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Abstract: The brain emotional learning (BEL) control paradigm has been gathering increased
interest by the control systems design community. However, the lack of a consistent mathemat-
ical formulation and computer based tools are factors that have prevented its more widespread
use. In this article both features are tackled by providing a coherent mathematical framework
for both the continuous and discrete-time formulations and by presenting a Simulink R© com-
putational tool that can be easily used for fast prototyping BEL based control systems.
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1. INTRODUCTION

The solutions generated by nature, to solve the problems
of environmental adaptation of all the living species, have
been object of extensive study and analysis. This research
was carried out, not only by natural sciences, but also from
more technological standpoints. In fact, knowledge gained
from studying those natural phenomena has led to an
increasing tendency to introduce biomimetics to overcome
some engineering problems (Sarpeshkar, 2009). For exam-
ple, take into consideration the incorporation of nature
arising morphologies and locomotion forms as common
approaches to many human made machines. Many robots
types, in both domestic or industrial applications, are
probably the best illustrative examples of an anthropomor-
phic imitations phenomena. Even if morphological format
is fundamental for any species endurance, the greatest
achievement of nature was the learning ability inclusion
into organisms. Indeed, learning is one of the most impor-
tant factors for a species survival. The learning process
can be viewed in the long term horizon, where genetics
is its main driver, or in the short term, where instinct
and intelligence takes the main role. Notice that instinct
can be considered as long term knowledge: something that
is written in the DNA promoted by each non-functional
predecessor solution produced by nature. Philosophical
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questions aside, it is safe to say that learning allows a
particular specie, when considering a large time scale,
or an individual organism, in a shorter time frame, to
adapt to environmental changes and to cope to new op-
erating conditions. This behaviour type is highly desired
in engineering applications since the conditions where a
system operates are never static. Indeed, the entire field
of robust controller design has this particular concern. At
the present time, human made machines designed to have
reasoning capabilities are synonymous of microprocessor
based devices. The digital computers era has open a door
for science to incorporate intelligence and adaptability
to machines. It is well known that the most ambitious
objective in computer science is the creation of a machine
with conscience and rational skills. One that is capable
of understanding its role in the surrounding environment,
to be self aware, to take decisions and to interact with
other entities. In short, the development of machines with
human-like features designed to tackle specific problems.
This machine based conscience abstraction is the “artificial
intelligence” paradigm core. Artificial intelligence, or AI
for short, involves several and distinct approaches. Some of
them are computational methodologies inspired by nature
such as artificial neural networks or evolutionary com-
putation. Others, by mimicking reasoning such as Fuzzy
logic or Bayesian inference. In essence, the objective is
to have a machine equipped with the cognitive functions
and the capability to learn and solve problems just like
us. Humans address the incoming problematic situations
by means of a constant interaction with the world. This



