraints [49, 8, 7], and observer-based control

[33, 35]. Based on the decomposition model, these control strategies can be generalized to

consistent WTEGs, PTEGs, and TEGs under periodic PS in further works.
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A
Formula for Residuation

The following list provides some basic relations of left and right division, for the proofs

and a more detailed list and the reader is invited to consult [1][Chap. 4]. For a complete

dioid D with a, b, x, y P D,

apa z̋xq ĺ x px{̋aqa ĺ x, (A.1)

a z̋paxq ľ x pxaq{̋a ľ x, (A.2)

apa z̋paxqq “ ax ppxaq{̋aqa “ xa, (A.3)

a z̋papa z̋xqq “ a z̋x ppx{̋aqaq{̋a “ x{̋a, (A.4)

pabq z̋x “ b z̋pa z̋xq x{̋pbaq “ px{̋aq{̋pbq (A.5)

pa z̋xq {̋b “ a z̋ px{̋bq a z̋ px{̋bq “ pa z̋xq {̋b (A.6)

pa ‘ bq z̋x “ pa z̋xq ^ pb z̋xq x{̋pa ‘ bq “ px{̋aq ^ px{̋bq (A.7)

a z̋px ^ yq “ a z̋x ^ a z̋y px ^ yq{̋a “ x{̋a ^ y{̋a (A.8)

å z̋påxq “ åx påxq{̋å “ xå
(A.9)
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B
Formula for Floor and Ceil Operations

The following list provides some basic relations of floor and ceil operations for proofs and

a more detailed list see [29]. For x P R,
X

txu
\

“ txu, rrxss “ rxs.

For x P R,m P Z and n P N,
Z

x ̀ m

n

^

“

Z

txu ̀ m

n

^

,

R

x ̀ m

n

V

“

R

rxs ̀ m

n

V

.

For m P Z and n P N,
Ym

n

]

“

R

m ́ n ̀ 1

n

V

,
Qm

n

U

“

Z

m ̀ n ́ 1

n

^

.
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C
Proofs

C.1. Proofs of Section 3.1

Lemma 7 ([16]). Let w P E , then:

µm z̋w “ βmγ
ḿ1w, w{̋βb “ wγb́1βm. (C.1)

Proof. This proof is taken from [16]. To prove the left equation of (C.1), by definition of the

residuated mapping the greatest solution for x of the following inequality

w ľ µmx (C.2)

is given by

µm z̋w “
à

tu P E |µmu ĺ wu,

“
à

tu P E |Fµmu ě Fwu.

Therefore, the (C/C)-function Fµm z̋wpkq must satisfy: @k P Zmin, Fµm z̋wpkq ě Fwpkq,

which leads to

Fupkq ̂ m ě Fwpkq ô Fupkq ě Fwpkq{m

Since Fupkq is an integer we can write

Fupkq ě Fwpkq{m ô Fupkq ě rFwpkq{ms ô Fupkq ě

YFwpkq ̀ m ́ 1

m

]

.

Therefore, the operator βmγ
ḿ1w, corresponding to the function tpFwpkq ̀ḿ 1q{mu, is

the greatest x such that (C.2) holds. To prove the right equation of (C.1), againw{̋βb denotes

the greatest solution of the inequality,

w ľ xβb. (C.3)

The greatest x such that (C.3) holds is given by

w{̋βb “
à␣

u P E |Fuβb
ě Fw

(

,

“
à␣

u P E |@k P Zmin, Fu

̀

tk{bu
̆

ě Fw

̀

k
̆(

,
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C. Proofs

with a (C/C) function Fw{̋βb
. Clearly, if we consider the interval 0 ď k ă b we have

Fu

̀

0
̆

ě Fw

̀

k
̆

thus in general for n P Zmin the (C/C)-function Fu must satisfy, for

nb ď k ă pn ̀ 1qb, Fupnq ě Fw

̀

k
̆

. Recall that Fw is isotone, therefore it is sufficient to

consider k “ pn ̀ 1qb ́ 1, i.e., the greatest argument in the interval. Then,

Fupnq ě Fw

̀

pn ̀ 1qb ́ 1
̆

. (C.4)

The smallest function such that (C.4) holds is therefore

Fw{̋βb
pkq “ Fw

̀

pk ̀ 1qb ́ 1
̆

“ Fw

̀

kb ̀ pb ́ 1q
̆

“ Fw

̀

Fµbγb́1pkq
̆

“ Fwµbγb́1pkq.

This corresponds to an operator representation w{̋βb “ wµbγ
b́1

.

