
UltraDES - A Library for Modeling,
Analysis and Control of Discrete Event

Systems ?

Lucas V. R. Alves ∗ Lucas R. R. Martins ∗∗

Patŕıcia N. Pena ∗∗∗

∗ COLTEC - Universidade Federal de Minas Gerais
Belo Horizonte, MG, Brazil (e-mail: lucasvra@ufmg.br).

∗∗Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
(e-mail: lucasrangelrm@gmail.com)

∗∗∗Department of Electronics Engineering - Universidade Federal de
Minas Gerais, Belo Horizonte, MG, Brazil, (e-mail: ppena@ufmg.br)

Abstract: In this paper a library of functions and data structures for analysis and control of
Discrete Event Systems based in the .NET Framework is proposed. The main objective is to
create an environment for the implementation of algorithms for Discrete Event Systems, as well
as the integration of these algorithms and codes in the fields of IT (Information Technology)
and AT (Automation Technology). The data structure, and the functions implemented so far
are presented. The performance of the current version of the library is evaluated.

Keywords: Discrete Event Systems, Supervisory Control Theory, Software Package

1. INTRODUCTION

UltraDES is an object oriented library composed of data
structures and algorithms for the modeling, analysis and
control of discrete event systems (DES). The library was
developed in C# language, a very popular language in the
Information Technology area (IT) and is based on the
.NET Framework as its execution platform. UltraDES can
be used in any language that supports .NET Framework,
including the .NET versions of the languages C++ and
Python, Visual C++ and IronPython respectively.

One great advantage of using the .NET Framework in
the industrial field is that there is an OPC protocol, an
industrial communication pattern, named OPC .NET 4.0,
developed to support programs developed in the .NET
platform. Allowing the use of UltraDES in real industrial
applications

The Supervisory Control Theory (SCT), proposed by Ra-
madge and Wonham (1989), is a framework for the mod-
eling and control of discrete event systems, based on lan-
guage and automata theory (Hopcroft et al., 2001). The
system to be controlled in named plant and the controller
agent is named supervisor. The role of the supervisor is
to restrict the behavior of the plant to a sublanguage that
respects a desired language for the closed loop system. The
action of the supervisor is on the disablement of a subset
of the events in response to the observation of events in
the plant.

There is a number of softwares developed for the study
of DES: TCT (Feng and Wonham, 2006), Supremica
(Åkesson et al., 2006), DESUMA (Ricker et al., 2006),

? This work was supported by Capes - Brazil, CNPq and FAPEMIG.

libFAUDES (Moor et al., 2008), DESLAB (Clavijo et al.,
2012), among others. Some of the softwares are not open
source (TCT and Supremica) what prevents the imple-
mentation of customized solutions and new algorithms.
The ones that are open code are developed in a specific
language (C++ for libFAUDES and Python for DESLAB).

This paper presents a new software, UltraDES, which has
implementations of the most common algorithms and data
in Discrete Event Systems. The UltraDES was developed
having in mind usability and expandability, with a low
learning curve and allowing new algorithms to be imple-
mented without much effort.

The paper is structured as follows. Section 2 presents the
preliminary concepts of Discrete Event Systems (DES) and
Supervisory Control Theory of DES. The following section
describes the main classes and methods implemented in
UltraDES. Section 4 presents the code for the implemen-
tation of a simple example and Section 5 presents the
performance tests where UltraDES is compared to two
other softwares. The paper ends with Section 6, where the
results are summarized and the current and future work is
mentioned.

2. PRELIMINARIES

UltraDES was developed under the framework of TCS
(Ramadge and Wonham, 1989). Under this paradigm, the
logical behavior of a DES is modeled by strings of events
obtained from an alphabet Σ. The Kleene closure Σ∗ is
the set of all strings over Σ, including the empty string ε.
Consider sequences s, v and t over Σ∗. The concatenation
of s with v forms the string t = sv, and we can say that
s is prefix of t, denoted by s ≤ t. Any subset L ⊆ Σ∗ is

named a language. The prefix closure L of L is the set of
all prefixes of strings of L.

From the Kleene Theorem, regular languages are recog-
nized by automata. A nondeterministic finite state au-
tomaton (NFA) is defined by a quintuple G = (Σ, Q,−→,
Q◦, Qm), where Σ is an alphabet, Q is the finite set of
states, −→ ⊆ Q× Σ×Q is the transition relation, Q◦ ⊆ Q
is the set of initial states and Qm ⊆ Q is the set of
marked states. An automaton is called a deterministic
finite automaton (DFA) if |Q◦| = 1 and for each q ∈ Q and

σ ∈ Σ there is at most one state q′ ∈ Q such that q
σ→ q′.

