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Abstract: Current production systems are becoming more complex: manufactured products
are increasingly technical, production components are more specific, and control specifications
are rapidly changing. Thus, formal methods and tools are becoming essential to support the
automated development of control systems. We propose to develop a tool for the synthesis
and implementation of modular/distributed supervisory control for Automated Manufacturing
Systems (AMS). To reduce the computational complexity, we divide the control problem into
local and global controls. Local Controllers (LCs) are designed for the individual subsystems,
then global dependencies are added to the LCs to cooperatively execute the control actions.
The tool provides a distributed control, interpreted as Grafcet (standard IEC 60848), that can
be lately converted into any suitable IEC 61131-3 standard programming language for PLC
programming purposes. It is based on Model-to-Model (M2M) transformations implemented in
an Eclipse Modeling Framework (EMF) environment.

Keywords: Supervisory Control, Automated Manufacturing Systems, Synthesis Method,
Grafcet, Model-Driven Development.

1. INTRODUCTION AND RELATED WORKS

Programmable Logic Controllers (PLC) have occurred to
support sequential control of Automated Manufacturing
Systems (AMS) due to their low cost, reliability, and ease
of programming Lu and Liao (2009). The programming of
PLC is supported by the two international standards: IEC-
60848 (2013) and IEC-61131-3 (2013). Among the different
languages defined within these standards, Grafcet is widely
used in the manufacturing industry as a specification and
an implementation tool of PLC-based controllers.

In nowadays industrial practices, the control development
rely on simple, intuitive, and direct interpretations of the
control specifications into contol programs. In the case
of small size systems this may produce valid solutions.
However, when the size and complexity of a process in-
crease, the time and cost of the control logic development
rise as well. Thus, improved development methods and
associated tools are increasingly required to support the
control practitioner. Two well-known methods : the veri-
fication and validation (V&V) and the synthesis method
may help the control practitioner in his task. The V&V
method see, e.g. Biallas et al. (2012) consists of checking
that a control program, intuitively constructed, fulfills
given specifications by executing it against a simulated
process or against the physical one. A major drawback of
this method is the need for prior writing of the control
programs. The synthesis method is based on constructing

models of the system and their expected properties, then
use algorithms to automatically generate a control model,
which guarantees that the specified properties are never
violated. Supervisory Control Theory (SCT), Ramadge
and Wonham (1987) is a favorable formal method used
to design control of AMS. The SCT aims at synthesizing
a monolithic supervisor that satisfies a legal specification
language of a target system. The objective of the super-
visor is to disable the occurrence of a subset of events
such that the given specifications are fulfilled. Neverthe-
less, because existing tools are unable to efficiently handle
significant size problems, the computational complexity
problem hinders the use of SCT methods in the indus-
try. To deal with this problem, the following divide-and-
conquer approaches, among others, have been introduced
in the literature: the modular supervisory control see, e.g.
Wonham and Ramadge (1988) aims at designing a set
of small supervisors meeting various individual specifica-
tions, rather than constructing a single global supervisor
that simultaneously meets the specifications altogether;
the decentralized approach see, e.g. Shu and Lin (2014)
divides the monolithic supervisions goal into several sub-
goals. The resulting individual sub-supervisors are simul-
taneously run to implement a solution for the initial prob-
lem; the hierarchical control architecture see, e.g. Hill et al.
(2010) uses simplified process models to synthesize high-
level supervisors capable of taking overarching decisions.
To control the real process, these decisions are transmitted



to the low-level supervisors; and the distributed control
approach see, e.g. Hu et al. (2015) assumes that a process
is composed of several interconnected subsystems, which
are required to exchange data with each other in order to
reach a global goal. Local Controllers (LCs) are designed to
control each subsystem individually, then request enough
information sharing to cooperatively execute the control
actions.