Proposition 105 ([16]). Let s be a series in Errδss, then

γi z̋s “ γ́is, s{̋γi “ sγ́i, (C.5)

δτ z̋s “ δ́τs, s{̋δτ “ sδ́τ, (C.6)

βb z̋s “ µbs, s{̋µm “ sβm, (C.7)

µm z̋s “ βmγ
ḿ1s, s{̋βb “ sγb́1µb. (C.8)

Proof. This proof is taken from [16]. For the proof of (C.5) and (C.6), the operators γi
and

δτ are invertible, since δτδ́τ “ γiγ́i “ e. Moreover, to prove (C.7) the right product by

µm and the left product by βb are invertible, since βmµm “ e. For the proof of (C.8), recall

Lemma 7 µm z̋w “ βmγ
ḿ1w with w P E and Prop. 6. Thus for a series s “

À

iwiδ
τi P

Errδss one has

µm z̋s “ µmδ
0 z̋

́

à

i

wiδ
τi
̄

“
à

i

́

µm z̋wi

̄

δτí0 “
à

i

βmγ
ḿ1wiδ

τi ,

“ βmγ
ḿ1s.

The proof for s{̋βb “ sγb́1βm is analogous.

C.1.1. Proof of Prop. 28

Proof. For the proof of the left product by mm (3.49), by definition of the residual mapping

mm z̋D is the greatest solution of the following inequality

mm b X ĺ D, (C.9)

mm

»

—

—

–

x1,1 ̈ ̈ ̈ x1,n
.
.
.

.
.
.

.

.

.

xm,1 ̈ ̈ ̈ xm,n

fi

ffi

ffi

fl

ĺ

”

d1 ̈ ̈ ̈dn

ı

. (C.10)
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C.1. Proofs of Section 3.1

This matrix inequality can be transformed into a set of n inequalities,

µmx1,1 ‘ γ1µmx2,1 ‘ ̈ ̈ ̈ ‘ γḿ1µmxm,1 ĺ d1,

µmx1,2 ‘ γ1µmx2,2 ‘ ̈ ̈ ̈ ‘ γḿ1µmxm,2 ĺ d2,

.

.

.

µmx1,n ‘ γ1µmx2,n ‘ ̈ ̈ ̈ ‘ γḿ1µmxmn ĺ dn.

Because of Prop. 105, for each inequality i P t1, ̈ ̈ ̈ , nu we obtain

x1,i ĺ µm z̋di “ βmγ
ḿ1di,

x2,i ĺ γ1µm z̋di “ βmγ
ḿ1γ́1di “ βmγ

ḿ2di,

.

.

.

xm,i ĺ pγḿ1µmq z̋di “ βmdi.

Rewriting the inequalities into matrix form leads to

X ĺ mm z̋D “

»

—

—

—

—

–

βmγ
ḿ1

βmγ
ḿ2

.

.

.

βm

fi

ffi

ffi

ffi

ffi

fl

D “ bm b D.

Moreover, bmD satisfies (C.9) with equality, sincemmbm “ e. For the inequality

X b bb ĺ P

We have,

Xbb ĺ P ô X ĺ P{̋bb,
»

—

—

–

x1,1 ̈ ̈ ̈ x1,n
.
.
.

.
.
.

.

.

.

xm,1 ̈ ̈ ̈ xm,n

fi

ffi

ffi

fl

bb ĺ

»

—

—

–

p1
.
.
.

pn

fi

ffi

ffi

fl

ô

»

—

—

–

x1,1 ̈ ̈ ̈ x1,n
.
.
.

.
.
.

.

.

.

xm,1 ̈ ̈ ̈ xm,n

fi

ffi

ffi

fl

ĺ

»

—

—

–

p1
.
.
.

pn

fi

ffi

ffi

fl

{̋bb.

We obtain for each i P t1, ̈ ̈ ̈ , nu the following inequalities

xi,1 ĺ pi{̋pβbγ
b́1q “ piµb,

xi,2 ĺ pi{̋pβbγ
b́2q “ piγ

1µb,

.

.

.

xi,n ĺ pi{̋βb “ piγ
b́1µb.
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This can be rewritten in matrix form

X ĺ P{̋bb “ P
”

µb γ1µb ̈ ̈ ̈ γb́1µb

ı

“ P b mb.

Again, Pbb satisfies (C.1.1) with equality, since mbbb “ e. To prove (3.50), since bmmm “

E “ EE and due to (3.49) Pmm “ P{̋bm we can write

̀

OE
̆

{̋mm “ pOEbmmmq{̋mm “ ppOEbmq{̋bmq{̋mm.

Since px{̋aq{̋b “ x{̋pbaq (A.1) andmmbm “ e (see 3.43),

ppOEbmq{̋bmq{̋mm “ pOEbmq{̋pmmbmq “ pOEbmq{̋e “ OEbm.

The proof of bb z̋pENq “ mb b EN is analogous.