synergy between the environment and the individual is ac-
complished by constant actions and reactions among them.
The individual abilities to deal with the surroundings are
not only due to intelligence in the strict sense as AI may
suggest. As a matter of fact, frequently, actions are not
driven exclusively by logic reasoning but are biased by
emotions. Indeed, emotions play an important role in the
everyday live and have been a valuable asset in survival
and adaptation. A well accepted idea is that emotions
were added, by the evolutionary process, as a way to
reduce the reaction time. That is, instead of using the
reasoning part of the brain to process information and
then generate a set of actions, which would take time, the
reaction by emotion would be much faster. Emotions can
be viewed as a autopilot distilled after millions of years
of evolution. They describe a way to react automatically
to the world in an unconscious mode. Emotional activity
is mainly circumscribed within a set of distinct regions
scattered along the brain designated by limbic system.
Since emotional feature is a key element in robustness and
adaptation capability, it would be important to translate
this feature into human made devices. Indeed, emotional
response and learning process are nowadays being ex-
ploited and used in several control and computational
intelligence applications. For example in César et al. (2017)
a Brain Emotional Learning (BEL) controller performance
was studied when applied to a magnetorheological damper.
Khorashadizadeh and Mahdian (2016) have used a Brain
Emotional Learning Based Intelligent Controller (BEL-
BIC) to control the voltage tracking in a DC-DC boost
converter. In the work of Yi (2015) a robust bio-inspired
sliding mode control approach was presented. This strat-
egy is based in a BELBIC and was applied to robotic
manipulators with uncertainties in tracking purposes. In
Sadeghieh et al. (2012) the position tracking of an electro-
hydraulic servo system was addressed. For that, a BELBIC
based control system was devised to reach an online intelli-
gent adaptive position tracking system. Within the power
systems field, Jafari et al. (2013) used a BELBIC controller
with a Proportional-Integer (PI) controller applied to an
Interline Power-Flow Controller device. Besides the men-
tioned works, other areas have been explored having the
emotional learning mechanism as the underlying process:
from chemistry and mechanics to aerial systems, speech
processing, among others (Dorrah et al., 2011; Fard et al.,
2010; Huang et al., 2008; Mohammed and Bijoy, 2011).
From this point onward, details regarding the limbic sys-
tem, its mathematical description and its use within the
control system applications framework, will be the subject
of Section 2. From this work, a Simulink R© toolbox was
developed aiming the translation of this computational
paradigm into a user friendly computer format. Its opera-
tion mode is described in Section 3. Finally, at Section 4,
this work concluding remarks are presented.

2. THE LIMBIC SYSTEM

It is believed that the set of all possible emotions is prepro-
grammed in the genome. However, these basis emotions
can be posteriorly modified based on individual experi-
ences. Anatomically, the brain areas responsible for emo-
tional activity are grouped in the so called limbic system.
It should be noticed that it is not a closed question which,
and how many, are the elements that constitute the limbic

system. It is generally recognized that the hypothalamus,
the amygdala, the thalamus and the hippocampus are
the basic structures of this brain activity. Their loca-
tion, within the human brain, can be found in several
books of Neuropsychiatry such as Gloor (1997) and Lautin
(2001). Beside emotions, the limbic system supports a
variety of other functions such as behaviour, motivation
and has a major impact on the memory formation process.
It promotes the interconnection between emotional cues
and reasoning leading to an internal human state of low
emotional stress. This state must be attained even in the
presence of distinct external or internal sensory stimuli.
That is, the inputs stimuli can put the current state of the
limbic system out of balance. The result is the generation
of an emotional solution that will, in turn, lead to a higher
degree of satisfaction. In general, those stimulus inputs are
first delivered to the brain region known as the thalamus.
The thalamus behaves as a sensorial switching station
that gathers and pre-processes sensory data. With the
exception of the olfactory sense, all other sensations are
guided, by the nerves network, towards the thalamus. In
turn, it forwards those different sensations directly to the
amygdala or to appropriate areas of the brain such as the
cerebral cortex. The cerebral cortex corresponds to the
outermost layer of the brain where the most sophisticated
neural processing takes place. The diagram in Figure 1
represents the signal flow within the limbic system de-
parting from the thalamus structure toward the ultimate
body response passing through other brain structures such
as the amygdala and orbitofrontal cortex. The amygdala

Fig. 1. Amygdala based brain emotional model structure
(adapted from Beheshti and Hashim (2010)).

is one of the most important emotion based brain region
(Purves et al., 2011). Experimentally, by electric signals,
it was observed that its stimulation causes feelings of
aggression, fear and anxiety. Notice that the fear sensation
is fundamental for the individual survival and self-control,
promoting an immediate emotional evaluation of a situa-
tion that is even more efficient than complex reasoning and
logic. In short, the amygdala is the integrative center for
emotions, emotional behaviour and motivation. In Figure 1
it is also possible to observe an additional neural structure
designated by orbitofrontal cortex. The orbitofrontal re-
gion performs several functions among which is the ability
to generate negative reinforcement signals. These signals
mitigate any inappropriate responses generated by the
amygdala. The orbitofrontal cortex operates based on the
difference between expected reward or punishment and the
actual ones. The expected motivation is impressed in the
brain structures over time as a result of several learning
mechanisms and reaches the orbitofrontal cortex via the
sensory cortex and the amygdala. The actual reward or
punishment comes via the outside world. If the expected
and sensed motivation signals are identical, the output
is the regular response to that stimulus. Otherwise, the
orbitofrontal cortex suppresses the typical emotional re-



