
Formal Framework for Discrete-Event Simulation

Vincent Albert, Clément Foucher

LAAS–CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
(e-mail: {Vincent.Albert, Clement.Foucher}@laas.fr)

Abstract: A formal framework for modelling and simulation of parallel systems named ProjectDEVS is
presented. The objective of this framework is to apply a Model-Based System Engineering approach
to the development of simulation products for cyber-physical embedded systems. It is intended for
the design and automated deployment of virtual prototypes. Models are constructed by coupling
concurrent components exchanging data through ports and executed by various simulation schemes,
namely simulators. This paper focuses on the integration of a Time Petri Net implementation of a parallel
simulator into the framework. The semantics of the parallel simulator is formally described using timed
transition system to verify the correctness of the implementation. Then, a model with its simulator can be
model checked against formal specification and be rapidly deployed on FPGA or PC via code generators.

Keywords: Discrete-event simulation, Parallel simulator, Time Petri Net, Formal methods, MBSE

1. INTRODUCTION

A cyber-physical system is a system composed of computing
processes (the controller) in interaction with physical processes
(the plant) for control and command. During the develop-
ment cycle of a controller/plant system, different simulation
platforms are used for validation purposes. We believe that a
Model-Based System Engineering (MBSE) approach allows,
for the development of both embedded system and their simu-
lation products, ensuring their reliability, promoting design and
test of candidate architectures, mixing real or simulated com-
ponents of the controller and/or plant, and of course reducing
their development time. A MBSE approach typically relies on
model transformations and code generators.

At a very early stage, virtual prototyping is used to study the
performance of the system and design the control algorithms
with a simulated plant. Virtual prototype does not require nei-
ther the controller nor the plant to operate in real time. However,
it can be executed as a software, i.e. on a desktop simulator,
or instantiated on a dedicated digital hardware processing unit
or a mix of both. Dedicated digital hardware processing units
can be used to accelerate various computations instead of using
software. With the advent of Field-Programmable Gate Arrays
(FPGAs), one can design a hardware circuit and instantiate
it immediately instead of going through the long process of
designing an Application-Specific Integrated Circuit (ASIC).
Using FPGA devices, the creation of hardware accelerators
dedicated to a specific or occasional purpose becomes possible.

Discrete event simulation is widely used for the validation of
parallel and distributed systems. NS3 and Omnet++, which are
reference tools in the field of computer networks and VHDL
simulation in the field of digital hardware processing units, use
this discrete event paradigm. In the field of continuous systems
simulation, there is a family of asynchronous (event-driven)
numerical integrators called QSS, see Cellier et al. (2006) for
an overview of this method, that shows very good results. Those
simulators all use the same scheme: it is the change of a variable
(or signal) value which triggers what we call an event. An
event can occur at any time. A variable is updated only when a

specific event occurs at a discrete point of time. We call an event
a time event when the considered variable is time, or a state
event when it is a variable of the model. Whereas discrete-time
simulators needs a special mechanism (zero-crossing functions)
to handle state event for hybrid systems simulation, in discrete-
event simulation, everything is time event because an event
is scheduled and it is the time of the next event that makes
simulation time advance.

In that context we develop a modelling and simulation tool of
parallel systems named ProDEVS based on the Discrete Event
System Specification (DEVS) formalism and its simulators.
DEVS, formulated by Zeigler (1976), has an abstract syntax
for atomic component which is nothing else than an interface
(input/output) timed automata. It provides a modular and hi-
erarchical construction of the model with the concept of cou-
pled component that connects atomic component output ports
to atomic component input ports. DEVS also defines a set of
operational semantics (the way of executing the model), called
the abstract simulator in the DEVS community, that can be seen
as a Model of Computation (MoC), see Ptolemaeus (2014) for
MoCs in Ptolemy. For instance we have the following Discrete-
Event (DE) MoCs: Classic DEVS simulator (CDEVS) where
components execution is sequential (only one component is
executed at a time) and conservative Parallel DEVS simulator
(PDEVS), formulated by Chow (1996), where several compo-
nents can be executed at the same time but causality violations
are strictly avoided. Various parallel and distributed simulation
researchers have implemented parallel simulators for DEVS.
A time warp optimistic DEVS simulator, see Jefferson et al.
(1985), where causality might be violated, detected and reme-
died using roll-back has been implemented by Christensen
(1990). A risk-free optimistic DEVS simulator, see Ferscha
(1995), where events are assessed for risk before sending has
been implemented by Reisinger et al. (1995). See Zeigler et al.
(2000) for pseudo-code description of these abstract simulators.