C.1.2. Proof of Prop. 30

Proof. We can extend a core matrix Q of a series, i.e.,

s “ mmQbb “ mnm bnmmmQbbmnb
looooooooomooooooooon

Q̂ 1

bnb.

Since, βnmγ
mń1 “ βnβmγ

mpń1qγḿ1 “ βnγ
ń1βmγ

ḿ1
then

bnm “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

»

—

—

—

—

–

βnγ
ń1βmγ

ḿ1

βnγ
ń1βmγ

ḿ2

.

.

.

βnγ
ń1βm

fi

ffi

ffi

ffi

ffi

fl

.

.

.
»

—

—

—

—

–

βnβmγ
ḿ1

βnβmγ
ḿ2

.

.

.

βnβm

fi

ffi

ffi

ffi

ffi

fl

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

βnγ
ń1bm

βnγ
ń2bm
.
.
.

βnbm

fi

ffi

ffi

ffi

ffi

fl

.

This leads to

bnmmm “

»

—

—

—

—

–

βnγ
ń1E

βnγ
ń2E
.
.
.

βnE

fi

ffi

ffi

ffi

ffi

fl

.
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C.1. Proofs of Section 3.1

Respectively bbmnb is given by

bbmnb “

”

Eµn Eµnγ
1 ̈ ̈ ̈ Eγń1µn

ı

.

Finally, we obtain

Q̂ 1
“

»

—

—

—

—

–

βnγ
ń1E

βnγ
ń2E
.
.
.

βnE

fi

ffi

ffi

ffi

ffi

fl

Q
”

Eµn Eµnγ
1 ̈ ̈ ̈ Eγń1µn

ı

,

“

»

—

—

—

—

–

βnγ
ń1Q̂µn βnγ

ń1Q̂γ1µn ̈ ̈ ̈ βnγ
ń1Q̂γń1µn

βnγ
ń2Q̂µn βnγ

ń2Q̂γ1µn ̈ ̈ ̈ βnγ
ń2Q̂γń1µn

.

.

.

.

.

.

.

.

.

βnQ̂µn βnQ̂γ1µn ̈ ̈ ̈ βnQ̂γń1µn

fi

ffi

ffi

ffi

ffi

fl

.

The extended core is a matrix with entries inMax
in vγ, δw, since βnγ

νµn “ γtν{nun
. Further-

more, the extended core Q 1
is a greatest core. For this, one has to show that Q̂2

“ EQ̂ 1E “

Q̂ 1
.

Q̂2
“ EbnmmmQbbmnbE,
“ bnmmnmbnm

loooomoooon

e

mmQbbmnbbnb
looomooon

e

mnb,

“ bnmmmQbbmnb “ Q̂ 1
.

C.1.3. Proof of Prop. 38

Proof. (3.53) for the left product, by definition of the residual mapping M z̋D is the greatest

solution of the following inequality:

MwX ĺ D (C.11)

»

—

—

–

mm1
x11 ̈ ̈ ̈ mm1

x1g
.
.
.

.

.

.

mmpxp1 ̈ ̈ ̈ mmpxpg

fi

ffi

ffi

fl

ĺ

»

—

—

–

d11 ̈ ̈ ̈ d1g
.
.
.

.

.

.

dp1 ̈ ̈ ̈ dpg

fi

ffi

ffi

fl

For every row i P t1, ̈ ̈ ̈ , pu we obtain the following inequality

”

mmi
xi1 ̈ ̈ ̈ mmi

xip

ı

ĺ

”

di1 ̈ ̈ ̈ dip

ı
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Due to (3.49) the greatest solution for this inequality is given by

”

xi1 ̈ ̈ ̈ xip

ı

ĺ

”

bmi
di1 ̈ ̈ ̈ bmi

dip

ı

Therefore the greatest solution for the matrix inequality in (C.11) is

X ĺ Mw z̋D “

»

—

—

—

—

—

–

bm1
ε ̈ ̈ ̈ ε

ε
.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. ε

ε ̈ ̈ ̈ ε bmp

fi

ffi

ffi

ffi

ffi

ffi

fl

D “ BwD.

Note thatBwD satisfies (C.11) with equality sinceMbBw “ I. The proof ofO{̋Bw 1 “ OMw 1

is analogous. To prove (3.54), since Ew “ BwMw “ EwBwMw and due to (3.53) OMw “

O{̋Bw we can write

pNEwq{̋Mw “ pNEwBwMwq{̋Mw “ ppNEwBwq{̋Bwq{̋Mw.

Since px{̋aq{̋b “ x{̋pbaq (A.1) andMwBw “ I,

ppNEwBwq{̋Bwq{̋Mw “ pNEwBwq{̋pMwBwq

“ pNEwBwq{̋I “ NEwBw.

The proof of Bw 1 z̋pEw 1Gq “ Mw 1 b Ew 1G is analogous.