sponse and promotes ways for further learning. This learn-
ing and adaptation is a key element to organisms robust-
ness when subjected to constantly changing environments.
At the same time, robustness to condition changes is also
a key feature of any engineering problem. Hence, in the
last years, the brain emotional behaviour has been object
of attention as a new paradigm in the control systems
design field. Hence, the following section will be devoted to
dissect and frame the limbic system mathematical model.
It is worth to notice that the approach taken here is very
different from the ones usually presented in the literature.

2.1 Brain Emotional System Mathematical Description

The robustness and efficiency exhibited by all biological
systems are features that drive and inspire humans to learn
from nature and try to apply this knowledge into common
engineering problems. Of course, biological systems have
such a high degree of complexity that, in practice, it is
only possible to try to mimic their high level behaviour
neglecting many of their functional details. It was in this
framework that Balkenius and Morén (2001) presented a
simplified mathematical model for the emotional learning
carried out in the amygdala. This model formulation will
be revisited during this section. Also, an uniform mathe-
matical formulation will be laid on that spans continuous-
time and discrete-time models of the limbic system.

The continuous-time version This section is based on the
amygdala-orbitofrontal cortex model initially proposed by
Balkenius and Morén (2001). In it, the emotional system
have the components interconnected as represented in
Figure 2. A total of four main areas can be devised and
coupled with the brain limbic section: the thalamus, the
sensory cortex, the orbitofrontal cortex and the amygdala.

Fig. 2. Overall structure of the limbic model.

In the referred figure, it is assumed a set of n continuous
time-varying external stimuli signals denoted by i1(t)
to in(t). At this point it is assumed that these input
stimuli signals are positive or zero. In addition let’s define

the vector i(t) = [ i1(t) · · · in(t) ]
T

of those external
signals. The thalamus is responsible for the generation of
the internal stimulus sn+1(t) which is computed as the
maximum value of the input stimuli array i(t):

sn+1(t) = max {i(t)} (1)

In addition, the thalamus is responsible to forward the
input stimuli to the sensory cortex. This neural structure

produces the input stimuli array s(t) = [ s1(t) · · · sn(t) ]
T

as a function of i(t) according to an arbitrary transforma-
tion function T {·}. In Balkenius and Morén (2001) it was
considered the identity transform. That is,

s(t) = I(n×n) · i(t) (2)

where I(n×n) is the n-dimensional identity matrix. Here,
the same transformation will be assumed. However, further
research can be done to establish alternative mappings.
The amygdala and the orbitofrontal cortex are the two
structures where learning takes place. The amygdala in-
corporates a set of n+1 amygdala processing units (APU).
It takes the values of the n stimuli signals delivered by the
sensory cortex plus the one generated by the thalamus and
with a reward signal r(t) associated to the stimuli vector
s(t), produces the internal output e(t). The stimulus and
reward signals are tightly interconnected. In fact, a reward
without stimulus will not lead to learning. Here, the reward
signal r(t) will be assumed greater or equal to zero. The
signal e(t) is obtained by the following:

e(t) =

n+1∑
j=1

aj(t) (3)

where aj(t) regards the output of the jth APU element
at time instant t. This processing element has a structure
that can be represented according to the block diagram
of Figure 3. The output of each APU is computed as an
weighted version of the referred excitation signals. The
weighting factor, associated to the amygdala cluster j,
is a positive time-varying coefficient, denoted hereby as
vj(t). The APU comprises three inputs and one output.
The internal stimulus signal sj(t), the reward signal r(t)
associated to it and e∗(t) which concerns what can be
understood as the partial amygdala output. This partial
output is computed by neglecting the impact of the thala-
mus stimulus in the generated signal. That is,

e∗(t) =

n∑
j=1

aj(t) (4)

where aj(t) is the output of jth APU at time instant t. In

Fig. 3. Diagram of the continuous-time APU element.