An automaton G implements two languages, the generated
language L(G) and the marked language Lm(G). The
generated language represents all sequences that can be
executed in the automaton from the initial state and the
marked language Lm(G) ⊆ L(G) is composed of the set of
strings that reach marked states.

Given an automaton G, a state q ∈ Q is acessible in G if

q◦
s→ q such that q◦ ∈ Q◦ and s ∈ Σ∗; a state q ∈ Q is

coacessible if q
s→ q′ with q ∈ Q, q′ ∈ Qm and s ∈ Σ∗. An

automaton is said to be accessible if all states are acessible.
An automaton is said to be coacessible if all states are coa-
cessible. The acessible component of G, Ac(G), is obtained
from G by eliminating nonacessible states and associated
transitions. The coacessible component of G, CoAc(G), is
obtained by eliminating noncoacessible states and associ-
ated transitions. An automaton G is trim if it is acessible
and coacessible, namely trim(G) = CoAc(Ac(G)). An

automaton G is nonblocking if Lm(G) = L(G).

A DES can be obtained by the parallel composition of
subsystems, namely G =‖ni=1 Gi, where Gi for each i =
1, . . . , n, represents the model of each subsytem. A global
specification E is another automaton that implements the
restrictions that are to be applied to the open loop system.
E can be obtained by the parallel composition of a set of
Ej , j = 1, . . . ,m, such that E =‖mj=1 Ej .

The supervisory control problem consists in finding a su-
pervisor that restricts the behavior of a DES to respect a
global specification. An important aspect of the modeling
process is to establish a partition of the events of the
system into controllable and uncontrollable. The control-
lable events are the events that can be disabled by the
controller (commands, typically) and the uncontrollable
events are the events that cannot be disabled (responses
of the system). The supervisor action over the plant is
to inhibit the occurrence of controllable events aiming to
retain the system within the legal behavior K (that is
modeled by the composition of E and G).

The generated and marked language of the closed loop
system are L(S/G) and Lm(S/G) ⊆ Lm(G), respectively.
Let G be a plant and E a specification, the necessary
and suficient condition for the existence of a nonblocking
supervisor S for G such that Lm(S/G) = L(G) ‖ E = K,
is that K be controllable with relation to L(G) and Σnc,
namely, KΣnc ∩ L(G) ⊆ K. If K is not controllable,
then a supervisor is obtained by obtaining the supremal
controllable sublanguage of K, denoted by SupC(K,G).
This language always exist.

In order to manipulate, analize and compose automata,
design supervisors and so on, it is very useful if there is
a software to do so. Also, new algorithms developed can
be implemented. The next sections introduce the main
aspects of UltraDES.

3. DATA STRUCTURE

The library UltraDES is composed by many classes that
represent automata, their components (states, events and
transitions) and regular expressions. Also, there are many
auxiliary classes.

3.1 States

Fig. 1. Relation among classes that represent states.

The main class that represents a state is named Abstract-
State. It is abstract, which means that it is not possible to
instantiate an object from it, but it defines basic charac-
teristics that a state must have, such as alias (alias) and
marking (Marking.Marked or Marking.Unmarked). Since
the union of two states is very common in operations with
automata, another abstract class is created, derived from
AbstractState, named AbstractCompoundState that has,
other then the characteristics already defined in Abstract-
State, a pointer to the original states that generated the
compound state. UltraDES uses both AbstractState and
AbstractCompoundState as states.

Since it is not possible to create objects from the classes
AbstractState and AbstractCompoundState, classes derived
from these two primitive classes were created and named,
respectively State and CompoundState.

var s1 = new State("s1",Marking.Marked)

var s2 = new State("s2",Marking.UnMarked)

3.2 Events and Regular Expressions

In the library, an event is defined by the abstract class Ab-
stractEvent, that establishes its basic characteristics such
as (alias) and controllability (Controllability.Controllable
or Controllability.Uncontrollable).

In a similar way of what was done with the state, classes
that implement AbstractEvent are defined. A general event
is defined by the class and there are two special events
defined as singleton classes, Epsilon (ε) and Empty (∅).
The decision to implement ε as an event when it is well
know to be a string is related to the implementation of
the regular expression, where events are considered as

the basic strings for the iterative definition of a regular
expression.