C.2. Proofs of Section 4.1

C.2.1. Proof of Prop. 56

Proof. Let us recall that the release-time function of the∆ω|ω operator is given byR∆ω|ω
ptq“

rt{ωsω. Due to Remark 22 the pnω,nωq-periodic representation of this operator is

∆ω|ω “

nώ1
à

t“0

δŕt{ωsω∆nω|nωδ
t́nὼ1,

“

ń1
à

i“0

ώ1
à

j“0

δrṕiώjq{ωsω∆nω|nωδ
iὼj́nὼ1, with t “ iω ̀ j,

“

ń1
à

i“0

ώ1
à

j“0

δ́iω∆nω|nωδ
iὼj́nὼ1

since @j P t0, ̈ ̈ ̈ ,ω ́ 1u, rṕiω ́ jq{ωs “ ́i.
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Due to the order relation in T see (4.12) we have

ώ1
à

j“0

δ́iω∆nω|nωδ
iὼj́nὼ1 “ δ́iω∆nω|nωδ

iὼώ1́nὼ1 “ δ́iω∆nω|nωδ
́pń1́iqω,

and thus

∆ω|ω “

ń1
à

i“0

δ́iω∆nω|nωδ
́pń1́iqω.

Lemma 8. Let v P T , then:

∆ω|ϖ z̋v “ ∆ϖ|ωδ
1́ωv, v{̋∆ω|ϖ “ vδ1́ϖ∆ϖ|ω. (C.12)

Proof. To prove (C.12), recall that by definition of the residuated mapping, ∆ω|ϖ z̋v is the

greatest solution of the inequality v ľ ∆ω|ϖx. This greatest solution is given by

∆ω|ϖ z̋v “
à

tu P T |∆ω|ϖu ĺ vu “
à

tu P T |R∆ω|ϖuptq ď Rvptq, @t P Zmaxu.

Therefore, @t P Zmax

R∆ω|ϖ z̋vptq “ maxtRuptq| rRuptq{ϖsω ď Rvptqu

Observe that,

QRuptq

ϖ

U

ω ď Rvptq

ô

QRuptq

ϖ

U

ď
Rvptq

ω

ô
Ruptq

ϖ
ď

YRvptq

ω

]

“

QRvptq ́ ω ̀ 1

ω

U

ô Ruptq ď

QRvptq ́ ω ̀ 1

ω

U

ϖ

where the equality above chain of equivalence follows from the basic properties of the "floor"

and "ceil" operations listed in Appendix B. Consequently

R∆ω|ϖ z̋vptq ď

QRvptq ́ ω ̀ 1

ω

U

ϖ, @t P Zmax

ô ω z̋v “ ∆ϖ|ωδ
1́ωv.

The proof for v{̋∆ω|ϖ “ vδ1́ϖ∆ϖ|ω is analogous.
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Proposition 106. Let s be a series in T rrγss, then

γη z̋s “ γ́ηs, s{̋γη “ sγ́η, (C.13)

δτ z̋s “ δ́τs, s{̋δτ “ sδ́τ, (C.14)

∆ω|ϖ z̋s “ ∆ϖ|ωδ
1́ωs, s{̋∆ω|ϖ “ sδ1́ϖ∆ϖ|ω. (C.15)

Proof. For the proof of (C.13) and (C.14), the operators δτ andγη
are invertible, since δτδ́τ “

γηγ́η “ e. Moreover, for the proof of (C.15), recall Lemma 8 ∆ω|ϖ z̋v “ ∆ϖ|ωδ
1́ωv with

v P T and Prop. 6. Therefore, for a series s “
À

i viγ
ni P T rrγss one has

∆ω|ϖ z̋s “ ∆ω|ϖγ
0 z̋

́

à

i

viγ
ni

̄

“
à

i

́

∆ω|ϖ z̋vi

̄

γní0 “
à

i

∆ϖ|ωδ
1́ωviγ

ni ,

“ ∆ϖ|ωδ
1́ωs.

The proof for s{̋∆ω|ϖ “ sδ1́ϖ∆ϖ|ω is analogous.

C.2.2. Proof of Prop. 61

Proof. Note that this proof is similar to the proof of Prop. 28. For the proof of (4.25), by

definition of the residual mapping dω z̋A is the greatest solution of the following inequality

dω b X ĺ A, (C.16)

dω

»

—

—

–

x1,1 ̈ ̈ ̈ x1,n
.
.
.

.
.
.

.

.

.

xω,1 ̈ ̈ ̈ xω,n

fi

ffi

ffi

fl

ĺ

”

a1 ̈ ̈ ̈an

ı

.

