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Abstract:
This paper presents the enhancements introduced in the second version of RMTool, an open-
source Matlab-based interactive software for teaching mobile robotics in introductory courses.
In the first version only navigation problem of one robot has been considered (the robot should
avoid obstacles and reach a desired position). In the actual version, the toolbox introduces
new algorithms to cope with modeling and path planning of multiple identical robots, where
the final states of the robots and the regions visited along trajectories should satisfy Linear
Temporal Logic (LTL) or Boolean-based formulas. The paper includes extensive simulation
results performed in RMTool, pertained to multi-robot path planning based on an LTL or
Boolean team specification.
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1. INTRODUCTION

Matlab is a numerical computing environment widely used
in industry by engineers and scientists, as well as in
education. Many mobile robotics simulator toolboxes had
been developed in Matlab. A precursor work of this field,
simulation industrial robots, was (Corke, 1996). Others
like SIMROBOT (Hrabeck, 2001) or MRSim (Couceiro,
2012), an extension from the first one, allow to simulate
the behavior of one or more mobile robots that could
be equipped with several virtual sensors. A MATLAB
toolbox containing various routines related to planning
and trajectory following for mobile robots is described in
(Corke, 2011).

RMTool (Gonzalez et al., 2015) is an open-source Matlab-
based interactive software tool for teaching mobile robotics
in introductory courses, focused on the following concepts:
(a) robot modeling, (b) path planning, and (c) motion
control, rather than on the program implementation (the
users do not need to have any previous knowledge on
Matlab or programming).

Two of the most popular robot kinematic models are
considered in order to simulate the robot’s motion (Dudek
and Jenkin, 2010): (i) car-like robot and (ii) differential-
drive robot. (i) The first one is a Four-wheeled car-like
robot modeled with fixed rear wheels and rotatory (about
the vertical axis) front wheels to steer the vehicle. (ii) The
second one uses two parallel driving wheels mounted on an
axis and combines different speed and spin direction for
each wheel to drive the vehicle in the desired way. Both
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models can be configured with respect to settings as the
robot radius, velocity and distance between the wheels.

RMTool includes different methods for mobile robots’ path
planning. The path planning problems solved in the first
version, refers to finding a path (reference trajectory)
from an initial point to an end point in a known 2D
environment cluttered with convex polygonal obstacles
and one robot. Two general strategies were considered:
(i) cell decompositions and (ii) roadmaps. The technique
of cell decomposition divides the free space into a set
of regions having the same geometrical shape (De Berg
et al., 2000)(i.e., triangular, trapezoidal, polytopal, or
rectangular shape). From this partition a finite graph is
constructed and running the Dijkstra algorithm on it, we
obtain the sequence of cells to be followed by the robot
from the initial to the desired position while avoiding the
obstacles.

The roadmap strategy identifies a set of fast routes within
the free space. Two methods are developed using this
strategy: (a) visibility graph and (b) generalized Voronoi
diagram. The visibility graph approach (V-graph) solves
a minimum-length path by following a sequence of edges
connecting a set of obstacle vertices visible one from the
other, as well as the initial and end points (Siegwart et al.,
2011), (Choset, 2005). Generalized Voronoi diagram in
contraposition tends to maximize the distance between
the robot and obstacles in the map (Dudek and Jenkin,
2010). For polygonal obstacles this diagram contains only
equidistant points from two or more closest obstacles and
this leads to straight and parabolic segments.

As it can be seen in Fig. 1, the toolbox presents a
friendly GUI that enables the user to easily insert the
input parameters in order to perform the simulations,



Fig. 1. The main window of RMTool. The red box indicates
the user input for new functionalities presented in this
work.

and it displays the results in a graphical environment. In
this figure is shown the new menu to select the added
functionalities available in the tool.

The recent enhancements reported by this work implement
new algorithms for the path planning problem, where
a team of identical robots should perform some motion
tasks. The environment contains a set of known and fixed
regions of interest, while the team mission belongs to
classes of specifications on visiting or avoiding the regions
of interest. Two algorithmic planning methods are intro-
duced to RMTool, each for a task specification formalism:
LTL (Linear Temporal Logic) missions by using transition
system models (described in Sec. 2), and boolean-based
missions by using Petri net models (described in Sec. 3).