Fig. 2. Relation among the classes that represent events
and regular expressions.

var e1 = new Event("e1", Controllability.Controllable);

var e2 = new Event("e2", Controllability.Uncontrollable);

Another abstract class that was defined in UltraDES
is the RegularExpression class that represents a regular
expression. A regular expression is defined by operations
over regular expressions or symbols. For this reason, the
operations over regular expressions are also defined as
classes. The union of two regular expressions is represented
by the class Union, the concatenation of two regular
expressions is represented by the class Concatenation,
the Kleene star is given by KleeneStar and a symbol is
represented by the abstract class Symbol. The class Symbol
is the base class of AbstractEvent, such that any event is
also a symbol.

3.3 Transitions

Transitions among states are defined by means of a Tran-
sition class, that contains the origin state (Origin), the
destination state (Destination) and the event that labels
the transition (Trigger).

var t = new Transition(s1,e1,s2);

3.4 Auxiliary

Fig. 3. Relationship between the Option interface and the
Some and None classes used in the UltraDES

The main auxiliary data structure defined in UltraDES is
the interface Option. This interface has two implementa-
tions, Some, a class that saves data of a specific type and
None, a class that represents the absence of data. This
structure is used in the transition function when, from an

origin state an event transitions to another state, an object
Some returns the destination state. If such event does not
implicate a transition to another state, an object None is
returned.

3.5 Deterministic Finite Automaton

Fig. 4. Methods and Properties defined in the Determin-
isticFiniteAutomaton class

A class DeterministicFiniteAutomaton represents a de-
terministic finite automaton and is defined by a list
of transitions (Transition), an initial state (Abstract-
State) and a name. The internal structure of the Deter-
ministicFiniteAutomaton class is defined using the ab-
stract classes AbstractState, AbstractCompundState and
AbstractEvent, such that any class that derives from them
will work in the same way, without modifications to the
implemented algorithms.

var G = new DeterministicFiniteAutomaton(new[]{

new Transition(s1, e1, s2),

new Transition(s2, e2, s1)}, s1, "G");

Properties of a DeterministicFiniteAutomaton

States
Returns a list with the states (AbstractState) of the
automaton.

MarkedStates
Returns a list with all marked (AbstractState) of the
automaton.

InitialState
Returns the initial state (AbstractState) of the automa-
ton.

Events
Returns a list with all events (AbstractEvent) of the
automaton.

Name
Returns the name of the automaton. This name is
modified indicating the operations that were performed
over it.

Transitions
Returns a list with all transitions (Transition) of the
automaton.

TransitionFunction
Returns the transition function of the automaton. The
input of the function is an origin state and an event and
the output is None, if there is no destination state or
Some with the destination state.

Main Operations over DeterministicFiniteAutomaton

ParallelCompositionWith
When applied over G1 and with parameter G2, returns
an automaton G3 = G1||G2.

var G3 = G1.ParallelCompositionWith(G2);

ProductWith
When applied over G1 and with parameter G2, returns
an automaton G3 = G1×G2.

var G3 = G1.ProductWith(G2);

AccessiblePart
When applied over an automaton G, returns the acces-
sible part of G, Ac(G).

var G1 = G.AccessiblePart;

CoaccessiblePart
When applied over an automaton G, returns the coac-
cessible part of G, CoAc(G).

var G1 = G.CoaccessiblePart;

Trim
When applied over an automaton G, returns the trim
automaton of G, Trim(G).

var G1 = G.Trim;

MonolithicSupervisor
The method’s input is a list of plants, a list of spec-
ifications and a boolean value, true (default) or false,
indicating if the supervisor should be nonblocking. The
output is a monolithic supervisor that implements the
supremal controllable - in relation to the composition of
all plants - sublanguage contained in a desired language
(K) obtained by composing the plants with the list of
specifications).

var S = DeterministicFiniteAutomaton.MonolithicSupervisor

(new[]{M1, M2},new[]{E});

LocalModularSupervisor (Queiroz and Cury, 2000)
The method’s input is a list of plants, a list of specifica-
tions (can also be a list of supervisors to be checked for
conflict). The output is a list of local modular supervi-
sors. If the closed loop system is conflicting, an exception
is created to indicate the error.

var S = DeterministicFiniteAutomaton

.LocalModularSupervisor(new[]{M1, M2, M3}

,new[]{E1, E2});

Input and Output Methods

ToXMLFile and FromXMLFile
The method ToXMLFile saves information of the au-
tomaton in a XML file and the method FromXMLFile
generates an automaton from a XML file.