Modular/distributed approaches have sparked particular
interest in the DES community because of their reduced
complexity and implementation flexibility. In previous
works Qamsane et al. (2014), Qamsane et al. (2016a) and
Qamsane et al. (2016b), we have proposed a distributed
control structure, where the plant is modeled by a col-
lection of local modular automata, and the control spec-
ifications are modeled by a collection of logical Boolean
expressions. First, LCs are constructed by applying the
local control specifications to their corresponding subsys-
tem models. Second, to establish global couplings, the
global control specifications are applied to the obtained
LCs. The resulting Distributed Controllers (DCs) allow
achieving a non-blocking optimal closed-loop behavior,
which is adaptive (in the case of a redesign, a small amount
of data will be updated), and reduce the computational
problem. The approach uses a model-checking technique
(not discussed here due to limited space) to verify the
non-blockingness and optimality of the DCs. Ultimately,
these latter are converted into Grafcet formalism using a
straightforward methodology. The methodology provides
a basic Grafcet David and Alla (2010) which can be easily
translated into one of the programming languages defined
in the IEC-61131-3 (2013) for PLC programming purposes.
Based on these previous results, this paper presents a soft-
ware tool framework which assists control practitioners in
automatically generating distributed control interpreted as
a Grafcet specification for the purpose of PLC controllers
implementation.

The relevance of Grafcet for PLC-based control solutions,
has motivated the development of tools that support con-
trol development. A tool for the editing of compliant
Grafcet is presented in Di-Meglio (2010). The tool allows
to create Grafcet specifications using all basic elements
defined in IEC-60848 (2013), including time dependencies,
macro-steps, enclosing steps, and forcing orders. The tool
prototype presented in Schumacher et al. (2013) supports
control practitioners in automatically generating control
programs compliant to IEC-61131-3 (2013) starting from
a Grafcet specification. In Provost et al. (2011), a Grafcet
specification model with no time-dependent elements can
be translated into an equivalent Mealy machine for confor-
mance test purposes. Let us mention that all these meth-
ods and tools assume to have a Grafcet specification from
the start. Currently, a method and an appropriate support
tool which automatically generates a Grafcet specifica-
tion, starting from informal requirements are still lacking.
The software tool framework we present in this paper
makes a breakthrough on this issue. The tool is based
on Model-Driven Development (MDD) from the software
engineering domain. MDD process is a favorable approach
for the development of complex software systems. It can
be more easily used thanks to the advent of languages
and tools dedicated to Model-Driven Engineering (MDE).

MDE allows considering models as data and then used
as first class entities in dedicated transformations. Java
applications based on structured data models written in
a domain-specific modeling language can be assessed by
Eclipse Modeling Framework (EMF), which provides mod-
eling and code generation capabilities. Using MDE termi-
nologies, we present the development of our tool based on
transformations written in with Java EMF libraries.

The rest of this paper is organized as follows. We present
our tool in Section 2 and we illustrate it by using an
AMS example in Section 3. Finally, Section 4 discusses
the results of the paper and draws conclusions and ideas
for further work.

2. THE TOOL

The tool we present in this section is built to evaluate
the control synthesis and implementation method pre-
sented in detail in Qamsane et al. (2016b). The proposed
architecture therin, assumes that a plant is modularly
modeled according to its mechanical characteristics and
the resulting local models are called plant elements (PEs).
Local and global controls are treated separately. First,
local safety and liveness constraints (defined as logical
Boolean equations by a system expert) are applied to the
corresponding local PEs according to a local synthesis
algorithm, which provides an LC for each PE. Second,
the application of global constraints, defined in the form
of logical Boolean implications, to the LCs provides DCs
allowing a cooperative interaction among the modular
PEs. Third, the resulting DCs are reproduced to a model-
checker (Uppaal) which verifies that the global control ful-
fills the safety and functional properties (deadlock-freeness
and liveness). In the last step the obtained distributed
control is interpreted into Grafcet for the purpose of PLC-
based implementation.