2. LTL MISSIONS AND TRANSITION SYSTEM
MODELS

In this new version of the toolbox, a team of n identical
and omnidirectional point robots is assumed to move in
a rectangular environment. This environment contains a
set Π of regions of interest and the robots are deployed
in it. The environment is partitioned in a finite set of
disjoint cells, by using in this case a cell decomposition
approach (LaValle, 2006; Kloetzer and Mahulea, 2014)
using triangular shapes. After this decomposition, each
region of interest πi corresponds to one or more cells of
the environment, and if one or more robots are located in
any of these cells the proposition πi is considered satisfied
(it is true).

Here, instead of giving end position for each robot, the
motion task for the entire team is given by a Linear
Temporal Logic (LTL) formula (Baier and Katoen, 2008).
LTL is often encountered as a formalism for expressing
high level robotic tasks (Fainekos et al., 2009; Ding et al.,
2011; Guo et al., 2014). This toolbox considers LTL X

formulas, that unlike standard LTL do not use the “next”
operator, which is meaningless for continuous trajectories.
The set of propositions Π = {Π1,Π2, ...,Π|Π|} is used
to give an LTL X formula, ϕ, defining the task that
the team of robots should fulfill. An LTL X formula is
recursively defined over the set of atomic propositions Π,
by using standard boolean operators (RMTool symbols):
negation (!), disjunction (|), conjunction (&), implication
(->) and equivalence (<->); and temporal operators with

straightforward meaning: until (U), eventually (F ) and
always (G). Due to the logical and temporal operators,
an LTL X task can indicate requirements as avoidance of
some regions until others are visited, subsets of regions to
be visited in a specific order, surveillance (infinite number
of revisits) of some regions etc. Examples on such mission
tasks can be found in the works referred in this paragraph,
as well as in Ex. 1 and Sec. 4.

The main problem that we consider in this section is to
plan the trajectory for each team member, such that the
overall team motion satisfies the imposed LTL X task.
Various formal methods were proposed for this problem
for different assumptions, e.g., regarding knowledge on
environment, heterogenous team, communication among
robots. The purpose of this work is to integrate such
methods in RMTool. We assume identical robots that can
communicate with each other, scenario for which works as
(Ding et al., 2011; Kloetzer and Mahulea, 2015) provide
solutions based on transition system models. This work
integrates these solutions into RMTool, and, for the pre-
sentation completeness, we briefly present in the following
the main operations and ideas behind the involved formal
methods.

Any LTL X formula over set Π can be transformed into
a nondeterministic Büchi automaton that accepts all and
only the input strings satisfying the formula (Wolper et al.,
1983; Gastin and Oddoux, 2001). A Büchi automaton that
corresponding to an LTL X formula over Π is defined as
B = (S, S0,ΣB ,→B , F ), where:

• S is a finite set of states;
• S0 is the initial state;
• ΣB = 2Π is the set of inputs;
• →B is the set of transitions enabled by inputs;
• F is the final state.

The movement of a mobile robot can be abstracted into
a finite state transition system T defined as a tuple T =
(Q, q0, δT ,Π

T , γ) (Kloetzer and Mahulea, 2015),(Belta and
Habets, 2006), where:

• Q is the finite number of states (cells of the environ-
ment’s partition);

• q0 is the initial state (cell) of the robot;
• δT ⊆ Q×Q is the transition relation, with (q, q′) ∈ δT

if q and q′ are neighboring cells and the robot can
move from q to q′ without visiting any other cell;

• ΠT = Π is the set of regions of interest (possibly
overlapping) that can be visited by the robot;

• γ : Q → 2ΠT

is the satisfaction map, where γ(q) is
the set of regions of Π that contain cell labeled by q.

From the transition system T of each robot (the transition
system is the same for all the robots with different initial
state on each one) we obtain a new transition system
TT that models the movement capabilities of the whole
team of n robots, being TT = (QT , q0T , δT , OT , γT , ω

m
T )

(Kloetzer and Mahulea, 2016):

• QT = Qn the cartesian product of Q n-times;
• q0T = (q01, q02, ...q0n) ∈ QT the initial state;
• δT ⊆ QT×QT is the transition relation, defined based

on synchronized individual transitions δT from robot
models T ;



• OT = 2Π is the set of possible observations;
• γT : QT → OT is the satisfaction map, where
γT (q1, q2, .., qn) = ∪ni=1γ(qi);

• ωm
T : δT → N is a weighting function yielding the

number of robots that move during a given transition.