This matrix inequality can be transformed into a set of n inequalities,

∆ω|1x1,1 ‘ δ́1∆ω|1x2,1 ‘ ̈ ̈ ̈ ‘ δ1́ω∆ω|1xm,1 ĺ a1,

∆ω|1x1,2 ‘ δ́1∆ω|1x2,2 ‘ ̈ ̈ ̈ ‘ δ1́ω∆ω|1xm,2 ĺ a2,

.

.

.

∆ω|1x1,n ‘ δ́1∆ω|1x2,n ‘ ̈ ̈ ̈ ‘ δ1́ω∆ω|1xmn ĺ an.

Because of Prop. 106, for each inequality i P t1, ̈ ̈ ̈ , nu we obtain

x1,i ĺ ∆ω|1 z̋ai “ ∆1|ωδ
1́ωai,

x2,i ĺ δ́1∆ω|1 z̋ai “ ∆1|ωδ
1́ωδ1ai “ ∆1|ωδ

2́ωai,

.

.

.

xm,i ĺ pδ1́ω∆ω|1q z̋ai “ ∆1|ωai.
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C.2. Proofs of Section 4.1

Rewriting the inequalities into matrix form leads to

X ĺ dω z̋A “

»

—

—

—

—

–

∆1|ωδ
1́ω

∆1|ωδ
2́ω

.

.

.

∆1|ω

fi

ffi

ffi

ffi

ffi

fl

A “ pω b A.

Note that pωA satisfies (C.16) with equality, since dωpω “ e. For the inequality

X b pω ĺ G, (C.17)

where X is of size n ̂ m andG is of size n ̂ 1. Then,

Xpω ĺ G ô X ĺ G{̋pω.

We obtain for each i P t1, ̈ ̈ ̈ , nu the following inequalities

xi,1 ĺ gi{̋p∆1|ωδ
1́ωq “ gi∆ω|1,

.

.

.

xi,n ĺ gi{̋∆1|ω “ giδ
1́ω∆ω|1.

This can be expressed in matrix form

X ĺ G{̋pω “ G
”

∆ω|1 δ́1∆ω|1 ̈ ̈ ̈ δ1́ω∆ω|1

ı

“ G b dω.

Again Gdω satisfies (C.17) with equality, since dωpω “ e. To prove (4.26), since pωdω “

N “ NN and due to Gdω “ G{̋pω (4.25) we can write

pONq{̋dω “ pONpωdωq{̋dω “ ppONpωq{̋pωq{̋dω.

Since, px{̋aq{̋b “ x{̋pbaq (A.5) and dωpω “ e ( 4.19),

ppONpωq{̋pωq{̋dω “ pONpωq{̋pdωpωq

“ pONpωq{̋e “ ONpω.

The proof of pω z̋pNOq “ dω b NO is analogous.

C.2.3. Proof of Prop. 64

Proof. We can extend the core matrix Q of a series, i.e.,

s “ dωQpω “ dnω pnωdωQpωdnω
loooooooomoooooooon

Q̂ 1

pnω.
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C. Proofs

Since, ∆1|nωδ
1́nω “ ∆1|n∆1|ωδ

́ωpń1qδ1́ω “ ∆1|nδ
1́n∆1|ωδ

1́ω
then

pnω “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

»

—

—

—

—

–

∆1|nδ
1́n∆1|ωδ

1́ω

∆1|nδ
1́n∆1|ωδ

2́ω

.

.

.

∆1|nδ
1́n∆1|ω

fi

ffi

ffi

ffi

ffi

fl

.

.

.

»

—

—

—

—

–

∆1|n∆1|ωδ
1́ω

∆1|n∆1|ωδ
2́ω

.

.

.

∆1|n∆1|ω

fi

ffi

ffi

ffi

ffi

fl

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

∆1|nδ
1́npω

∆1|nδ
2́npω
.
.
.

∆1|npω

fi

ffi

ffi

ffi

ffi

fl

.

This leads to

pnωdω “

»

—

—

—

—

–

∆1|nδ
1́nN

∆1|nδ
2́nN
.
.
.

∆1|nN

fi

ffi

ffi

ffi

ffi

fl

.

Respectively, pωdnω is given by

pωdnω “

”

N∆n|1 Nδ́1∆n|1 ̈ ̈ ̈ Nδ1́n∆n|1

ı

.

Finally, we obtain

Q̂ 1
“

»

—

—

—

—

–

∆1|nδ
1́nN

∆1|nδ
2́nN
.
.
.

∆1|nN

fi

ffi

ffi

ffi

ffi

fl

Q
”

N∆n|1 Nδ́1∆n|1 ̈ ̈ ̈ Nδ1́n∆n|1

ı

,

“

»

—

—

—

—

–

∆1|nδ
1́nQ̂∆n|1 ∆1|nδ

1́nQ̂δ́1∆n|1 ̈ ̈ ̈ ∆1|nδ
1́nQ̂δ1́n∆n|1

∆1|nδ
2́nQ̂∆n|1 ∆1|nδ

2́nQ̂δ́1∆n|1 ̈ ̈ ̈ ∆1|nδ
2́nQ̂δ1́n∆n|1

.

