
A Khepera IV library for robotic control
education using V-REP

G. Farias ∗ E. Fabregas ∗∗ E. Peralta ∗ E. Torres ∗

S. Dormido ∗∗

∗ Pontificia Universidad Católica de Valparáıso, Av. Brasil, 2147,
Valparáıso, Chile (e-mails: gonzalo.farias@pucv.cl,

emmanuel.peraltah@gmail.com, enrique torres1994@hotmail.com)
∗∗Departamento de Informática y Automática, Universidad Nacional
de Educación a Distancia, Juan del Rosal, 16, 28040, Madrid, Spain

(emails: efabregas@bec.uned.es, sdormido@dia.uned.es)

Abstract: This paper describes a new module to create advanced simulations with the Khepera
IV mobile robot in V-REP simulator. The library, called KH4VREP, allows users to add a
Khepera IV model to a new or an existing V-REP simulation. The KH4VREP library depicts
a graphical representation of the Khepera IV model, and also provides several methods to
programmatically read and manipulate the sensors and actuators of the robot. The visual design
of the model has been developed using Autodesk Inventor. The library provides functionality to
test the mobile robot under different control problems such as: position control, trajectory
tracking, path following, obstacle avoidance, and multi-robot experiments with formation
control.

Keywords: Khepera IV, Control engineering simulations, V-REP simulator.

1. INTRODUCTION

During the last years, robotics has been introduced in
education at all levels. Robotics is a multidisciplinary
subject. It expands to several engineering and scientific
disciplines such as electrical engineering, computer science,
control engineering, and mechanical among others. That
is why robotics is very interesting and versatile from a
pedagogical point of view Farias et al. (2015).

Robotics is also a vast area, it has a large number of
branches. Mobile robotics is the branch that deals with
robots that are not physically fixed during their opera-
tion. In the literature a mobile robot is defined as: “an
automatic machine that is capable of locomotion” Peralta
et al. (2016). The students can see this kind of robots as
just attractive toys, but with mobile robots, students can
analyze, test and understand fundamental concepts that
are difficult to explain from a theoretical point of view
Fabregas et al. (2011); Neamtu et al. (2011); Merdan et al.
(2016).

In most research fields, simulators are very important to
test theories, ideas, and designs before the real implemen-
tation. But in the field of robotics, these simulators are
even much more important since advanced robots are still
very expensive. Currently, there are many simulators for
different robotic branches with very sophisticated features.
Among others, it can be found the following popular
simulators: Webots (Michel (2004)), Gazebo (Koenig and
Howard (2004)), RFCSIM (Fabregas et al. (2014)) and V-
REP (Coppelia Robotics GmbH (2015)). These simulators
have several specific characteristics, but in general all of
them are well made and have a good performance. Some

of these platforms have licenses that can be used free of
charge for educational purposes. Most of these simulators
include models of the best known and commercialized
robots. In some cases the developments can be exported
to the real robot for testing after using the simulator.

The V-REP simulator deserves a special mention for being
one of the most widely used for pedagogical purposes
today. This simulator is a versatile and scalable framework
for creating 3D simulations in a relatively short period of
time (Rohmer et al. (2013)).

V-REP has an integrated development environment (IDE)
that is based on a distributed and script-driven archi-
tecture: each scene object can have an embedded script
attached, all operating at the same time, in a threaded or
non-threaded fashion. V-REP comes with a large number
of examples, models of robots, sensors and actuators to
create a virtual world and to interact with it in running
time. New models can be also designed and added to V-
REP to implement customized simulation experiments.

This paper is a continuation of the previous work of the
authors Peralta et al. (2016). The paper describes the
library KH4VREP, which allows users to add a Khepera
IV robot model to a new or existing V-REP simulation.
The model has been encapsulated with many built-in
functions to manipulate and control the robot in very
easy way. This new version includes several examples, such
as: a new algorithm for obstacles avoidance (VFH, Ulrich
and Borenstein (2000)); and some multi-robot experiments
(with several kheperas or other existing models in V-REP)
to perform formation control.

The remainder of the paper is organized as follows: Section
2, presents some characteristics of the V-REP simulator
and the Khepera IV robot; Section 3 describes the library
KH4VREP ; Section 4 shows the implementation and the
results of some test experiments developed with the li-
brary; and Section 5 presents the main conclusions and
future works.