In the transition system TT may be multiple runs (se-
quences of transitions that satisfy the LTL X formula).
To find the solution that minimizes the total number of
movements, a special product automaton A = TT × B is
built, namely A = (SA, SA0, δA, ω

m
A , FA), where:

• SA = QT × S is the set of states;
• SA0 = q0T × S0 is the set of initial states;
• δA ⊆ SA × SA is the transition relation, based on

formal links between team satisfaction map γT and
transitions of Büchi automaton B;
• ωm

A : δA → N is a movement-based weighting function
for transitions of A, inherited from ωm

T ;
• FA = QT × F is the set of final states.

The automaton A extends the one from (Kloetzer and
Mahulea, 2012) adding the number of moving robots for
each transition of TT in map ωm

A .

The automaton A is used to find a run that satisfies the
proposed condition by the LTL X formula. The graph
search used to find the solution uses an algorithm de-
scribed in (Kloetzer and Mahulea, 2015). The algorithm
finds in a single run the optimum paths from an initial
node to all final nodes, and then it finds an accepted run of
A by iterating at most |SA0|+ |FA| searches. The accepted
run of A is projected to individual robot trajectories
(runs of models T ). These are infinite runs having a so-
called prefix-suffix structure. Due to definition of TT , the
robots have to synchronize with each other when moving
between adjacent partition cells. As detailed in (Kloetzer
and Mahulea, 2015), the overall planning method from this
section has a high complexity, mainly due to the number
of states of automaton A, |A| = |B| × |T |n. Note that the
size of A is drastically affected by the number of partition
cells and the number of robots, while size of B can be
in worst cases double exponential in the size of LTL X

formula (Gastin and Oddoux, 2001).

Example 1. Lets consider an environment with 5 re-
gions of interest and two robots deployed as in Fig. 2.
The team of robots has to move such that it satisfies
the LTL X -formula ϕ = F (Π2)&F (Π3)&G(!Π4)&(!Π2 ∪
Π1)&F (Π5&Π6). Basically, the formula imposes that:

• Regions Π2 and Π3 have to be eventually visited;
• Region Π4 should be avoided at all times;
• Region Π2 can be visited only after Π1 was visited;
• The (disjoint) regions Π5 and Π6 should be eventually

occupied at the same time (by both robots).

All the simulations carried out for this study have been
performed on an Intel Intel(R) Core(TM) i5-6600 CPU at
3.30GHz with 16GB of RAM memory.

The solution was computed by performing the following
steps: the LTL X -formula ϕ is translated into a Büchi
automaton B with 8 states; the transition system of each
robot (T ) is computed and has 50 states; the transition
system TT , modeling the team of robots, is computed
in 5.35 seconds with 502 = 2500 states; the product

Fig. 2. Cell decomposition of the environment with 5 re-
gions of interest, where Π1..6 are labeled by characters
A..F respectively. The team has two robots, initially
placed in partition cells p2 and p11.

Fig. 3. Paths for the team of robots (R1,R2) fulfilling the
LTL X -formula ϕ = F (Π2)&F (Π3)&G(!Π4)&(!Π2 ∪
Π1)&F (Π5&Π6).

automaton A = TT × B is created in 39.6 seconds having
20000 states; finally, by a minimum path algorithm on A,
the paths of the robots are computed in 68.61 seconds,
obtaining the robot trajectories illustrated in Fig. 3. This
is one of the existing optimal solutions that solves the
problem with the same number of cells crossed by the team
to reach the objective. The dots along robot trajectories
indicate positions where robots synchronize (by pausing
their motion) when crossing to next trajectory cell.

3. BOOLEAN MISSIONS AND PETRI NET MODELS

The second method included in RMTool for multi-robot is
the one described in (Mahulea and Kloetzer, 2014, 2016)
and briefly presented in the following. In this case, the
team mission is given as a Boolean formula instead of
an LTL X formula. It means that the temporal operators
are not used, but only boolean ones (RMTool symbols):
negation (!), disjunctions (|) and conjunction (&). Conse-
quently, it is not possible to impose a specific sequencing
or other temporal requirements for visiting regions.