ToAdsFile and FromAdsFile
The method ToAdsFile saves information from the au-
tomaton in an ADS file, to be used with software TCT.
The information regarding states and transitions are all
lost. The method FromAdsFile reads an ADS file and
generates and automaton.

ToWmodFile and FromWmodFile
The method ToWmodFile saves information from the
plants and the specifications in a WMod file, to be used
with software Supremica. The method FromWmodFile
reads a WMod file and generates a plant list and a
specification list.

SerializeAutomaton and DeserializeAutomaton
The method SerializeAutomaton generates a binary file
containing information of the automaton and Deseri-
alizeAutomaton reads a binary file and generates an
automaton.

ToDotCode
The method ToDotCode returns a text (type string)
that contains the representation of the automaton in
DOT format, that can be visualized with software
Graphviz.

3.6 Supervisor synthesis algorithm

UltraDES uses a modified version of the algorithm present
in the literature to compute a monolithic supervisor. In the
original algorithm it is necessary to build the automaton K
to find the supervisor S. The automaton K is the limiting
factor in the solution of the problems since, in the majority
of problems, it has much more states and transitions than
the supervisor S. In the version implemented by UltraDES
K is not calculated directly which allows to solve bigger
problems.

Instead of generating K, followed by the loop: identify bad
states, remove them, repeat until it converges, our algo-
rithm performs only one composition with all automata
(plants and specifications). During the composition, when
generating the states of the resulting automaton, checks
are performed to detect the bad states and thus prevent
such states from being included in the solution. Then, all
states that would be uniquely accessed from those bad
states are not calculated. Finally, the algorithm performs
the removal of blocking states to obtain a trim automaton.
The removal of the blocking states can generate bad states
and if this occur they are removed and the algorithm
returns to the step of removing blocking states.

To reduce the memory usage, UltraDES stores all states
and transitions of the original automata (used in the
parallel composition described above) not by using a ‘State
Object ’ but by using a sequence of bits to represent a state
of the supervisor. A sequence of bits informs which states
from the original automata need be composed to result in
a state of the automaton. The states are obtained virtually
only.

The transitions of the supervisor are also not saved and
they are created only if necessary. To compute the transi-
tions of a state, UltraDES checks if there is a destination

state for each event in the states of the original automata,
using rules of the parallel composition. If so, the presence
of such states in the sequence of bits is checked and the
transition is created if that is the case.

4. CASE STUDY

In order to illustrate the use of UltraDES we present a
typical DES problem, the extended small factory (Fig.
5), composed of three machines (Mi with i ∈ {1, 2, 3},
Fig.6(a)) and two specifications (Ej with j ∈ {1, 2},
Fig.6(b)) that implement the restrictions over the unitary
buffers.

M1 B1 M2 B2 M3

a1 b1 a2 b2 a3 b3

Fig. 5. Extended small factory

0 1

ai

bi

Mi

(a) Plants Mi, i =
{1, 2, 3}

0 1

bj

aj+1

Ej

(b) Plants Ej , j = {1, 2}

Fig. 6. Modeling plants and specifications for the extended
small factory.

We include the list of commands to generate the automata
and design the monolithic and local modular supervisory
control.

var s = Enumerable.Range(0, 2).Select(

k => new State(k.ToString(),

k == 0

? Marking.Marked

: Marking.Unmarked))

.ToArray();

var ev_a = Enumerable.Range(1, 3)

.Select(k => new Event("a" + k,

Controllability.Controllable)).ToArray();

var ev_b = Enumerable.Range(1, 3)