This paper focuses on the integration of a Time Petri Net (TPN)
implementation of the PDEVS simulator into ProDEVS. This
work results in a formal MBSE framework we called Pro-
jectDEVS which takes a ProDEVS model and its simulator,

chartCDEVS2TPN
Model

Transformation

TPN Model

TPN2VHDL

Generator

DEVS Model

repository

FMU

repository

GUI

import
importexport

export

Binary
file

graph

FPGA

exploration

ODE solver

output

reachability

Code

checked
model

Description

Model

Controller

TPN2J ava

Generator
Code

animation

TPN2C

Generator
Code

TINA Toolbox

properties

ODEINT

ProDEVS

PDES2TPN
Model

TransformationPDEVS2TPN
Model

Transformation

file
Binary

FMI++COMM

Fig. 1. ProjectDEVS Architecture

automatically transforms them into a TPN and deploy the latter
as a program, as digital hardware or as a mix of both. Petri net is
very efficient to describe parallelism and concurrency (resource
sharing, synchronization) between tasks or processes. The ad-
vantages of using TPN as a backbone between a ProDEVS
model and the platform dependant virtual prototype are : (1) the
development of new simulators are not hand coded anymore,
there are specified using temporal logic and designed using
TPN, without any impact on the deployment phase, (2) a model
can be checked against a formal specification to some extent
(formal methods are subject to combinatory explosion) and we
can ensure that the virtual prototype is correct, (3) formal verifi-
cation can be coupled with simulation statically or dynamically
(during run-time).

In the next section the architecture of the framework is detailed.
Then, Section 3 defines the DEVS formalism, the principles of
PDEVS simulator and the class of TPN we use. In Section 4,
the rules for implementing a DEVS atomic component and a
PDEVS simulator are given. Section 5 describes and illustrates
the method we employ to verify the implementation and finally,
perspectives and issues are given in Section 6.

2. ARCHITECTURE

The architecture of the ProjectDEVS framework is illustrated
on figure 1. It includes ProDEVS, the model designer of Pro-
jectDEVS, which includes a GUI offering a block-oriented
view for model design. A model is constructed with concur-
rent components that can be imported from ProDEVS compo-
nents repository or designed from scratch using input/output
timed automata that we specially profiled for DEVS formal-
ism, see Vu et al. (2015). User can create its own repository.
Basically, the repository contains components for continuous
systems, such as QSS integrators, or quantizers and switches
for hybrid systems. We recently integrated FMI cosimulation
and model exchange features, see MODELISAR (2014) for
FMI specification, such that Fonctional Mockup Units (FMU)

can also be imported in the model. We have developed a
DEVS-FMI wrapper to synchronise discrete-time simulators
with discrete-event simulators using FMI++. The FMI++ li-
brary is a utility package, implemented by Widl et al. (2013),
that provides simulation functionalities for FMI model ex-
change and cosimulation specification. It includes a numerical
integrator and a state record mechanism for roll-back. From
a model description captured in the GUI and a given abstract
simulator, a TPN model is generated. This TPN can be exported
to the TINA toolbox, see Berthomieu et al. (2006), for model
checking.

Then, a description of the structure of the Petri Net with ded-
icated components to implement places and transitions, and
boolean or logical equations to represent enabling and firing
conditions can be generated for simulation. This generated
code is associated to a Time Manager which is in charge of
simulation time events synchronisation and Action Managers
to handle data computation in reaction of transition firing. A
simulation clock provides events to make the internal TPN state
evolve. Combined with a Run Manager aware of the given TPN
structure, the prototype can be interfaced to a controller for sim-
ulation controls (run, step, break) and data visualisation. Data
is recorded on a value change event, and stored along with the
associated simulation time. A mapping between the ProDEVS
model domain and the platform dependant variables is loaded
into the controller for data charts. For software deployment, we
have Java and C code generators that provide binary code which
is interfaced with the controller. For hardware, a VHDL code
is generated in a synthesizable form which can be used on a
FPGA. The component representing the model is then wrapped
in a register-based structure which can be adapted to most bus
interfaces. Then, the simulator is interfaced with the controller
through an Ethernet network using a small program running
on a processor inside the FPGA. Interfaces for buses used by
Xilinx and Altera, AXI and Avalon, are generated along with
the model code.