The formula ϕ is defined over the set of variables Pt ∪
Pf , where Pt = Π = {Π1,Π2, ...,Π|Π|} and Pf =
{π1, π2, ..., π|Π|}. Pt and Pf refers to the same regions of in-
terest, but Pt suggests regions that should be visited along
the trajectory, while Pf refers to the regions that should
be visited in the last state of a run. Thus, the Boolean-
based requirement allows the user to specify regions that
can be traversed along robot trajectories, final regions that



the robots should reach and never leave, and regions that
have to be avoided along trajectories or in the final states.

The environment is partitioned as in the previous case by
using a cell decomposition approach. Different than the
case from Sec. 2 (where infinitely repeating sequences can
be expressed), the robot trajectories from this section will
have finite length in terms of visited cells. Moreover, the
movement of the whole robotic team is modeled by means
of a Robot Motion Petri Net (RMPN), whose topology
does not vary with the team size. A RMPN is a 4-tuple
Q = 〈N ,m0,Π, h〉, where:

• N = 〈P, T, F 〉 is a Petri net where P is the set of
places that represents the environment partition cells;
T is the set of transitions representing the possibility
of a robot to move between cells, i.e., the firing of a
transition t corresponds to the movement of a robot
from •t = {pi} to t• = {pj}; F ⊆ (P × T ) ∪ (T × P )
is the set of unitary arcs that connect places and
transitions;
• m0 is the initial marking, where each token represents

a robot in a cell, i.e., m0[p] is the number of robots
located in the cell p at the initial state;
• Π∪{∅} is the output alphabet, where {∅} denotes the

empty observation;
• h : P → 2Π is an observation map, such that if pi has

at least one token then observations from h(pi) are
active.

The solution for the problem of finding the optimal paths
for the team of robots is based on solving Integer Linear
Programming (ILP) problems, with formulations detailed
in (Mahulea and Kloetzer, 2014, 2016). The idea is to re-
gard the team trajectory as crossing through a user-defined
number (k) of intermediate configurations m1,m2, ...,mk

(markings of Q), where from mi−1 and mi each robot
moves at most one cell, i = 1, . . . , k. Basically, k represents
the maximum number of intermediate discrete states of
each robot, besides its initial position from marking m0.
This ensures that no spurious solutions (impossible firing
sequences or cycles) are obtained for the RMPN. Theoret-
ically, the upper-bound of k is |T |, but in practice much
lower values of k suffice. Whenever the problem returns a
solution, it is optimal, but if the value of k is too small,
the problem becomes unfeasible. The intermediate config-
urations and the firing count vectors that link them are to
be found by solving an ILP. The ILP constraints include
the state equation of Q, the formula ϕ and links between
observations of Q and binary variables corresponding to
atomic propositions from ϕ. The ILP objective is to mini-
mize the total number of fired transitions (traversed cells)
and to reduce the number of possible congestions (more
robots in the same cell).

ILP problems belongs to the NP-hard complexity class
and the computational cost is usually described by the
number of unknowns and constraints. The solution de-
veloped for this problem has in this case a total number
of (k × (3 × (|P | + |T |) + 4 × |Π| + |P | + 1) constrains
and (k × (|P | + |T |) + 2 × |Π| + 1) integer unknowns
(corresponding to intermediate markings, firing count vec-
tors, binary variables related to ϕ). As can be seen, the
number of robots does not affect on the complexity of the
ILP problem. This means that in the case of including

k var eq ineq ILPc ILPs R1 R2 RT

10 1973 500 580 0.12 0.31 7 11 18

15 2953 750 830 0.27 5.38 12 6 18

20 3933 1000 1080 0.53 124.13 12 6 18

Table 1. Computation values for the full sys-
tem approach. Number of variables is var, of
equality constraints is eq, of inequality con-
straints is ineq. Time (in seconds) to construct
the ILP problem is ILPc, time to solve the ILP
problem is ILPs. R1, R2, RT are the number
of cells visited by the robot R1, R2 and by the

team, respectively.

more robots in the environment, the PN model does not
change its topology. Therefore, in comparison with other
approaches, computational advantages results especially
for more robots, even though the RMPN model is used at
this moment for less expressive specifications than in Sec.
2. For specifications and model assumed in this section,
there are no robot synchronizations necessary during the
team movement.