.

.

.

.

.

.

.

.

∆1|nQ̂∆n|1 ∆1|nQ̂δ́1∆n|1 ̈ ̈ ̈ ∆1|nQ̂δ1́n∆n|1

fi

ffi

ffi

ffi

ffi

fl

.

The extended core is a matrix with entries in Max
in vγ, δw, since ∆1|nδ

τ∆n|1 “ δrτ{nsn
(Re-

mark 20). Furthermore, the extended core Q̂ 1
is a greatest core. For this one has to show that
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Q̂2
“ NQ̂ 1N “ Q̂ 1

.

Q̂2
“ NpnωdωQpωdnωN,
“ pnω dnωpnω

looomooon

e

dωQpω dnωpnω
looomooon

e

dnω,

“ pnωdωQpωdnω “ Q̂ 1
.

C.3. Proofs of Chapter 5

Lemma 9. All elementary operators introduced in Prop. 73 can be represented as basic elements
in ET .

Proof. Recall that a basic element in ET is expressed as γnδτ∇m|b∆ω|ϖγ
n 1

δτ
1

. Moreover,

the unit operator can be written as e “ γ0 “ δ0 “ ∇1|1 “ ∆1|1 “ γ0δ0∇1|1∆1|1γ
0δ0. Then

the elementary operators can be rephrased as follows,

̀

∇m|bpxq
̆

ptq “
̀

γ0δ0∇m|b∆1|1γ
0δ0pxq

̆

ptq,
̀

∆ω|ϖpxq
̆

ptq “
̀

γ0δ0∇1|1∆ω|ϖγ
0δ0pxq

̆

ptq,
̀

γνpxq
̆

ptq “
̀

γνδ0∇1|1∆1|1γ
0δ0pxq

̆

ptq,
̀

δτpxq
̆

ptq “
̀

γ0δτ∇1|1∆1|1γ
0δ0pxq

̆

ptq.

Lemma 10. The product of two basic elements in ET is a finite sum of basic elements in ET .

Proof. Consider the following product of two basic elements in ET .

γν1δτ1∇m1|b1∆ω1|ϖ1
γν 1

1δτ
1
1 b γν2δτ2∇m2|b2∆ω2|ϖ2

γν 1
2δτ

1
2 (C.18)

We chose ω “ lcmpϖ1,ω2q, c3 “ ω{ϖ1, c4 “ ω{ω2 and m “ lcmpb1,m2q, c1 “ m{b1

and c2 “ m{m2 then due to (5.14) and (5.15) this product can be written as

γν1δτ1
́ c1́1
à

i“0

γim1∇c1m1|mγ
pc1́1́iqb1

̄́ c3́1
à

l“0

δ́lω1∆c3ω1|ωδ
́pc3́1́lqϖ1

̄

γν 1
1δτ

1
1b

γν2δτ2
́ c2́1
à

j“0

γjm2∇m|c2b2γ
pc2́1́jqb2

̄́ c4́1
à

g“0

δ́gω2∆ω|c4ϖ2
δ́pc4́1́gqϖ2

̄

γν 1
2δτ

1
2
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C. Proofs

Due to distributivity holds for the following operators, γ∇m|bγδ∆ω|ϖδ “ δ∆ω|ϖδγ∇m|bγ

(Prop. 75), (C.18) is written as

γν1δτ1
́ c1́1
à

i“0

γim1∇c1m1|mγ
pc1́1́iqb1

̄

γν 1
1̀ν2

́ c2́1
à

j“0

γjm2∇m|c2b2γ
pc2́1́jqb2

̄

b

́ c3́1
à

l“0

δ́lω1∆c3ω1|ωδ
́pc3́1́lqϖ1

̄

δτ
1
1̀τ2

́ c4́1
à

g“0

δ́gω2∆ω|c4ϖ2
δ́pc4́1́gqϖ2

̄

γν 1
2δτ

1
2

Recall that ∇m|bγ
b “ γm∇m|b (resp. ∆ω|ϖδ

ϖ “ δω∆ω|ϖ) (5.11) and for 0 ď n ă i,

∇m|iγ
n∇i|b “ ∇m|b (resp. ́i ă τ ď 0, ∆ω|iδ

τ∆i|ϖ “ ∆ω|ϖ) (Remark 29). Therefore the

expression above is rephrased as,

c1́1
à

i“0

c2́1
à

j“0

γim1̀ν1̀tppc1́1́iqb1̀ν 1
1̀ν2̀jm2q{mum∇c1m1|c2b2γ

pc2́1́jqb2̀ν 1
2b

c3́1
à

l“0

c4́1
à

g“0

δτ1́lω1̀rṕpc3́ĺ1qϖ1̀τ 1
1̀τ2́gω2q{ωsω∆c3ω1|c4ϖ2

δ́pc4́1́gqϖ2̀τ2

Again, because distributivity holds for δτγν∇m|b “ γν∇m|bδ
τ
and γνδτ∆ω|ϖ “ δτ∆ω|ϖγ