3. DEFINITIONS

3.1 Discrete Event System Specification

The following definition is taken from Zeigler et al. (2000). A
DEVS atomic component is a tuple 〈X,Y, S , δext, δint, λ, ta〉 in
which :

• X = {(p, v)| p ∈ I ports, v ∈ Xp}, is a set of input ports and
their values, Y = {(p, v)| p ∈ Oports, v ∈ Yp}, is a set of
output ports and their values, and S is a set of sequential
states,

• δext : Q× X → S , is the external transition function which
defines how the state changes when an input event occurs:
· Q = {(s, e)|s ∈ S , 0 ≤ e ≤ ta(s)} is the total state,
· e is the elapsed time since the last event,

• δint : S → S , is the internal transition function which
defines how the state changes when a time event occurs,

• λ : S → Y , is the output function which defines the output
to produce at a time event,

• ta : S → R+
0,∞, is the time advance function which is used

to determine the lifespan of a state.

DEVS defines an abstract syntax, whence transition functions
and/or output functions may execute simple actions described
by algebraic equation or complex functions with iterative loop
and branch or even a FMU step.

An informal specification of PDEVS abstract simulator is now
given. Every component is in a state s ∈ S at a given time
and must be in that state for a period e = ta(s) if no input event
occurs. When the time e has elapsed without any input event has
occurred for some imminent components, an internal time event
occurs, whence, they simultaneously calculate y = λ(s) and
when every output computation is finished, they simultaneously
trigger their internal transition function δint(s). If instead, for
some components, an input event x ∈ X occurs before the
expiration of e, these non imminent components trigger their
external transition function δext(s, e, x). Communications are
asynchronous, i.e. non-blocking with the possibility of message
loss. If upon receipt of a message on the input port x, a
component is in a state s listening on x i.e., δext(s, e, x) ∈ δext,
the message will be processed, otherwise it will be lost and
ignored by the receiver. There may be multiple components
which are candidates for internal time event at the same time.
As a result of coupling, they may also receive input event at the
same time. When ta(s) = ∞, only an input event will leave the
state. When ta(s) = 0, the component is immediately imminent.

3.2 Time Petri Net

The following definitions are taken from Berthomieu et al.
(2007).

Definition 1. A Time Petri Net with priority (PrTPN) is a tuple
〈P,T, Pre, Post,�,m0, Is〉 with :

• P,T, Pre, Post,m0 is a Petri Net where P is the set of
places, T is the set of transitions, m0 is the initial marking
and Pre, Post : T × P → R+

0,∞ are pre and post incidence
matrices respectively.

• Is : T → I+ is the static interval function with I+ the
set of non empty real intervals with non negative rational
endpoints.

• � is the priority relation, assumed irreflexive, asymmetric
and transitive. Priority are represented by oriented arcs

between transitions, the source transition having higher
priority.

Moreover, we use various arcs implemented in TINA. The
standard arc is written p → t with p ∈ P and t ∈ T gives
Pre(t, p) = 1 or t → p with p ∈ P and t ∈ T gives Post(t, p) =
1. The inhibitor arc, written p (t disables t if there is at least
one token in p. The reset arc written p

∗
→ t removes all tokens

of p when t is fired. The reset arc is non blocking for a transition
t, i.e. Pre(t, p) = 0. The read arc written p � t is blocking, i.e.
Pre(t, p) = 1, but does not modify the marking of p after firing
of t.

Definition 2. A state of a TPN is a pair s = (m, I) in which
m is a marking and I is a function called the interval function.
Function I : T → I+ associates a temporal interval with every
transition enabled at m.

Definition 3. The semantics of a PrTPN 〈P,T,Pre,Post,�,m0,Is〉

is the timed transition system 〈S , s0, 〉 where:

• S is the set of states (m, I) of the PrTPN
• s0 = (m0, I0) is the initial state, where m0 is the initial

marking and I0 is the static interval function Is restricted
to the transitions enabled at m0.