We view a manufacturing system as a nesting of PEs
(e.g. a single-acting cylinder controlled by a pneumatic
monostable 3/2 valve, a one rotation direction electrical
motor, etc.). Regardless of the environment in which they
evolve, the PEs local operation does not change, thus, a set
of immutable local constraints is retained for each PE. The
application of these constraints to the PE models allows
obtaining immutable LCs. Currently, we assume that the
tool has as inputs: an LC and a set of its related global con-
straints. The basic data structure of an LC is a determinis-
tic finite automaton, which is represented by the quintuple

G(LC) = (Q(LC),Σ(LC), δ(LC), Q
(LC)
m , q

(LC)
0 ), where Q

(LC)
m

is a finite set of states, with q
(LC)
0 ∈ Q(LC), the initial

state and Q
(LC)
m ∈ Q(LC), the set of marked states, Σ(LC)

is a finite set of events called an alphabet, and δ(LC) is a
transition function δ(LC) : Q(LC)×Σ(LC) → Q(LC). Events
are divided into two disjoint sets, controllable and uncon-
trollable events. All events are assumed to be observable.
The basic data structure of a global constraint is a Boolean
expression of the following form:

If (Condition) Then (Action).

Formally, the set of global constraints is defined by the pair

Spec = (C(spec),Act(spec)), where C(spec) is the set of con-

ditions; and Act(spec) = {Ord(spec), Inh(spec)} is the set of
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Fig. 1. The tool workflow

PEs’ activation/deactivation actions. The tool workflow is
presented in Fig. 1. First, the tool provides an abstraction
of the LCs. In this step, the states reached by controllable
events (σ ∈ Σc) are merged into macro-states that are con-
nected with uncontrollable ones (σ ∈ Σuc). The method
consists of hiding the controllable evolutions of the LC, and
associating them into macro-states. Transitions between
the merged states are ultimately checked as follows: if a
controllable event is associated with a rising edge, it is
interpreted as an authorized order and belongs to the set

Ord(DC); Otherwise, it is interpreted as as inhibited order

and belongs to the set Inh(DC). The resulting automaton
is denoted as Aggregated Local Controller (ALC). ALC

is a 4-tuple G(ALC) = (Q(ALC),Σ(ALC), δ(ALC), q
(ALC)
0 ),

where Q(ALC) is the set of states; Σ(ALC) = Σ(LC), the set

of events; δ(ALC) is the new transition function; and q
(ALC)
0

is the new initial state. The ALC is produced through a
graph transformation implemented with Henshin Arendt
et al. (2010). A graph transformation consists in apply-
ing specific transformation rules to a source graph. Each
transformation specifies the modification of certain parts
of this graph by another. The definition of this kind of
replacement comprises two parts: a Left Hand Side (LHS)
and a Right Hand Side (RHS). The LHS, LC in our case,
is a graph which is used to determine the source graph’s
fragments concerned with the application of the rule, while
the RHS, ALC graph in our case, specifies the replacement
structure. Thus, a graph transformation rule, also known
as a graph rewriting rule, is a couple of graphs (LHS,
RHS). Essentially, the application of a rule on a given
graph G comes down Andries et al. (1999):

(1) Detecting a subgraph of G isomorphic to the LHS
part,

(2) Removing elements (nodes and edges) of the subgraph
captured by the LHS part which are not present in
the RHS part. The resulting graph is called context
graph,

(3) Gluing the RHS graph into the context graph by
following the connection points (elements that have
been captured by the LHS but remain in the context
graph).

Fig. 2. General rule for merging states.
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Fig. 3. Global constraints metamodel.

Fig. 2 shows an example of the implemented rule. Second,
the tool considers the global constraints to the ALCs.
The global constraints are written by using a textual
editor developed with Xext Eysholdt and Behrens (2010).
Xtext is a framework for the development of programming
languages and DSLs based on EMF for handling models.
It provides a definition language similar to BNF gram-
mar (EBNF: Extended Backus-Naur Form Wirth (1996))
for the description of language syntax. The grammar
that we have used for expressing the global constraints
is based on a proposed metamodel (Fig. 3). The meta-
model defines a set of conditions. Each one can have
one or two possible values for the action. The produced
Xtext editor offers a set of features: syntax highlighting,
auto-completion, auto-indentation, navigation and search
through the outline. Considering the global constraints
to the ALCs consists of checking all the constraints for
each ALC state. If an authorized (resp., inhibited) order
of an ALC state matches to that authorized (resp., in-
hibited) within a global constraint, then the constraint’s

condition (C(Spec)) should be associated with this state
to condition the authorization (resp., the inhibition) of
the corresponding order. The resulting controller is a DC.
Formally, a DC automaton is syntactically defined by