the block diagram of Figure 3, the triangle shape element is
a gain whose value is, at time instant t and for the input
stimulus j, equal to vj(t). Hence, output signal aj(t) is
equal to the product of sj(t) by vj(t). That is,

aj(t) = sj(t) · vj(t) (5)

This gain value is time dependent and changes according
to a learning rule represented by the dashed lines blocks
and signals. One shall define an n + 1 dimensional vector
v(k) whose elements are, besides the n weighting factors
associated to the first n amygdala clusters, the entry
vn+1(t) that represents the coefficient associated to signal

sn+1(t). Here, v(t) = [ v1(t) · · · vn(t) vn+1(t) ]
T

. Then,
the signals generated by the amygdala can be gathered in

a vector a(t) = [ a1(t) · · · an(t) an+1(t) ]
T

obtained by,

a(t) = V(t) · s∗(t) (6)



where V(t) is a diagonal matrix whose elements are the
ones of vector v(t). That is,

V(t) = diag{v(t)} (7)

and s∗(t) =
[
sT (t) sn+1(t)

]T
is the vector obtained by

adding the element sn+1(t) to the end of vector s(t).
The model output signal u(t) depends on the difference
between the amygdala output signal e(t) and the or-
bitofrontal cortex output signal f(t). The orbitofrontal
cortex output is obtained by summing the contributions
of all the orbitofrontal processing units (OPU) whose
structure is presented at Figure 4. The inputs to each of

Fig. 4. The continuous-time OPU element.

the n OPU are delivered only by the sensor cortex block.
The output of a generic jth OPU is computed by,

oj(t) = sj(t) · wj(t) (8)

where wi(t) is the weight associated to the ith OPU for

i = 1, · · · , n. Assuming o(t) = [ o1(t) · · · on(t) ]
T

as the
OPU output vector then,

o(t) = W(t) · s(t) (9)

where,

W(t) = diag{w(t)} (10)

with w(t) = [w1(t) · · · wn(t) ]
T

. The output signal of the
amygdala-orbitofrontal cortex model, at time instant t,
will be denoted by u(t) and computed according to:

u(t) = 1∗ · a(t)− 1 · o(t) (11)

where 1∗ and 1 are 1 × n+ 1 and 1 × n unity vectors
respectively. The weight update law for the OPU units is
derived in the sense that the model output will follow the
excitation signal when there is some reward for doing it.
Hence, it will seek to minimize the following cost function,

J
(
v(t),w(t)

)
=(

n+1∑
i=1

vi(t) · si(t)−
n∑

i=1

wi(t) · si(t)− r(t)

)2 (12)

The starting point is the conventional gradient descent
algorithm whose continuous time version is given by:

∂wj(t)

∂t
= −η ∂J(v(t),w(t))

∂wj(t)
(13)

where η > 0 is the learning coefficient. Applying this
formulation, by considering the cost function expressed by
(12), the following weight update rule is obtained:

∂wj(t)

∂t
= β ·

(
u(t)− r(t)

)
· sj(t) (14)

where β = 2 ·η is the positive leaning rate coefficient. This
weight update rule can be observed in the dashed line of
Figure 4. For the APU units, the weights are driven toward
a set of values that lead to the minimization between the
reward signal r(t) and the partial amygdala signal e∗(t).
This can be understood as the amygdala role to seek for

constant reward. In this framework, the cost function to
be minimized has the following formulation:

J(v(t),w(t)) =
(
r(t)−

n∑
i=1

si(t) · vi(t)
)2

(15)

Applying the gradient descent formulation leads to:

∂vj(t)

∂t
= α ·

(
r(t)− e∗(t)

)
· sj(t) (16)

where α > 0 is the learning rate. Notice that the weight
update law for the APU is more elaborated than the above
equation since it is expected that the amygdala learning
weights never decrease. Hence the right member of the
above expression cannot be negative. This leads to the
following non-linear differential equation:

∂vj(t)

∂t
= α ·max

(
r(t)− e∗(t), 0

)
· sj(t) (17)

The APU weight update dynamics is also made evident in
the dashed line blocks of Figure 3. A final remark regarding
the learning rates α and β. Usually their initial choice are
positive numbers less than one. Moreover, in the literature,
the value of α is assumed to be higher than the one of β
(Morén, 2002; Garmsiri and Sepehri, 2014). The reasoning
behind this difference can be tracked down to the fact that
the former contributes to the excitation and the latter to
the output inhibition (Garmsiri and Sepehri, 2014).