2. V-REP AND KHEPERA IV ROBOT

The Virtual Robot Experimentation Platform (V-REP) is
a versatile and scalable framework to develop 3D simula-
tions in a relatively short period of time. This simulator
was created in 2010 and has been growing during the last
years. Nowadays, this is one of the most used simulators
for education in the robotics field (with a free licence for
educational purposes). As its authors say: “V-REP is the
Swiss army knife among robot simulators.”

V-REP has an integrated development environment (IDE)
that is based on a distributed control architecture: each ob-
ject/model can be individually controlled via an embedded
script, a plug-in, a Robot Operating System (ROS) node,
a remote API client, or a custom solution. The controllers
can be written in different languages: C/C++, Python,
Java, Lua, Matlab, Octave or Urbi (Coppelia Robotics
GmbH (2015)). V-REP comes with a large number of
examples, models of robots, sensors and actuators to create
a virtual world and to interact with it in running time.

2.1 Khepera IV robot

The Khepera IV robot is the most recent development of
the Swiss company K-Team (2015). This version is newest
generation of Khepera family. From its first version, these
robots have been designed with research and educational
purposes in mind.

It offers wifi and bluetooth communications, color camera,
USB host, a large number of advanced features such as:
8 infra-reds sensors, 5 ultrasonics sensors, accelerometer,
gyroscope, microphone, a large duration battery (5 hours),
loudspeaker, 3 top RGB LED, improved odometry and
precision. The CPU is a 800MHz ARM Cortex-A8 Pro-
cessor (with linux core running) and additional micro-
controller for peripherals management.

The robot can be programmed from a Linux-based oper-
ating system and C language. Khepera IV has a modular
configuration, with a cylindrical shape to minimize the
damage and negative effects in its parts under collision
conditions. Khepera is a differential wheeled robot whose
movement is based on two separately driven wheels placed
on each side of its body. The device can be used for differ-
ent experiments such as: line following, obstacle detection
and avoidance in a dynamic environment, advanced signal
processing, motion control, wireless communication, image
processing, formation control, and many other advanced
topics. Undoubtedly, this robot is a powerful tool for
teaching robotics.

3. KH4VREP LIBRARY

To use the library you need to include it in V-REP sim-
ulator. To do it you need to download the file Khep-
eraIV.ttm from: https://github.com/EAPH/K4_Model_

VREP and copy it in the following path: ..\V-REP3\V-REP_
PRO_EDU\models\robots\mobile. Once the file is copied,
it will appear in the list of models of V-REP, as it can be
seen on the left side of Figure 1.

Fig. 1. Integration of the model in V-REP

To add the model to the simulation you need to drag and
drop the robot to the workspace. The result is shown on
the right side of the Figure 1.

The library is titled KH4VREP and it is divided into two
parts: 1) the graphical model of the Khepera IV robot
(visual components); and 2) a set of software functions to
carry out some specific tasks.

3.1 Visual components

The Khepera IV is a rigid body with a differential be-
havior, due to it is equipped with two wheels that are
driven by DC motors with encoder and gearbox. The
minimum controlled speed of the robot is 3 mm/s and
the maximum speed is about 813 mm/s. In the case of the
caster wheels, both are considered as fixed spheres in the
model. Note that the gyroscope and accelerometer sensors
were not included in the model since that information is
given directly by the V-REP simulator for each included
model.

To design and to implement the model, all visual parts of
the robot (case, base, wheels, etc...) were modeled using
Autodesk Inventor and assembled in V-REP. The obtained
prototype was imported to V-REP as .stl format. V-REP
allows to add physical properties and dynamics to this kind
of prototypes. The model also has 5 ultrasonic sensors, 8
infrared sensors (eight around the case and four in the
bottom of the robot to perform line following), one color
camera, two wheel motors, and two caster wheels. All these
sensors and actuators were added and configured using
existing elements of V-REP. Figure 2 shows the assembling
process of the robot in V-REP.

3.2 Software components

The software components of the library are in a script
associated to the model. This script is a main thread
with an infinite loop that contains calls to functions that
carry out some specific tasks during the simulation. The
following code segment shows the structure of the main
function for the example of position control.