.Select(k => new Event("b" + k,

Controllability.Controllable)).ToArray();

var M1 = new DeterministicFiniteAutomaton(

new[]{new Transition(s[0], ev_a[0], s[1]),

new Transition(s[1], ev_b[0], s[0])}, s[0], "M1");

var M2 = new DeterministicFiniteAutomaton(

new[]{new Transition(s[0], ev_a[1], s[1]),

new Transition(s[1], ev_b[1], s[0])}, s[0], "M2");

var M3 = new DeterministicFiniteAutomaton(

new[]{new Transition(s[0], ev_a[2], s[1]),

new Transition(s[1], ev_b[2], s[0])}, s[0], "M3");

var E1 = new DeterministicFiniteAutomaton(

new[]{new Transition(s[0], ev_b[0], s[1]),

new Transition(s[1], ev_a[1], s[0])}, s[0], "E1");

var E2 = new DeterministicFiniteAutomaton(

new[]{new Transition(s[0], ev_b[1], s[1]),

new Transition(s[1], ev_a[2], s[0])}, s[0], "E2");

var sup = DeterministicFiniteAutomaton

.MonolithicSupervisor(new[]{ M1, M2, M3 },

new[]{ E1, E2 });

var sups = DeterministicFiniteAutomaton

.LocalModularSupervisor(new[]{ M1, M2, M3 },

new[]{ E1, E2 });

5. PERFORMANCE TESTS

In order to show how UltraDES performs, four different
problems in the literature were chosen and the classical
approach of the SCT is applied, namely, the monolithic su-
pervisor is designed. Two established academic softwares;
TCT (Feng and Wonham, 2006), version 20160701 (release
date: July 2016), and Supremica (Åkesson et al., 2006),
version 201412081211 (release date: December 2014), were
used to compare with UltraDES ’ results.

The first example is the Cluster Tool that models a
semiconductor manufacturing system, introduced by Su
et al. (2012). This is an interesting problem because it can
be expanded by adding clusters, increasing the complexity
of the problem to be solved. UltraDES gave results up to
the size of 7 clusters. The other softwares did not give
monolithic supervisors for this size of problem.

Two other examples were taken from the Supremica’s ex-
amples library, the Robot Assembly Cell (Losito, 1999) and
the Automated Guided Vehicles (Moody and Antsaklis,
1998). For the AGV plant, a specification ‘ZoneX’ that
introduces a new zone at the input station was included,
such as in the Supremica library. Also, the Flexible Manu-
facturing System (FMS) (Queiroz and Cury, 2000) is used.

The automata that model the FMS and Cluster Tool were
initially implemented in UltraDES and later converted to
TCT and Supremica. The remaining automata were con-
verted from Supremica to UltraDES and then converted to
TCT. All the experiments were ran in the same computer,
a personal computer, with operating system Windows 7
64-bits, i5 and 6GB of RAM.

From Table 1 it can be noticed that UltraDES performs
faster, typically, and it computes solution to bigger prob-
lems than the other two softwares experimented. For TCT,
it is not possible to compare the computation time of the
operations since the duration of each operation is given
in seconds (rounded). That justifies the 0s in Table 1.
Supremica performed faster for one of the examples and it
was able to solve the cluster tool example up to 5 clusters.
It should be mentioned that we were not able to obtain
a monolithic supervisor for the cluster tool example with
more than seven clusters, using UltraDES.

Table 2 shows the peak memory usage of UltraDES,
Supremica and TCT. The data structure of UltraDES was
able to store the supervisors using just a few megabytes. It
used 43 times less memory than Supremica in the Cluster
Tools (5) example.

It is important to mention that Supremica has an user
interface which uses at least 160 MB, what may justify
the large amount of memory for the small examples.

Plant States Transitions UltraDES TCT Supremica

Cluster Tools (2) 45 74 0.04 s 0 s 0.03 s
Cluster Tools (3) 419 972 0.05 s 0 s 0.07 s
Cluster Tools (4) 4,184 12,630 0.21 s 233 s 0.89 s
Cluster Tools (5) 42,964 160,092 3.08 s Does not compute 28.19 s
Cluster Tools (6) 447,998 1,988,053 55.98 s Does not compute Does not compute
Cluster Tools (7) 4,721,862 24,327,158 1,214.00 s Does not compute Does not compute

Robot Assembly Cell 4,675 20,752 0.08 s 5 s 0.13 s
FMS 45,504 200,124 1.18 s Does not compute 7.15 s

Automated Guided Vehicles 11,489,280 68,667,392 358.40 s Does not compute Does not compute

Table 1. Execution time of monolithic supervisor design for nine examples.

Plant UltraDES TCT Supremica

Cluster Tools (2) 13.8 MB 3.69 MB 167 MB
Cluster Tools (3) 14.4 MB 40.4 MB 172 MB
Cluster Tools (4) 18.3 MB 4.50 GB 248 MB
Cluster Tools (5) 37.5 MB - 1.60 GB
Cluster Tools (6) 211 MB - -
Cluster Tools (7) 2.42 GB - -

Robot Assembly Cell 15.4 MB 3.74 GB 170 MB
FMS 29.1 MB - 764 MB

Automated Guided Vehicles 1.50 GB - -

Table 2. Peak memory usage.