• ⊆ S × T ∪ R+ × S is the state transition, defined as
follows ((s, a, s′) ∈ is written s

a
 s′).

• we have (m, I)
t
 (m′, I′) iff t ∈ T and:

(1) m ≥ Pre(t), t is enabled at state m
(2) 0 ∈ I(t), t is fireable instantly
(3) (∀t′ ∈ T) then (m ≥ Pre(t′) and (t′ � t) ⇒ 0 < I(t′)),

there is no transition with higher priority that satisfies
1 and 2

(4) (∀k ∈ T)(m′ ≥ Pre(k) ⇒ I′(k) = if k , t ∧
m − Pre(t) ≥ Pre(k) then I(k) else Is(k)). After the
firing of t then m′ = m − Pre(t) + Post(t), transitions
that remain enabled (except t) preserve their interval
before firing, all others transitions are associated with
their static interval.

• we have (m, I)
θ
 (m′, I′) iff θ ∈ R+ and :

(5) (∀k ∈ T)(m ≥ Pre(k) ⇒ θ ≤↑ I(k)), a temporal
transition θ is possible if θ is not larger than the right
endpoint of any transition enabled.

(6) (∀k ∈ T)(m ≥ Pre(k)⇒ I′(k) = I(k)−θ, θ is removed
from the interval of every transition enabled before
firing of the timed transition.

Every enabled transition must be fired between its associated
interval. Our TPN implementation uses only punctual bounded
intervals, i.e. under the form [θ; θ]. In Berthomieu et al. (2007),
the authors have found a convenient abstraction of the state
graph S G = (S , s0,) which preserves Linear Temporal
Logic (LTL) model checking and marking and decides state
reachability. They also cite two alternate constructions of an
abstraction, for the subclass of TPNs in which all transitions
have bounded static intervals, which preserves Combinatory
Temporal Logic (CTL) model checking and branching.

4. PDEVS2TPN RULES

A ProDEVS model is a composition of N atomic components
exchanging messages. A TPNDEVS (the TPN implementation
of a ProDEVS model and its simulator) is a set of N + 1
TPNs sharing common places. For every atomic component
we have a TPN with one place for every input and output

pck,s

tim,s

pimm

(a) clock management if ta(s′) 6= ∞

tλ,s

(b) output function λ(s)

pimm

py

ps

(c) internal transition function δint(s) = s′ (d) external transition function δext(s, e, x0) = s′

ps′

tδint,s

px0
pxi

...

pck,s′

if ta(s′) 6= ∞

[ta(s); ta(s)] [0; 0]

[0; 0]

ps

ps′

tδext,s

px1
pxi

...

pck,s′

if ta(s′) 6= ∞
[0; 0]

px0

* * * *

pck,s

*

pimm pimm

*

pspk,n

pspkd,n

pmv,n

pmvd,n

Fig. 2. TPN blocs for atomic component

port. A connection from an output port to an input port results
in the fusion of the two corresponding places. Another TPN,
the coordinator, is used for synchronisation and scheduling
of atomic components. Atomic components and coordinator
communicate via places. The figure 3 illustrates a TPNDEVS
structure where an arrow represents a fusion of places.

A1 A2 A3

y0 x0
y0 y0

x1

A1 A2 A3

py0 px0 py0
py0

px1

Coordinator

x0

px0

(a) DEVS model

(b) TPNDEVS model

Fig. 3. TPNDEVS structure

4.1 TPN model of the atomic component

An atomic component is given by 4 elementary blocs as shown
in figure 2: local clocks management, outputs functions, inter-
nal and external transitions.