Fig. 2. Assembling the model of the Khepera IV

1 setRobot (vmax ,wmax,L , xi , yi , t h e t a i)

2 threadFunction=func t i on ()

3 whi le (loop==1) do

4 −−Get po s i t i o n and o r i e n t a t i o n o f the robot

5 xc , yc , theta=getRobotPos i t ion ()

6 −−Get ta rg e t p o s i t i o n

7 xp , yp=getTarge tPos i t i on ()

8 −−Apply po s i t i o n con t r o l

9 v ,w=pos i t i onCont ro l (xp , yp , xc , yc , theta)

10 −−Update robot v e l o c i t i e s

11 upda t eVe l o c i t i e s (v ,w)

12 end

13 end

The code starts by setting the initial conditions, for
example: function setRobot to establish the initialization
parameters of the robot (line 1). Line 2 is the definition of
the thread main function (threadFunction). In line 3 starts
the infinite while loop. Line 5 obtains the current position
and orientation of the robot with the function getPosition.
Line 7 obtains the coordinates of the target point with the
function getTarget. Line 9 executes the position control of
the robot with function positionControl. Line 11 updates
the angular and linear velocities of the robot model.

3.3 Position control experiment

This experiment is to drive the wheeled mobile robot
from its current position to a predefined target point.
This problem has been widely studied during the last
years, due to the kinematic model of these robots may
seem deceptively simple, but nonholonomic constraints
introduce a challenging problems in the designing of the
control law (Fabregas et al. (2016)). Figure 3 shows the
blocks diagram of this experiment.

Compute Control Law Motors

Position Sensor

Tp
d

α

ν

ω
x, y, θ

C

Fig. 3. Block diagram of the position control problem

Figure 4 shows the variables involved in this experiment.
The robot tries to minimize its orientation error, θe = α−

θ, where α is the current angle to the target point and θ
is the current orientation of the robot. At the same time,
the robot tries to reduce the distance to the target point
(d ≈ 0).

Fig. 4. Position control experiment

Equations (1) and (2) are implemented in the block
Compute; by using as reference the target point (Tp) and
the current position of the robot (C).

d =

√
(yp − yr)

2
+ (xp − xr)

2
(1)

α = tan−1
(
yp − yr
xp − xr

)
(2)

With the outputs of the block Compute the block Control
Law calculates the linear velocity (ν) and the angular
velocity (ω) of the robot as it is shown in equations (3)
and (4) (Villela et al. (2004)).

ν =

νmax if |d| > kr

d

(
νmax

kr

)
if |d| ≤ kr

(3)

ω = ωmax sin (α− θ) (4)

where νmax is the maximum linear velocity, kr is the radius
of a docking area (around the target point) and ωmax is
the maximum angular velocity of the robot.

The following code segment represents the implementation
of the function positionControl in the KH4VREP library.
Note that this function is called in line 9 of the main
function in the previous example.

1 pos i t i onCont ro l=func t i on (xp , yp , xc , yc , theta)

2 d = math.sqrt (((xp−xc)ˆ2)+((yp−yc)ˆ2))

3 alpha = math.atan2 (yp−yc , xp−xc) −−Target ang le

4 Oc = alpha−theta −−Error ang le

5 i f (d>=0.05) then

6 w=Wmax∗math.s in (Oc) −−Angular v e l o c i t y

7 v=(vmax/kr)∗d −−Linear v e l o c i t y

8 i f (v>vmax) then −−Linear v e l o c i t y s a tu ra t i on

9 v=vmax

10 end

11 e l s e v=0, w=0

12 end

13 re turn v ,w −−Values returned

14 end

Line 1 is the definition of the positionControl function
which receives as parameters the coordinates of the current
target point (xp; yp) and the current position (xc; yc) and

orientation (theta) of the robot. Lines 2 and 3 calculate
equations (1) and (2). Line 4 obtains the orientation angle
error. Lines 6 calculates equation (4) and line 7 calculates
equation (3). Lines 8 to 10 are the saturation of the
calculated linear velocity (ν). Lines 12 and 13 set the
velocities to zero if the robot is very close to the destination
point (less than 0.05 m). The function returns the values
of the velocities in line 15.

3.4 Obstacles avoidance experiment

The obstacles avoidance problem has been widely studied
using different techniques. Note that this problem is a
next step of the position control. The robot must be
able to avoid the obstacles that appear on its way to the
destination. To do that, the block Avoidance is added after
the Control Law block. This block calculates new velocities
(ν’ and ω’) if the sensors detect obstacles. In the absence
of obstacles ν’=ν and ω’=ω. Figure 5 shows the block
diagram of this experiment.