ν

(Prop. 75) the product (C.18) is written as

c1́1
à

i“0

c2́1
à

j“0

c3́1
à

l“0

c4́1
à

g“0

γim1̀ν1̀tppc1́1́iqb1̀ν 1
1̀ν2̀jm2q{mumb

δτ1́lω1̀rṕpc3́ĺ1qϖ1̀τ 1
1̀τ2́gω2q{ωsωb

∇c1m1|c2b2∆c3ω1|c4ϖ2
γpc2́1́jqb2̀ν 1

2δ́pc4́1́gqϖ2̀τ2

which is in the required form.

C.3.1. Proof of Prop. 78

Proof. Because of Lemma 9 all elementary operators introduced in Prop. 73 can be repre-

sented by basic elements in ET . Moreover the product of two basic elements is a finite sum

of basic elements, see Lemma 10. Therefore, any element s P ET can be written as a fi-

nite (resp. infinite) sum of basic elements, i.e., s “
À

i γ
νiδτi∇mi|bi∆ωi|ϖi

γn 1
iδτ

1
i . Recall

(5.14) and (5.15), then by choosingm “ lcmpmiq andω “ lcmpωiq, s can be rephrased as

s “
À

j γ
ν̄jδτ̄j∇m|̄bj

∆ω|ϖ̄j
γn̄ 1

jδτ̄
1
j , which is the required from.
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C.3. Proofs of Chapter 5

C.3.2. Proof of Prop. 83

Proof. Since, mm,nωbb,nω “ e an ultimately cyclic series s P ET per can be expressed as,

s “ mm,ωQ̂bb,ω

“ mm,nω bb,nωmm,ωQ̂bb,ωmb,nω
loooooooooooooomoooooooooooooon

Q̂ 1

bb,nω.

In the following it is shown that Q̂ 1
if again a matrix in with entries in Max

in vγ, δw. Since,

∆1|nωδ
1́nω “ ∆1|n∆1|ωδ

́ωpń1qδ1́ω “ ∆1|nδ
1́n∆1|ωδ

1́ω
, then

bm,nω “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

»

—

—

–

∆1|nδ
1́n∆1|ωδ

1́ωbm

.

.

.

∆1|nδ
1́n∆1|ωbm

fi

ffi

ffi

fl

.

.

.
»

—

—

–

∆1|n∆1|ωδ
1́ωbm

.

.

.

∆1|n∆1|ωbm

fi

ffi

ffi

fl

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

–

∆1|nδ
1́nbm,ω

.

.

.

∆1|nbm,ω

fi

ffi

ffi

fl

Hence, for bb,nωmm,ω we obtain,

bm,nωmm,ω “

»

—

—

–

∆1|nδ
1́nE
.
.
.

∆1|nE

fi

ffi

ffi

fl

Respectively bb,ωmb,nω is given by,

bb,ωmb,nω “

”

E∆n|1 ̈ ̈ ̈ Eδ1́n∆n|1γ
1́n

ı

.

Finally,

Q̂ 1
“

»

—

—

–

∆1|nδ
1́nE
.
.
.

∆1|nE

fi

ffi

ffi

fl

Q
”

E∆n|1 ̈ ̈ ̈ Eδ1́n∆n|1

ı

“

»

—

—

–

∆1|nδ
1́nQ̂∆n|1 ̈ ̈ ̈ ∆1|nγ

1́nQ̂δ1́n∆n|1
.
.
.

.

.

.

∆1|nQ̂∆n|1 ̈ ̈ ̈ ∆1|nQ̂δ1́n∆n|1

fi

ffi

ffi

fl

.
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The extended core is a matrix with entries in Max
in vγ, δw, since ∆1|nδ

τ∆n|1 “ δrτ{nsn
Re-

mark 29. The extended core Q̂ 1
is a greatest core. Consider Q̂2

“ EQ̂ 1
E, then

Q̂2
“ Ebm,nωmm,ωQbb,ωmb,nωE,

“ bm,nωmm,nωbm,nω
loooooomoooooon

e

mm,ωQbb,ωmb,nωbb,nω
looooomooooon

e

mb,nω,

“ bm,nωmm,ωQbb,ωmb,nω “ Q̂ 1
.