For every atomic component n = 〈X,Y, S , δext, δint, λ, ta〉 we
define a TPN 〈Pn,Tn, Pre, Post,m0, Is〉 such that:

(1) for every state s ∈ S we have a place ps ∈ Pn
(2) for every input port x ∈ X we have a place px ∈ Pn
(3) for every output port y ∈ Y we have a place py ∈ Pn
(4) we have places pspk,n, pspkd,n, pmv,n, pmvd,n ∈ Pn which are

used for communication with the coordinator
(5) we have a place pimm ∈ Pn. When pimm is marked, it

denotes that the component is imminent
(6) for every state s ∈ S such that ta(s) , ∞ we have a place

pck,s ∈ Pn and a transition tim,s ∈ Tn. We have pck,s → tim,s,
tim,s → pimm and Is(tim,s) = [ta(s); ta(s)]

(7) for every output function λ(s) ∈ λ we have a transition
tλ,s ∈ Tn such that Is(tλ,s) = [0; 0], i.e. the firing is

immediate, pimm � tλ,s and tλ,s → py, the marking of
py ∈ P denotes that a data is available in the output port
y ∈ Y and tλ,s denotes the firing of the output function
from s

(8) for every internal transition function δint(s) ∈ δint, we have
a transition tδint ,s ∈ Tn such that Is(tδint ,s) = [0; 0] and
pimm → tδint ,s. The marking of ps denotes that the current
state is s. For every internal transition function δint(s) = s′,
we have ps → tδint ,s and tδint ,s → ps′ , and for every input
port x ∈ X, we have px

∗
→ tδint ,s. Finally, if ta(s′) , ∞ we

have tδint ,s → pck,s′

(9) for every external transition function δext(s, e, x) ∈ δext,
we have a transition tδext ,s ∈ Tn such that Is(tδext ,s) = [0; 0].
For every external transition function δext(s, e, x) = s′, we
have ps → tδext ,s, tδext ,s → ps′ and px → tδext ,s, and for every
input port x′ ∈ X (except x), we have px′

∗
→ tδext ,s. Finally,

we have pimm
∗
→ tδext ,s, pck,s

∗
→ tδext ,s and if ta(s′) , ∞ we

have tδext ,s → pck,s′ .

Consider an atomic component n at the initial state s ∈ S , then
pck,s and ps are marked. The only condition for firing tim,s is the
marking of pck,s. If pck,s remains marked for time ta(s) because
no external event has occurred, then tim,s is fired and pimm is
marked denoting that n is imminent. An output function is then
triggered by the firing of tλ,s which produces a token in py.
Then, the internal transition function is triggered by firing tδint ,s.
Every input port place is emptied and the component is in a
new state s′ denoted by the marking of ps′ . If an input external
event on port x ∈ X has occurred before ta(s) expired, denoted
by the marking of the input port place px, the external transition
function is triggered by the firing of tδext ,s. Every input port place
is emptied and the token in pck,s is consumed. n is now at state
s′ denoted by the marking of ps′ and a new cycle starts. If n
receives an input event on x, m(px) = 1 while n is imminent,
m(pimm) = 1, then there is a conflict between tδint ,s and tδext ,s that
can be resolved by adding a priority.

4.2 TPN model of a ProDEVS model and its PDEVS simulator

The semantic of a TPNDEVS model is a game, where the
players are the atomic components, that takes place in two

pspk,1

tspkpass,1

pspkd,1

[0; 0]

pspk,n

tspkpass,n

pspkd,n

[0; 0]

pmv,1

tmvpass,1

pmvd,1

[0; 0]

pmv,n

tmvpass,n

pmvd,n

[0; 0]

tmv

tspk

p1immN

tλl,1

tλ1,1

pimm,1

*

tλl,n

tδext1
,1

tδextt ,1

tδint2
,1

px1,1
pxi,1

...

**

tλ1,n

1........n

pimm,n

px1,n
pxi,n

...

**
tδext1

,n

tδextt ,n

tδint2
,n

Fig. 4. PDEVS coordinator

stages for every simulation step. In the first stage, players can
speak by triggering an output function and in the second stage
they can move by triggering an internal or an external transition
function. For each stage players can also pass. Each stage is
modelled by a Petri Net parallel structure. For each simulation
step, the players will speak in parallel, then synchronise each
other, then move in parallel and finally synchronize again.

A PDEVS coordinator is a PrTPN 〈P,T, Pre, Post,�,m0, Is〉

such that:

(1) we have a place p1immN ∈ P denoting the number of
imminent components at a given simulation cycle and we
have transitions tspk, tmv ∈ T denoting the time to speak or
to move respectively.