RMTool offers two possibilities to solve the planning
problem for Boolean-based tasks: (i) the optimal solution
that considers the full model Q, as it has been described
above; and (ii) a suboptimal solution based on a reduced
team model. The reduction of the RMPN consists in
lowering the number of places |P | and transitions |T |.
The idea is to iteratively combine places that correspond
to adjacent cells satisfying the same region(s) of interest.
By this second solution, the ILP formulation has fewer
variables and constraints, but the solution is sub-optimal
in terms of the number of traversed cells. The sub-optimal
method reduces the upper-bound of k significantly, but
a lift process is required for each transition fired in the
reduced model, to find the sequence of transitions in the
original Q. This process involves solving a number of k
Linear Programming Problems (LPPs).

Example 2. We use this method in the environment de-
scribed in Ex. 1. The imposed formula is:

ϕ = Π1&π2&Π3&!Π4&Π5&Π6,

requiring that all regions except Π4 are visited, and a robot
ends its movement in region Π2.The problem has been
solved for different values of k, by the analysis of the full
system Q, as well as by using the reduced RMPN. The
computational cost to create the PN system is under 1
second, having in the case of the full system |P | = 50 and
|T | = 146, while the reduced system has |P | = 7 (one place
for each region of interest, and one for the free space) and
|T | = 12.

The resulting paths obtained by solving the problem on
the full model Q for different values of k can be seen
in Fig. 4 and Fig. 5. Table 1 includes the computation
times for three values of k considered when solving this
example. As observed in Table 1, the time required to find
the solution increases considerably with the value of k,
and, although the path for each robot changes, the total
number of movements for the team of robots is the same,
i.e., k = 10 yields the optimal solution. For k < 10 the
ILP returns no solution, because the formula cannot be
satisfied by less than 11 intermediate robot positions (k +
initial position).



Fig. 4. Solution obtained when using the full model Q for
k = 10

Fig. 5. Solution obtained on the full model Q for k ≥ 15

Fig. 6. Solution using the reduced system for k = 5

Solutions of the same problem when using the reduced
system are shown in Fig. 6, 7 and 8, for different values
of k. Table 2 collects relevant values of these simulations.
Although the solutions are suboptimal, it can be noted
that the computational overhead induced by solving the
k LPPs is negligible, while the time for solving the ILP
on the reduced model is significantly lower than the one
for solving the ILP on the full model Q. The obtained cost
(number of robot movements) has been increased with 38%
in the best case, i.e., k = 15 or k = 20, and with 55% in
the worst case, i.e., k = 10.

4. EXAMPLES / COMPARISON

The planning methods briefly described in Sec. 2 and
Sec. 3, and with detailed formal descriptions in works
referenced therein, were integrated in our Matlab tool-
box RMTool (http://webdiis.unizar.es/RMTool/). For
this, various functionalities were included as separate func-
tions for the involved operations (as construction of tran-
sition system or Petri net model for a team of robots,

Fig. 7. Solution using the reduced system for k = 10

Fig. 8. Solution using the reduced system for k ≥ 15

k var eq ineq ILPt LPPn LPPt R1 R2 RT

5 108 35 72 0.05 5 0.12 13 14 27

10 203 70 107 0.03 10 0.13 13 15 28

15 298 105 142 0.03 15 0.14 18 7 25

20 393 140 177 0.03 20 0.13 18 7 25

Table 2. Relevant values for the solution ob-
tained when using the reduced RMPN. k = 5
is the minimum value accepted to solve the
problem. Number of variables is var, of equal-
ity constraints is eq, of inequality constraints is
ineq. ILPt is the time required to solve the ILP
problem, LPPn is the number of LPPs to solve,
LPPt is the time required to solve all LPPs.R1,
R2, RT are the number of cells visited by the
robot R1, R2 and by the team, respectively.

product automaton, ILP formulation etc.). The graph-
ical interface of RMTool also provides quick access to
these planning solutions. Additional software tools needed
for running these functionalities include CDD - (Fukuda,
2016; Torrisi and Baotic, 2005) - for performing polyhe-
dral operations useful in cell decompositions, LTL2BA -
(Gastin and Oddoux, 2001) - for converting LTL formulas
to Büchi automata, and Cplex - (IBM, 2016) - for solving
ILPs and LPPs.