G(DC) = (Q(DC),Σ(DC), δ(DC), Act(DC), C(DC), q
(DC)
0 ),

where Σ(DC) is a non-empty set of events such as Σ(DC) =

Σ
(DC)
c ∪ Σ

(DC)
uc ; Q(DC) is the set of states, to every state

q(DC) ∈ Q(DC) is associated a set of actions Act
(DC)
q

(which can be empty), and a set C
(DC)
q (which can be

empty) of logical conditions that monitor the authorized

and inhibited orders; q
(DC)
0 is the initial state; Act(DC) =

{Ord(DC), Inh(DC)} is the set of actions associated with

the states of Q(DC); C(DC) = {C(DC)
Ord , C

(DC)
Inh }is the set of

logical conditions that monitor these actions; and δ(DC) :

Q(DC)×Σ
(DC)
uc → Q(DC) is the transition function. A tran-

sition of G(DC) is defined with the triple (q, σ, q ’) ∈ δ(DC),



Fig. 4. The transformation concept.
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Fig. 5. The DC metamodel.

where q is the origin state, σ is an uncontrollable event and
q ’ is the destination state. Technically, a DC is obtained
from a Model-to-Model (M2M) transformation that takes
as input the ALC and the global constraints models as
well as their metamodels and produces a DC model. The
transformation is implemented in Java/EMF environment.
There are two reasons behind choosing Java/EMF. First,
because EMF is being used by several tools, as it is the
basis of all transformation languages, e.g. M2M, Model to
Text (M2T), Model Development Tools (MDT). Second,
using Java/EMF will enable us to use object-oriented
practices to structure our code.

In the final step, the tool allows to interpret the DCs into
partial Grafcet controllers. A straightforward method for
the interpretation of any DC configuration into Grafcet
was defined in Qamsane et al. (2016b)(section 3.5).
Therein, altogether 11 interpretation rules have been de-
fined to ensure a correct transformation of the DCs into
Grafcet. The basic data structure of a Basic-Grafcet ac-
cording to David and Alla (2010) includes steps, transi-
tions, junctions, Boolean transition conditions, and ac-
tions. Thus a Basic-Grafcet G(basic) is described as a 9-
tuple G(basic) = (S, T,W, sit0, I, O, r, a,Ω), where S is the
set of steps; T is the set of transitions; W is the flow
relation which contains all junctions; sit0 is the initial
situation; I is a finite set of inputs; O is a finite set of
outputs; a is the set of a basic-Grafcet actions; and Ω is the
output function which contains all executable actions with
regard to a situation sit(m). According to Fig. 4, our tool
produces a Grafcet model by taking the following artefacts
as inputs: a DC metamodel, a Grafcet metamodel and a
DC model. The DC metamodel is described in Fig. 5. It de-
fines a concept called StateMachine, which includes the set
of states and the set of state-transitions. The metamodel
represented in Fig. 6 illustrates the Grafcet metamodel
concepts. A Grafcet contains a set of elements, where an

Step

-isInitial : EBoolean = false
-isActive : EBoolean = false
-action : EString

Transition

-condition : 
EString

NamedElement LocatedElementLocatedElement

GrafcetGrafcetElementElement
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outgoingConnections

[1..1] 
incomingConnections

[0..*] incomingConnections[0..*] outgoingConnections

[0..*] 
connections

[1..1] grafcet
[0..*] 

elements

-name : EString

Fig. 6. The Grafcet metamodel.
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element is an abstract concept that can determine one
specialized step and transition.