(2) for every atomic component n ∈ N we have:
• places pspk,n, pspkd,n, pmv,n, pmvd,n ∈ P and transitions

tspkpass,n, tmvpass,n ∈ T . pspk,n and pmv,n denoting that
component n can move and speak respectively. pspkd,n
and pmvd,n denote that n has spoken or moved respec-
tively. tspkpass,n and tmvpass,n are fired if n pass its turn
at stage speak and move respectively

• pimm,n (tspkpass,n, denotes that a component can pass
its turn only if it is non imminent. For every tim,s ∈ Tn
we have tim,s � tspkpass,n

• for every tλ,s ∈ Tn, we have pspk,n → tλ,s, tλ,s →
pspkd,n and tλ,s → p1immN

• for every tδint ∈ Tn, we have pmv,n → tδint , tδint →

pmvd,n, tδint � tmvpass,n. Idem for every tδext ∈ Tn

• for every px ∈ P we have px
∗
→ tmvpass,n.

The graphical representation of the TPN model of a ProDEVS
model and its PDEVS simulator is given on figure 4.

p1immN is used to preserve deadlock if every component is in
state s with ta(s) = ∞. It denotes that at least one component
among N must be imminent to continue the game. It is the
only place of the all TPNDEVS which is N-bounded. All others
places are 1-bounded.

The initial marking gives one token in places pspk,1, ..., pspk,n
denoting to the players that they can speak. pspk,n is consumed
either by the firing of an output function transition or by

tspkpass,n if pimm,n has no token. Every component can trigger
an output function if it is imminent otherwise it passes. At
the end of this stage, tmv is enabled. Then, the marking of
pmv,1, ..., pmv,n denotes it’s time to move. A component n can
trigger an external or internal transition function or pass by the
firing of tmvpass,n. Note that input port places are emptied by
the firing of tmvpass,n. Indeed, it is possible that a non imminent
component receives inputs while it is in a state that do not
accept these inputs. When every component has moved a new
cycle starts.

5. VERIFICATION

Model checking consists in applying temporal logic to seman-
tics. To reason by model checking on a ProDEVS model, the
transformation must be sound. A transformation is sound if the
semantics of the ProDEVS model with its simulator, called the
abstract semantics, cover all possible cases of the semantics of
the corresponding TPN, called the concrete semantics. Whence,
a logic formula is satisfied in the concrete only if it is satisfied in
the abstract. We have manually defined abstract semantics with
timed transition system (S , s0,) as given by definition 3. The
bottom graph in figure 5 shows a part of the abstract semantics
for the phase speak with three imminent components in the
model. Transition labels a, b and c mean that component A,
B and C respectively have spoken, i.e. an output event has
been computed. This graph says that, in PDEVS, if multiple
components are candidate for time internal event, the outputs
can be computed in parallel. Then, the abstract semantics is
mapped on the concrete semantics as illustrated in figure 5. The
top graph shows the part of the state graph given by TINA with
a mapping to the abstract semantics. We can observe that the
abstract semantics covers all the possible cases of the concrete
semantics and that markings, states and traces are preserved.

The figure 6 shows a part of the abstract semantics for the
phase speak then move with three components A, B, C. a, b
and c are like before, d (respectively e) means that component
A (respectively B) has moved, i.e. an external or an internal
transition has been computed. f (respectively g) means that
component C has computed an internal transition (respectively
an external transition). This case can happen if A, B and C

tspk

tm v

a

b

c
a

a

a
c

b

b

c
c

ProDEVS state space

TPN state space

tspk

time

time

tλ , s ,B

tλ , s ,B
tλ , s ,A

ti m m ,s ,Btλ , s ,A

ti m m ,s ,A
tλ , s ,A

ti m m ,s ,B

ti m m ,s ,A

tλ , s ,B

ti m m ,s ,B

ti m m ,s ,A

b

Fig. 5. Abstract semantics and mapping to concrete semantics

are all candidates to internal time event, and if C is in a state
that listens on external transition g with an input connected
to the output triggered by the output function a. There is an
unresolved non-determinism in the ProDEVS model because
an internal event time is equal to an input external event time
which leads to consider two transitions that potentially brings
the system to different states. Again, after the mapping, one can
observe that the abstract semantics covers all the possible cases
of the concrete semantics and that branching is preserved.