The discrete-time version In this section it will be
assumed that the stimuli signals are of discrete-time nature
and defined at multiple integer time instants with period
Ts. Hence the input vector is now defined as i(k) =

[ i1(k) · · · in(k) ]
T

where k represents the integer index of
the current sample and the input stimuli array is s(k) =

[ s1(k) · · · sn(k) ]
T

. The model output is described by:

u(k) =

n+1∑
j=1

aj(k)−
n∑

j=1

oj(k) (18)

for,
aj(k) = sj(k) · vj(k) (19)

and,
oj(k) = sj(k) · wj(k) (20)

The learning law is obtained by assuming a first order
approximation to the derivative operation. Using Euler
forward approach, equations (14) and (17) are rewritten:

wj(k + 1)− wj(k)

Ts
= β · sj(k) ·

(
u(k)− r(k)

)
(21)

vj(k + 1)− vj(k)

Ts
= α · sj(k) ·max

(
r(k)− e∗(k), 0

)
(22)

leading to the following difference equations:

wj(k + 1) = wj(k) + β̄ · sj(k) ·
(
u(k)− r(k)

)
(23a)

vj(k+ 1) = vj(k) + ᾱ · sj(k) ·max
(
r(k)− e∗(k), 0

)
(23b)

where the amygdala and orbitofrontal constants are now

ᾱ = Ts ·α and β̄ = Ts ·β and max
(
r(k)−e∗(k), 0

)
denotes

the piecewise multivariate function:{
r(k)− e∗(k) if r(k) > e∗(k)

0 otherwise
(24)

The discrete-time version of both the APU and OPU are
illustrated in Figures 5 and 6. As can be seen, the gain



Fig. 5. The discrete-time version of the APU.

Fig. 6. The discrete-time version of the OPU.

factor is modified by a discrete-time filter with a pole
at z = 1. Here, since time-domain signals are present,
the backward shift operator q−1 is used instead of the
filter transfer function in the Z-domain. The filter input is
excited by a piecewise linear function whose value is equal
to the product of the stimulus signal sj(k) by r(k)− e∗(k)
if r(k) ≥ e∗(k) or 0 otherwise. Additional modification to
this filter was proposed by Lotfi and Akbarzdeh (2012)
where a γ factor was introduced that can modify the pole
location. The intuition behind this introduction is to add a
decay rate that can be used to model the brain forgetting
tendency along time. A more elaborated leaning rule, for
the orbitofrontal cortex, was proposed by Morén (2002).

2.2 The BEL based intelligent controller

A control system strategy, based on brain emotional learn-
ing, was proposed by Caro Lucas in the early 2000s (Lucas
et al., 2004). The limbic model used was based on the
neural link, between the amygdala and the orbitofrontal
cortex, proposed by Balkenius and Morén (2001) and de-
scribed in the previous sections. This control paradigm
is commonly designated by BELBIC which stands for
brain emotional learning based intelligent control. The
reasoning behind the integration of the limbic model into
a closed loop control system can be tracked down to the
seemingly robust way that the brain performs decision
making. Actually, control has all to do with decision
making: the controller goal is to devise the best input
actions based on the incoming information according to
the system states. These actions can be taken considering
the past, the present or even forecasts on the future system
states. Hence the controller produces a mapping between
its input signals and the output control signals by means of
an arbitrary decision function which can be described by
means of differential equations, as in PID controllers, or by
an inference mechanism such as in Fuzzy or neuro-Fuzzy
control. Alternatively it can be based on the result of the
optimization of a cost function such as linear quadratic
regulators (LQR) or model predictive control (MPC). In
the BELBIC control system architecture this input-to-
output transformation is imposed by means of the limbic
system model. In this case, both the external stimuli and
reward signals are generated in such a way as to produce
a closed loop system response according to some target
characteristics. In addition, due to the recursive nature of
the weights update law, this controller is able to gradually
learn how to handle changes in the system dynamics. A
key point in BELBIC is the external stimulus and reward