Compute Control Law Avoidance

Proximity Sensors

Motors

Position Sensor

Tp
d

α

ν

ω

ν’

ω’
x, y, θ

C

Fig. 5. Control block diagram with obstacle avoidance

The block Avoidance can be implemented with different
algorithms depending of the obstacles sensors and its
location on the robot. In this case, to test the library
two algorithms have been implemented: Braitenberg (Yang
et al. (2006)) and (VFH) Vector Field Histogram (Ulrich
and Borenstein (2000)).

Braitenberg algorithm. This algorithm creates a weighted
matrix that converts the sensor inputs into motors speeds.
This matrix is a two-dimensional array with the number of
columns corresponding to the eight sensors, and the rows
corresponding to the two motors. Equation (5) represents
such matrix, where WLS1

is the weight of sensor S1 in the
speed of the left motor. Equation (6) represents the values
of the sensors at each time.

W =

(
WLS1

WLS2
. . . WLS8

WRS1
WRS2

. . . WRS8

)
(5)

S = (S1 S2 . . . S8)
T

(6)

With these matrices, the velocities for each motor are
calculated as shown in equation (7), where (Smax) is the
maximum value of the proximity sensors if no obstacle is
detected.

νL,R = W ∗ (1− (S/Smax)) (7)

Velocities ν’ and ω’ are calculated from νR and νL using
the differential model equations. The following code seg-
ment shows the implementation of this algorithm.

1 bra i t enbergContro l=func t i on ()

2 i f (S [1]+S [2]+S [3]+S [4]+S [5] . . −−Obstac le detected

3 . .+S [6]+S [7]+S[8]<=Smax∗8) then

4 f o r i =1 ,8 ,1 do

5 Vl=Vl+WLS[i]∗(1−(S [i] /Smax))

6 Vr=Vr+WRS[i]∗(1−(S [i] /Smax))

7 end

8 v=(Vr+Vl)/2

9 w=(Vr−Vl)/L

10 end

11 re turn v ,w

12 end

The function Braitenberg is called after the function po-
sitionControl in the main threadFunction.Line 1 is the
definition of this function. Line 2 asks for the obstacle de-
tection. If one of the 8 sensors does not has the maximum
value, is because an obstacle has been detected. Lines 5
and 6 implement equations (5), (6) and (7). Lines 8 and
9 calculate ν and ω from the differential model. Line 11
returns the values of the calculated velocities.

VFH algorithm. This method allows a fast and smooth
motion of the robot avoiding obstacles in a dynamical
environment. The speed is the maximum in the absence of
obstacles. The robot tries to maintain this speed during the
trajectory unless being forced to slow down by the VFH
algorithm to the instantaneous speed ν and to change the
angular velocity according to equations (8) and (9).

ν = ν′
(

1− ω

ωmax

)
(8)

ω = ωmax sin (θe) (9)

where ωmax is the maximal allowable angular velocity for
the robot that will be achieved when the orientation error,
θe = ±90◦, and ν′ is defined in equations (10 and 11).

ν′ = νmax

(
1− h′′c

hm

)
(10)

h′′c = min (h′c, hm) (11)

where νmax is the maximum linear velocity, hm is a
constant empirically determined to cause a reduction in
the speed in presence of obstacles, and h′c is the value of
the histogram of the distance between the robot and the
obstacles. If h′c > 0 then an obstacle lies ahead of the robot.
Large values of h′c means a bigger obstacle lies ahead or an
obstacle is very close to the robot. In both cases a change
of the direction is required. This means that a reduction in
the linear velocity is needed to turn to the new direction.

3.5 Multi-robot experiment

This experiment is a formation maneuver of a group of
robots. Where one of them is the leader and the rest are
the followers. The position of the leader is controlled using
the aforementioned algorithm. The followers also control
their positions, but taking the position of the leader as
reference to make a formation around him. For example a
circle with the leader located at the center (Lawton et al.
(2003)).