Transformation between the core matrices Q and U

Clearly, an ultimately cyclic series s “ mm,ωQbb,ω “ dω,mUpω,b P ET per can be

expressed in the alternative core representation (resp. core representation) as follows,

s “ dω,m pω,mmm,ωQbb,ωdω,b
loooooooooooomoooooooooooon

Û 1

pω,b,

s “ mm,ω bm,ωdω,mUpω,bmb,ω
loooooooooooomoooooooooooon

Q̂ 1

bb,ω.

Then the matrix

Û 1
“ pω,mmm,ω
looooomooooon

TQU1

Qbb,ωdω,b
looomooon

TQU2

is the greatest solutions of the alternative core equations “ dω,mXpω,b (5.36). For this

consider the solution Û2
“ NÛ 1

N, then

Û2
“ Npω,nmmm,ωQbb,ωdω,nbN,

“ pω,nm dω,nmpω,nm
loooooomoooooon

e

mm,ωQbb,ω dω,nbpω,nb
looooomooooon

e

dω,nb,

“ pnmωdω,mQbb,ωdω,nb “ Û 1
.

Respectively,

Q̂ 1
“ bm,ωdω,m
loooomoooon

TUQ1

Upω,bmb,ω
loooomoooon

TUQ2

is the greatest solutions of the core equation s “ mm,ω
̃Xbb,ω (5.22).
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C.3. Proofs of Chapter 5

The matrices TQU1
, TQU2

, TUQ1
and TUQ2

are matrices with entries inMax
in vγ, δw given

by,

TQU1
“

»

—

—

–

∇1|mγ
ḿ1pω∆ω|1mm ̈ ̈ ̈ ∇1|mγ

ḿ1pωδ
1́ω∆ω|1mm

.

.

.

.

.

.

∇1|mpω∆ω|1mm ̈ ̈ ̈ ∇1|mpωδ
1́ω∆ω|1mm

fi

ffi

ffi

fl

TQU2
“

»

—

—

–

∆1|ωδ
1́ωbbµb∆ω|1 ̈ ̈ ̈ ∆1|ωδ

1́ωbbγ
b́1µb∆ω|1

.

.

.

.

.

.

∆1|ωbbµb∆ω|1 ̈ ̈ ̈ ∆1|ωbbγ
b́1µb∆ω|1

fi

ffi

ffi

fl

TUQ1
“

»

—

—

–

∆1|ωδ
1́ωbm∇m|1∆ω|1 ̈ ̈ ̈ ∆1|ωδ

1́ωbmγ
ḿ1∇m|1∆ω|1

.

.

.

.

.

.

∆1|ωbm∇m|1∆ω|1 ̈ ̈ ̈ ∆1|ωbmγ
ḿ1∇m|1∆ω|1

fi

ffi

ffi

fl

TUQ2
“

»

—

—

–

∇1|bγ
b́1pω∆ω|1mb ̈ ̈ ̈ ∇1|bγ

b́1pωδ
1́ω∆ω|1mb

.

.

.

.

.

.

∇1|bpω∆ω|1mb ̈ ̈ ̈ ∇1|bpωδ
1́ω∆ω|1mb

fi

ffi

ffi

fl

and for 0 ď a ă ω and 0 ď c ă i

∇1|iγ
cpωδ

́a∆ω|1mi “

»

—

—

—

—

—

—

—

—

—

—

–

δ́1 ̈ ̈ ̈ δ́1 γδ́1 ̈ ̈ ̈ γδ́1

.

.

.

.

.

.

.

.

.

.

.

.

δ́1 ̈ ̈ ̈ δ́1 γδ́1 ̈ ̈ ̈ γδ́1

e ̈ ̈ ̈ e γ ̈ ̈ ̈ γ
.
.
.

.

.

.

.

.

.

.

.

.

e ̈ ̈ ̈ e γ ̈ ̈ ̈ γ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

.

/

-

a

,

/

.

/

-

ω ́ a

looooooomooooooon

íb

looooooooomooooooooon

b
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∆1|ωδ
́abiγ

c∇i|1dω “

»

—

—

—

—

—

—

—

—

—

—

–

e ̈ ̈ ̈ e δ́1 ̈ ̈ ̈ δ́1

.

.

.

.

.

.

.

.

.

.

.

.

e ̈ ̈ ̈ e δ́1 ̈ ̈ ̈ δ́1

γ ̈ ̈ ̈ γ γδ́1 ̈ ̈ ̈ γδ́1

.

.

.

.

.

.

.

.

.

.

.

.

γ ̈ ̈ ̈ γ γδ́1 ̈ ̈ ̈ γδ́1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

.

/

-

i ́ a

,

/

.

/

-

a

loooomoooon

ώb

looooooooomooooooooon

b
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