This section provides simulation results for the above
presented path planning algorithms and outlines some
advantages and limitations of each method.

Table 3 includes the size of involved transition systems
and the computation times for solving an LTL mission
in various scenarios. As expected, these numerical results
concord with the size of A given in Sec. 2, in the sense
of observing the drastic influence of the team size on
the computation demands (rows 1-4 and 5-8). Note that,



despite of size of A, the scenario from row 9 (i.e., 5 regions
of interest, 2 robots and 9 states in B) is faster that the one
from row 4 (i.e., environment with one region of interest,
4 robots and 2 states in B). This is mainly because most
of the time is devoted to the construction of A, and in our
implementation this construction is generally slowed down
more by the size of TT rather than the size of B.

Tables 4 and 5 show the results obtained when using
Boolean missions and full, respectively reduced Petri net
models. For allowing computation comparisons with LTL
missions, the first 8 rows of Tables 4 and 5 refer to the
same task as the first 8 rows of Table 3 (reachability of
a region of interest). The scenario from the ninth row of
Tables 4 and 5 is not as rich as the last one from Table 3,
because of the restricted expressivity of Boolean missions
when compared with LTL ones.

Computation times from Tables 3, 4, 5 suggest that, as
long as the team specification can be expressed as a
Boolean mission, one should use the approach from Sec. 3.
However, if the mission has to include temporal specifica-
tions (e.g., order of visiting regions, synchronization when
entering disjoint regions), one has to use the method from
Sec. 2.

As expected from Sec. 3, Tables 4 and 5 show that the team
size has negligible influence on the computation time when
using Petri net team models. Although all times are small,
one can observe that in some cases the reduced system
(Table 5) is slower than the full one (Table 4). This is
because of additional LPP problems that are solved for
lifting the solution from the reduced model to the path in
the full model. Thus, whenever the size of the full model
Q is relatively small, there is no need to use the sub-
optimal method based on the reduced system. However,
for many cells in environment partition, the benefits of
using the reduced system are two-folded: (1) the size of
the model is reduced and (2) smaller values of parameter
k can suffice for obtaining a solution. Both benefits (1) and
(2) basically reduce the complexity of ILP problem, at the
cost of obtaining a sub-optimal solution.

Unlike the method from Sec. 2, the computational time
required by the approach based on Boolean missions
and Petri net models can decrease when increasing the
team size n. The intuition behind this is that for more
robots there may be sufficient lower values of k (maximum
number of cells traversed by a robot) in obtaining a
solution. The influence of k on the size of the ILP problem
was given in Sec. 3. The previous remark is exemplified
in Table 6, when the same formula (visiting all regions of
interest) is solved for one robot (rows 1,2) and for 10 robots
(rows 3-7). As mentioned in Sec. 3, the number of robots
does not afect to the size of the Mixed Integer Linear
Programing (MILP) problem that solves the path planning
for the team. Nonetheless in an environment divided in a
big set of cells, the parameter k, i.e., the maximal number
of cells that a robot need to cross to satisfy the formula,
impacts the MILP problem. Because of that, in a mission
where lots of regions of interest have to be visited, if the
number of robots in the team is reduced, the min value for
the parameter k should be bigger, hence the computational
cost too. On the contrary if we introduce more robots to
the team the min value of k is lower, thus the problem is

|Π| R T TT tTT
B A tA trun t

1 1 8 8 0.02 2 16 0 0 0.03

1 2 8 64 0.02 2 128 0.1 0.03 0.06

1 3 8 512 0.35 2 1024 0.52 0.55 1.42

1 4 8 4096 108.88 2 8192 616.8 25.59 751.27

2 1 14 14 0.02 2 28 0 0.02 0.04

2 2 14 196 0.10 2 392 0.05 0.087 0.23

2 3 14 2744 7.37 2 5488 23.21 7.33 37.9

2 4 14 38416 19675.1 2 76832 118843 1515 140033.1

5 2 32 1024 1.03 9 9216 8.71 15.23 24.97

Table 3. Results of solving an LTL mission,
with different numbers for regions of inter-
est and for robots. For the first eight rows,
the LTL formula is ϕ = F (Π1), and for
the last row ϕ = F (Π1&Π2)&(!(Π1&Π2) ∪
(Π5))&(!(Π1&Π2)∪ (Π4))&(!(Π1&Π2)∪ (Π3)).
|Π| is the number of regions of interest; R is the
number of robots; T represents the number of
environment cells; TT is the number of states
of the transition system for the team of robots;
tTT