signals definition. Notice that there are not universal rules
to carry out this task. This choice is flexible and must be
custom defined according to the end application. Different
ways to define the emotional signals can be found in the
literature (Rouhani et al., 2007; Rahman et al., 2008;
Nahian et al., 2014; César et al., 2017). For example in
Lucas et al. (2004) the reward signal r(t) is obtained as
a weighted sum of the error signal and the control effort
and the external stimulus signal i(t) is defined as a linear
combination of the system output and its first derivative.

3. THE BEL SIMULINK R© TOOLBOX

A more intuitive way to use the BEL paradigm, within
a computer environment, is by means of a graphical user
interface in the form of block diagram manipulations. In
order to do that, a Simulink R© toolbox was developed and
made accessible through the MathWorksTM file exchange
website 1 . This section is devoted to describe this toolbox
how to use the main BEL blocks in a simple control
system application. The idea to develop a brain emotional
learning Simulink R© toolbox is not new and has already
been attempted by Mehrabian and Lucas (2006). However,
there are two issues with their approach. First, it is not a
toolbox but a BELBIC model for a particular problem.
This approach do not provide the necessary plasticity
for the user to build its own model. Second, and after
an exhaustive web search, a copy of the above referred
Simulink R© file was not found.

The BELBIC toolbox file package contains an installa-
tion function that the user must execute from within
the Matlab R©command line environment. This can be
easily done by writing >>installme at the command
prompt. The installation operation will require the user
to select the BELBICtoolbox.slx and, after that, the
Matlab R©program will be automatically restarted. After
the installation process, the user can navigate through the
Simulink R© newly installed toolbox. This toolbox is di-
vided into four different axis as can be seen in Figure 7. In
the common section the user can find some BEL primitive
functions such as the sensory cortex and the thalamus.
Those objects are common to both the continuous-time
and discrete-time BEL formulation. In the continuous-time

Fig. 7. The BELBIC Simulink R© toolbox structure.

library the user may find the APU and OPU basic elements

1 http://www.mathworks.com/matlabcentral/fileexchange/

60097-belbic-toolbox

http://www.mathworks.com/matlabcentral/fileexchange/60097-belbic-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/60097-belbic-toolbox


and the BEL system. All these elements have their own
mask which is used to tune them by setting appropri-
ate learning coefficients values and initial conditions. The
same can be said about the discrete-time version. However,
in this case, all the elements require the definition of a
sampling period. The fourth sub-library includes a set of
explanatory examples on how to fully unleash the power
of the presented models. Besides the simplest ones, some
more advanced control based cases are provided. Namely
the control of a non-linear continuous stirred tank reactor
(CSTR) as the one presented in Mehrabian and Lucas
(2006) (see Figure 8). Details on both the model and BEL
controller parameterization can be found in the toolbox.

Fig. 8. Non-linear CSTR control using BELBIC.

4. CONCLUSIONS

This work presented a new Simulink R© toolbox for brain
emotional learning. This library is made publicly acces-
sible through the MathWorksTM file repository web site.
By providing this set of primitives, the authors believe
that the researchers in this field can easily test their
control problem using the BELBIC paradigm and thus
contribute to disseminate the BELBIC strategy. More-
over this article also describes, in the same framework,
both the continuous-time and discrete-time mathematical
formulation of BEL model. This can also promote the
unification of the model description that, until now, it is
fairly scattered along several publications and mathemat-
ically inconsistent. Although, this toolbox is by no means
closed. Further additions will be provided to extend its
capabilities, for example by adding auto-tuning strategies.
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