The followers have three parameters in the function tar-
getPosition to modify their destination points: 1) the
coordinates of the leader robot; 2) the distance to the
leader in the formation; and 3) the angle with respect to
the leader’s position. This configuration allows different
formation around the leader robot. The coordinates of the

target point (xp, yp) of the followers in the formation are
obtained in equation (12).{

xp = xL + rcos(β + θ)

yp = yL + rsin(β + θ)
(12)

where the position of the leader robot is (xL,yL). r is the
distance of the follower to the leader (for example: radius
of the circle). β is the angle to the leader and θ is the
orientation of the leader robot.

The following code segment shows an example of the
implementation of this function for a follower robot located
at 0.5 meters and 180◦ with respect to the leader robot.

1 xp , yp=getTarge tPos i t i on (’ Khepera IV0 ’ , 0 .5 , 180)

2 . . .

3 t a r g e tPo s i t i o n=func t i on (obj , objDist , objAng)

4 distanceMaster=objDi s t

5 angleMaster=objAng∗math.pi /180

6 t a r g e t=simGetObjectHandle (obj)

7 s imSetObjectParent (target ,−1 , t rue)

8 ta r=simGetObjectPos it ion (target ,−1)

9 or iTar=simGetObjectOrientat ion (target ,−1)

10 xp=tar [1]+ dis tMaster ∗math.cos (angMaster+or iTar [3])

11 yp=tar [2]+ dis tMaster ∗math.s in (angMaster+or iTar [3])

12 re turn xp , yp

13 end

14 . . .

15 v ,w=pos i t i onCont ro l (xp , yp , xc , yc , theta)

Line 1 is the invocation of this function from the main
thread. Line 3 is the definition of the function with three
parameters: 1) leader robot name; 2) distance to the leader
robot in the formation; and 3) angle with respect to
the leader robot in the formation. Lines 4 to 9 obtain
the parameters of the leader robot (handle, position and
orientation). Lines 10 and 11 implement equation (12).
Line 12 returns the target coordinates (xp, yp). After that,
in the main thread the position control is executed (line
15).

Table 1 shows a summary of implemented functions and
their different tasks.

Table 1. KH4VREP Library methods

Methods Characteristics

setRobot Sets the parameters of the robot.
getPosition Obtain the position of the robot.
plot Creates a 2D line plot of the data.
getTarget Obtain the target point.
positionControl Controls the position of the robot.
braitenbergControl Executes the Braitenberg algorithm.
updateVelocities Updates the velocities of the robot.

4. RESULTS

In this section the implemented control problems are
presented to test the library: obstacles avoidance and
multi-robots. Note that these experiments implement the
position control of the robot.

4.1 Collision Avoidance (Braitenberg vs VFH Algorithms)

Figure 6 shows a sequence of the comparison of these two
algorithms. On the left side the robot implements the po-
sition control experiment with the Braitenberg algorithm
for obstacles avoidance and on the right side, with the

VFH algorithm. In both cases, the robot has to reach its
destination point (red semi-sphere). The configuration in
both cases is similar: a wall (in green and black colors) and
an obstacle in (yellow and black colors) on the way to the
target point.

Fig. 6. Braitenberg vs VFH

As can be seen with the Braitenberg algorithm the robot
reaches the destination point in a much more direct and
smoothed way. That is why the robot reaches the destina-
tion point in less time. In the case of VFH, the robot moves
with a zigzag path because the built histogram has “blind
zones” between the sensors due to the localization of the
sensors around the robot. For this reason the histogram is
not continuous and the algorithm does not work properly
as expected.

4.2 Multi-robots experiment

Figure 7 shows an example of the multi-robot experiment
including obstacles avoidance (Braitenberg). In this case,
five robots have been used (one leader and four followers).
The configuration shows obstacles (in light gray color)
with different shapes and sizes.

Fig. 7. Multi-robots performing formation control

The goal is to make a formation with cross form with the
leader robot in the center as reference. All robots start
stopped occupying their respective positions in the forma-
tion. Then the leader tries to reach its destination point
avoiding the obstacles that appear on its way. The traces
of the positions of the robots show the trajectories followed
to reach the destinations. As can be seen, formation is lost
during the displacement due to two aspects: 1) the targets
points of the followers are relative to the position of the
guide and it is moving; 2) follower avoid the obstacles that
appear in their path.

Another example of multi-robots experiment have been
implemented to test the integration of the library with the
existing models of V-REP. The experience consists in a
Khepera IV that performs a position control experiment
and a quadcopter that must follows the Khepera IV using
its position as reference (x, y) maintaining constant height
(z) relative to the ground. Figure 8 shows an image of this
experiment: the on-board camera of the Khepera (bottom
left side) and the on-board camera of the quadcopter
(bottom right side). As can be seen the quadcopter follows
the Khepera IV robot in acceptable way.