6. CONCLUSION

In this paper, a library named UltraDES is presented
for the modeling, analysis and control of discrete event
systems.

The library was developed to be literal, keeping the full
names of the functionality. Moreover, the interface does
not depend on the implementation, such that the creation
of new functionality or the change of internal structures do
not prevent the application to work with previous versions
of UltraDES.

UltraDES has shown to solve bigger problems (Cluster
Tool with up to 7 clusters) than the other softwares
experimented, designing supervisors with more that eleven
million states. Also, UltraDES provides results faster in
most examples, than the other two softwares.

The current version of UltraDES can be downloaded at
https://github.com/lacsed/ultrades. New contribu-
tions that may come are of interest. Currently, a tool to
draw automata and also generate code for latex using the
package tikz are being developed. Also, other algorithms
of the literature are being implemented, such as the OP-
verifier (Pena et al., 2014), supervisor reduction techniques
and so on.

REFERENCES

Clavijo, L. B., Basilio, J. C., Carvalho, L. K., 2012.
DESLAB: A Scientific Computing Program for Analysis
and Synthesis of Discrete-Event Systems. In: Proceed-
ings of the 11th International Workshop on Discrete
Event Systems, WODES’12. Guadalajara, Mexico, pp.
349–355.

Feng, L., Wonham, W., Jul 2006. TCT: A Computation
Tool for Supervisory Control Synthesis. In: Proceedings
of the 8th International Workshop on Discrete Event
Systems, WODES’06. Ann Arbor, MI, USA, pp. 388–
389.

Hopcroft, J., Motwani, R., Ullman, J., 2001. Introduction
to Automata Theory, Languages, and Computation.
Addison-Wesley.

Losito, M., 1999. An Architecture for Flexible Manufac-
turing Systems Applied to an Assembly Cell. Master’s
thesis, Politecnico di Milano, Italy.

Moody, J., Antsaklis, P. J., 1998. Supervisory Control
of Discrete Event Systems Using Petri Nets. Vol. 8.
Springer US.

Moor, T., Schmidt, K., Perk, S., 2008. libFAUDES - An
Open Source C++ Library for Discrete Event Systems.
In: Proceedings of the 9th International Workshop on
Discrete Event Systems, WODES’08. Göteborg, Swe-
den, pp. 125–130.

Pena, P. N., Bravo, H. J., Da Cunha, A. E. C., Malik,
R., Lafortune, S., Cury, J. E. R., 2014. Verification of
the Observer Property in Discrete Event Systems. IEEE
Transactions on Automatic Control 59 (8), 2176–2181.

Queiroz, M. H. D., Cury, J. E. R., 2000. Modular su-
pervisory control of large scale discrete event systems.
In: Proceedings of the 5th Workshop on Discrete Event
Systems, WODES’00. Kluwer Academic, pp. 103–110.

Ramadge, P., Wonham, W., Jan. 1989. The Control of
Discrete Event Systems. Proceedings of the IEEE 77 (1),
81–98.

Ricker, L., Lafortune, S., Genc, S., 2006. DESUMA: A
Tool Integrating GIDDES and UMDES. In: Proceedings
of the 8th International Workshop on Discrete Event
Systems, WODES’06. Ann Arbor, MI, USA, pp. 392–
393.

Su, R., van Schuppen, J., Rooda, J., 2012. The synthesis of
time optimal supervisors by using heaps-of-pieces. IEEE
Transactions on Automatic Control 57 (1), 105–118.

Åkesson, K., Fabian, M., Flordal, H., Malik, R., Jul 2006.
Supremica - An integrated environment for verification,
synthesis and simulation of discrete event systems. In:
Proceedings of the 8th International Workshop on Dis-
crete Event Systems, WODES’06. Ann Arbor, MI, USA,
pp. 384–385.

https://github.com/lacsed/ultrades

	Introduction
	Preliminaries
	Data Structure
	States
	Events and Regular Expressions
	Transitions
	Auxiliary
	Deterministic Finite Automaton
	Supervisor synthesis algorithm

	Case Study
	Performance Tests
	Conclusion