is the time to compute TT ; B is the number
of states of the Büchi automaton for ϕ; A is
the number of states for the automaton used to
find the robot paths; tA is the time to create A;
trun is the time to find the path that satisfies
the formula ϕ; t is the total computation time.

|Π| R k Q var. eq. ineq. t

1 1 10 8P/20T 283 80 93 0.02

1 2 10 8P/20T 283 80 93 0.01

1 3 10 8P/20T 283 80 93 0.03

1 4 10 8P/20T 283 80 93 0.03

2 1 10 14P/38T 525 140 163 0.05

2 2 10 14P/38T 525 140 163 0.05

2 3 10 14P/38T 525 140 163 0.08

2 4 10 14P/38T 525 140 163 0.06

5 2 11 32P/92T 1375 352 409 0.15

Table 4. Results for solving a Boolean mis-
sion with full Petri net models. For the first
eight rows the task is ϕ = Π1, and for the
last row ϕ = π1&π2&Π3&Π4&Π5. |Π| is the
number of regions of interest; R is the number
of robots; k is the maximum number of inter-
mediate markings; Q is the size of Petri net
model, in form (number of places / number of
transitions); var./eq./ineq. are the number of
variables/equality constraints/inequality con-
straints of the ILP problem; t is the time re-

quired to solve the problem.

solved in shorter time, being usefull this method for big
teams of robots in cases where the computational cost is
relevant, e.g., real time problems.

5. CONCLUSION

This work reports recent enhancements that were included
in the RMTool, a MATLAB toolbox with an interactive
graphical user interface dedicated to mobile robot path
planning. These enhancement refer to planning the move-
ment of a team of robots, starting from a requirement
formulated over a set of regions of interest defined in the
environment. The team mission formalism belongs to one



|Π| R k Q var. eq. ineq. t

1 1 10 2P/2T 43 20 27 0.02

1 2 10 2P/2T 43 20 27 0.03

1 3 10 2P/2T 43 20 27 0.03

1 4 10 2P/2T 43 20 27 0.06

2 1 10 3P/4T 75 30 42 0.03

2 2 10 3P/4T 75 30 42 0.04

2 3 10 3P/4T 75 30 42 0.01

2 4 10 3P/4T 75 30 42 0.02

5 2 10 6P/10T 171 60 91 0.12
Table 5. Results for solving the same tasks as
in Table 4, by using reduced Petri net models.
The header row contains the same information

as in Table 4.

|Π| R k Q var. eq. ineq. RT Fval. t

10 1 32 66P/194T 8341 2112 2228 32 33 140.8

10 1 33 66P/194T 8601 2178 2294 32 33 120.1

10 10 10 66P/194T 2621 660 776 36 35 0.42

10 10 11 66P/194T 2881 726 842 36 35 1.22

10 10 12 66P/194T 3141 792 908 38 33 1.86

10 10 13 66P/194T 3401 858 974 37 31 3.55

10 10 14 66P/194T 3661 924 1040 36 28 2.38

Table 6. Results for solving the
same Boolean mission for different
number of robots. The task is ϕ =
Π1&Π2&Π3&Π4&Π5&Π6&Π7&Π8&Π9&Π10.
The header row contains the same data as in
Table 4, except RT - the number of movements
performed by the team of robots, and Fval.
- objective value to optimize, that considers
robot movements and congestions during the

trajectories.

of two classes: LTL specifications or Boolean-based ones.
For LTL tasks, previous researches propose algorithmic
solutions based on transition system models, while for the
less expressive Boolean tasks there are computationally
attractive results based on Petri net models. The current
paper describes these existing approaches and reports their
integration into RMTool, with the purpose of providing
access to these methods without necessitating Matlab
programming knowledge or deep understanding of the
involved formal tools.
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