3. APPLICATION

3.1 The experimental AMS

In this section an example of an industrial AMS illustrates
our software tool framework. The industrial AMS (Fig. 7)
is a modular production station controlled by a PLC
Siemens S7-300, which aims at distributing workpieces
from a magazine barrel to a downstream station. It is
divided into three PEs: A feeder (single-acting cylinder),
a swivel drive (double-acting cylinder), and a suction cup.
The feeder feeds the workpieces from a buffer to the pickup
area; the swivel drive transports the workpieces towards
a drop area; and the suction cup catches the workpieces
while the swivel drive is moving. The station uses a set of
sensors to detect the arrival of workpieces, their colour and
material, and working area freeness. The LCs models of
the distributing station are given in Fig. 8. The reader
can find detailed explanations about their construction
in Qamsane et al. (2016b). In order to reach a global
goal, ten global control specifications are stipulated for
the experimental AMS as follows: (1) The feeder doesn’t
extend if the swivel drive is in the magazine position; (2)
The feeder doesn’t extend without a workpiece; (3) The
feeder doesn’t extend while the swivel drive is moving
to the magazine position; (4) The swivel drive only goes
to the magazine position when necessary; (5) The swivel
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Table 1. The global constraints

If
Then

Ord Inh
¬dmp∧wpa∧¬Go mag Feed ext
¬wpc∧ffp∧¬CatchUp Go mag
wpc∧testing vacant Go stn
¬Go mag∧(ffp→dmp) CatchUp
dsp Release CatchUp
dmp∧wpc Feed ext

drive moves towards the testing station position only if the
latter is not occupied; (6) The swivel drive moves towards
the testing station with a securely caught workpiece; (7)
Mutual exclusion between the suction cup activation, and
the swivel drive moves towards the magazine position; (8)
The suction cup activates only when a workpiece is in the
pick-up area; (9) The feeder retracts when a workpiece
is picked up; (10) The suction cup releases the workpiece
when the swivel drive reaches the testing station position.

These constraints are formally presented in Table. 1.
For instance, the first three constraints relate to the
authorization of the action: “Feed ext” (Feeder extend).
These allow the feeder to extend when the drive is not
in the magazine position (¬dmp), a workpiece is available
in the buffer (wpa), and the swivel drive is not moving
to the magazine position (¬Go mag), respectively. This
can be written in Boolean algebra as follows: if (¬dmp ∧
¬Go mag ∧ wpa) then Ord(Feed ext).

3.2 Tool support

This section shows how the different models of the studied
system have been produced with the aid of the proposed
software tool. The latter receives the set of LCs automata
shown in Fig. 8 together with their related global Boolean
constraints shown in Table. 1. It uses the procedures
explained in section 2 to generate the DCs and the partial
Grafcet models as shown in Fig. 9.

4. DISCUSSION AND CONCLUSION

Supervisory control and performance analysis are two
fundamental needs to design AMS. The former aims to
constrain the system behavior to its legal specifications in a
logical domain, whereas the latter needs time-domain work
by aiming to evaluate system performance Hu and Liu
(2015). Within supervisory control context, we presented

a tool to distributed controller synthesis and Grafcet im-
plementation for AMS. The tool is based on Model-to-
Model transformations implemented in Java/EMF envi-
ronment. Our tool framework makes two contributions.
First, it decreases the state space explosion problem by
using a modular/distributed structure which avoids the
synchronous composition among the subsystems’ mod-
els. Second, it increases the flexibility required in AMS
through the DCs, which are simple and adaptive, i.e.,
in the case of a redesign, only a small amount of data
related to the corresponding subsystems will be updated.
Let us mention that this approach uses a model-checker
(Uppaal) to verify the absence of deadlocks and ensure the
system liveness before the Grafcet implementation level.
The model-checker allows to trace the sequences disrupting
the system’s behavior, which enables swift update of the
models. The Grafcet interpretation only comes once the
DCs satisfy the requested properties. We believe additional
investigations of the verification/validation are of interest
and would bring improvements to our software. Extensions
of this work would introduce a linkage between our soft-
ware tool and Uppaal model-checker. Another avenue of re-
search is the introduction of time-domain to the framework
of this paper in order to treat some quantitative control
problems and to evaluate the system performance. Future
applications work would also consider the issues with mov-
ing from the synchronous event-based DES-world, to the
asynchronous, signal-based PLC-world, outlined by Fabian
and Hellgren (1998) and Hellgren et al. (2001).
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