tspktm v

tspk

a

b

c
a

a

a

b

c

b

b

c d

e

f d

d

d
f

e

e

f

g

g
g

f f

g

d

e

d

e

tspk

ProDEVS state space

time

b

Fig. 6. Abstract semantics with conflict between internal and
external events

6. CONCLUSION

This paper shows the integration of a Time Petri Net implemen-
tation of a parallel simulator into a modelling and simulation
tool for virtual prototype development. A designed model and
its simulator are automatically transformed into a correct TPN.
Model checking, to verify absence of deadlock, detect non de-
terminism, ensure reachability or safety, can be performed onto
the abstract model domain using the TINA toolbox. However,
as TINA only handles integers for variable and time, the data
part, i.e. the action managers of the ProDEVS model are not
part of the state space if it is not finite (every variable including
time advance function is a bounded integer). Moreover every
time advance function must be static.

The TPN model is then automatically deployed on a platform
via code generators. This has at least two advantages. First,
we feel more confident and comfortable in implementing sim-
ulators with TPN rather than manually code it which is error
prone while TPN2Code generators are developed once for each
execution platform then works for every simulator and every
model. Second, in DEVS, a simulator is constructed hierarchi-
cally in order to preserve causality violation with local clock

synchronisation at each level. Our transformation flattens the
model so it improves the performance of the simulation by
eliminating intermediate coordinators and message passing.

The other source of overall performance improvement of the
simulation comes from the hardware virtual prototype. Com-
pared to software execution, there are two major differences in
the run time: the hardware generation can be very long (up to
quarter an hour), where the software code compilation takes
only seconds. But the hardware execution time is unrivaled by
software: only a few clock cycles are used to perform a full
simulation step, where the software code is dependant on a
sequential execution scheme which slows it down. Thus, for
small models very quickly executed on software, one will have
no interest in using the hardware execution. For large models
and very long simulations times however, the hardware penalty
coming from the circuit generation is very quickly offset by the
gain in execution time.

REFERENCES

B. Berthomieu, F. Vernadat. Time Petri Nets Analysis with
TINA. In Proceeding of 3rd Int. Conf. on The Quantita-
tive Evaluation of Systems (QEST), IEEE Computer Society,
2006.

B. Berthomieu, F. Peres, F. Vernadat. Model-checking Bounded
Prioriterized Time Petri Nets. In Proceeding of 5th Auto-
mated Technology for Verification and Analysis Symposium
(ATVA), 2007.

F. E. Cellier and E. Kofman. Continuous System Simulation.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

A. Chow. Parallel DEVS: a Parallel, Hierarchical, Modular
Modeling Formalism and its Distributed Simulator. SCS
Transactions on Sim 13(2), 1996.

E. R. Christensen. Hierarchical Optimistic Distributed Simula-
tion:Combining DEVS and Time Warp. Doctoral Disserta-
tion, University of Arizona, 1990.

A. Ferscha. Probabilistic Adaptive Direct Optimism Control in
Time Warp. In Proceedings of the 9th Workshop on Parallel
and Distributed Simulation, 1995.

D. Jefferson and H. Sowizral. Fast Concurrent Simulation
Using the Time Warp Mechanism. In Proceedings of the SCS
Distributed Simulation Conference, 1985.

MODELISAR Fonctional Mockup Interface specification 2.0.
https://www.fmi-standard.org/. (2014)

Claudius Ptolemaeus, Editor. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, 2014.

G. Reisinger and H. Praehofer. Object Oriented Realization of
a Parallel Discrete Event Simulator. In Proceedings of the
Eurosim. Congress, Vienna, Austria, 1995.

L. H. Vu, D. Foures, V. Albert. ProDEVS: An Event-driven
Modeling and Simulation Tool for Hybrid Systems Using
State Diagrams. In Proceedings of 8th International Con-
ference on Simulation Tools and Techniques (SIMUTOOL),
Athens, Greece, pp. 29-37, 2015

E. Widl, W. Müller, A. Elsheikh, M. Hörtenhuber, and P.
Palensky. The FMI++ Library: A High-level Utility Package
for FMI for Model Exchange. In Proceedings of the IEEE
Workshop on Modeling and Simulation of Cyber-Physical
Energy Systems, 2013.

B. P. Zeigler Theory of Modeling and Simulation. Academic
Press, 1st edition, 1976.

B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling
and Simulation. Academic Press, 2nd edition, 2000.