Fig. 8. A quadcopter follows a Khepera IV that performs
position control

5. CONCLUSION

In this paper the library KH4VREP for V-REP simulator
has been presented. The library is an encapsulation of the
model of the Khepera IV and includes built-in methods to
manipulate the robot, and also a set of simulations to show
many control problems with mobile robots. The result of
this development is a ready to use tool that allows the
implementation of experiments with these robots in an
interactive and attractive environment. The library allows
to test and understand theoretical concepts in a dynamic
way in order to teach engineering control.

In the near future, the library will be included in a pilot
platform that has been developed in our laboratories.
The main objective of the future work will be to design
advanced control algorithms using the library and the
simulation environment. Among other, multi-agents ex-
periments with consensus control problem and event-based
communications between the robots could be included in
the library.

ACKNOWLEDGEMENTS

This work has been funded by the Chilean Ministry of
Education under the Project FONDECYT 1161584, the
Projects DPI2012-31303 and DPI2014-55932-C2-1-R of
the Spanish Ministry of Economy and Competitiveness.

REFERENCES

Coppelia Robotics GmbH (2015). V-REP simulator.
Fabregas, E., Farias, G., Dormido-Canto, S., and Dormido,

S. (2014). RFCSIM simulador interactivo de robótica
móvil para control de formación con evitación de
obstáculos. In XVI Congreso Latinoamericano de Con-
trol Automático, Cancún, Quintana Roo, México.

Fabregas, E., Farias, G., Dormido-Canto, S., Dormido,
S., and Esquembre, F. (2011). Developing a remote
laboratory for engineering education. Computers &
Education, 57(2), 1686–1697.

Fabregas, E., Farias, G., Dormido-Canto, S., Guinaldo, M.,
Sánchez, J., and Dormido Bencomo, S. (2016). Platform
for teaching mobile robotics. Journal of Intelligent &
Robotic Systems, 81(1), 131–143.

Farias, G., Muñoz, D., Gómez-Estern, F., De la Torre, L.,
Sánchez, C., and Dormido, S. (2015). Adding automatic
evaluation to interactive virtual labs. Interactive Learn-
ing Environments, 1–21.

K-Team (2015). K team mobile robotics.
Koenig, N. and Howard, A. (2004). Design and use

paradigms for gazebo, an open-source multi-robot simu-
lator. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2149–2154. Sendai, Japan.

Lawton, J., Beard, R., and Young, B. (2003). A de-
centralized approach to formation maneuvers. IEEE
Transactions on Robotics and Automation, 19(6).

Merdan, M., Lepuschitz, W., Koppensteiner, G., and
Balogh, R. (2016). Robotics in Education. Springer.

Michel, O. (2004). WebotsTM: Professional mobile robot
simulation. arXiv preprint cs/0412052.

Neamtu, D., Fabregas, E., Wyns, B., De Keyser, R.,
Dormido, S., and Ionescu, C. (2011). A remote labora-
tory for mobile robot applications. In 18th IFAC World
Congress, volume 44, 7280–7285.

Peralta, E., Fabregas, E., Farias, G., Vargas, H., and
Dormido, S. (2016). Development of a Khepera IV
Library for the V-REP Simulator. In 11th IFAC Sym-
posium on Advances in Control Education ACE 2016,
volume 49, 81–86. Bratislava, Slovakia.

Rohmer, E., Singh, S., and Freese, M. (2013). V-REP:
A versatile and scalable robot simulation framework. In
2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1321–1326.

Ulrich, I. and Borenstein, J. (2000). VFH∗: Local obstacle
avoidance with look-ahead verification. In ICRA, 2505–
2511.

Villela, V.J.G., Parkin, R., Parra, M.L., González, J.M.D.,
Liho, M.J.G., and Way, H. (2004). A wheeled mobile
robot with obstacle avoidance capability. Tecnoloǵıa Y
Desarrollo, 1(5), 159–166.

Yang, X., Patel, R., and Moallem, M. (2006). A fuzzy
braitenberg navigation strategy for differential drive mo-
bile robots. Journal of Intelligent and Robotic Systems,
47(2), 101–124.

