IdentifyTPN: a tool for the identification of
Time Petri nets

Basile F.* Chiacchio P.* Coppola J.*

* DIEM, Universita di Salerno, Italy (e-mail: fbasile@ unisa.it).

Abstract: Despite of the fact that the field of system identification of discrete event pro-
cesses/systems has attracted the attention of many researchers in the last decade, there is a
lack of tools that allow the use of the existing algorithms, alone or combined, in a unified
environment. In this paper Identify TPN is presented, a tool developed by the Automatic Control
Group of the University of Salerno, to solve a number of identification problems using Time
Petri net models and algorithms, alone or combined, presented in the literature by the authors.
The tool is available free of charge for interested readers.

Keywords: Discrete-event systems, System identification, Model repair, Time Petri nets.

1. INTRODUCTION

The field of system identification of discrete event pro-
cesses/systems from external observation has attracted
the attention of many researchers in the last decade. The
methods presented in the literature for the identification of
Discrete Event Systems (DESs) produce a mathematical
model expressed as a Petri Net (PN) or a finite state au-
tomaton model of the system behavior from sequences ob-
served during the system operation (Estrada-Vargas et al.,
2010; Cabasino et al., 2015; Fanti and Seatzu, 2008). If the
resulting model is a logical PN system, the net structure
(places, transitions and arcs) and its initial marking must
be identified, while if it is a timed net systems, also the
timing structure should be identified.

Nowadays, real-time systems are ubiquitous, so the explicit
consideration of time is crucial; to ensure the correct spec-
ification, design, control and verification of systems such
as transportation systems (Basile et al., 2004), commu-
nication protocols, circuits, implemented in a centralized
or decentralized control architecture (Basile et al., 2015),
it is also crucial to rely on the mathematical framework
provided by formal methods . In this paper Time PNs
(TPNs) (Merlin, 1974) are used, for which the firing du-
ration of a transition ¢ can assume any value of a given
interval I(t) = [, ul.

The interest for the identification of Discrete Event Sys-
tems (DESs) usually comes from different contexts, as
for example reverse engineering for (partially) unknown
systems, process mining, model repair, fault diagnosis,
system verification. Each context exhibits identification
problems with different level of complexity; this has caused
the proliferation of many approaches in the literature with
few differences between each other. For some applications
benefits can be obtained combing these approaches: a
process can be identified from a set of observations as long
as a certain index is satisfied, then a model repair ap-
proach, that is less computational expensive, can be used
to adjust the model using the subsequent observations. In

our opinion, it is now necessary to make available as many
as possible of these approaches in a unified environment.

In this paper a tool, based on the results proposed by the
authors in Basile et al. (2016¢) and Basile et al. (2016a), is
presented to solve the following problems for labeled TPNs
(LTPNs):

(1) identify a LTPN from a set of observations;

(2) repair a nominal LTPN making it able to generate a
set of observations;

(3) identify a LTPN from a set of observations and a
partial knowledge of nominal systems.

The tool is developed in MATLAB® and requires a Mixed
Integer Linear Programming Problem (MILPP) solver
(actually, it is ready to be interfaced with CPLEX®©).

In (1) given a set of observed event sequences (i.e., se-
quences of event occurrences with their occurrence time
instants), a number of places m and a set of events F,
the structure of a LT PN, i.e., the pre and post incidence
matrices Pre and Post, its initial marking my, the timing
structure I(t), i.e., the firing interval of each transition
t € T, and the labeling function ¢, is identified so that
the set of timed sequences generated by this net system
contains all the observed ones.

In (2), using the concepts of residuals, introduced in Roth
et al. (2011) and extended to timed DESs context in
Basile et al. (2016¢) and Basile et al. (2016a), a nominal
LTPN model is repaired by adding a subnet represented
by a pre and post incidence matrices Prey and Post;
and/or enlarging of Al and Auw the firing interval of each
transition. The repaired model is able to generate the
faulty observed behavior. Residuals allow to formalize two
very generic fault symptoms (discrepancies) of discrete
event systems, unexpected and missed behavior, leading
to observed but unexpected events and missed event
observations respectively.

In (3) the approach (1) and (2) are mixed to obtain a net
model starting from a partial knowledge of nominal model.

As usual in DES identification, the identified system can
also produce timed sequences that do not belong to the
unknown system behavior, as well as, it can reproduce se-
quences of the original system that have not been observed.

2. NOTATIONS AND PRELIMINARY ASSUMPTIONS

It is assumed that the reader is familiar with the theory
of PNs. For a complete review about them, the reader is
remanded to Murata (1989).

Definition 1. (TPN system, Seatzu et al. (2013)). Let T
be the set of closed intervals with a lower bound in the
set of positive rational numbers QT and an upper bound
in @7 Joo. A Time Petri net (TPN) system is the triple
T = (N,my,I), where N is a standard P/T net, mg
is the initial marking, and I : T" — Z is the statical firing
time interval function which assigns a firing interval [, u;]
to each transition ¢; € T

A transition t; can be fired at time 7 if the time elapsed
from the enabling belongs to the interval I(¢;); moreover,
an enabled transition must fire if the upper bound of I(t;)
is reached, thus enforcing urgency. A clock measuring the
time elapsed from the enabling is implicitly associated to
any transition.

It is assumed that there is a start-up transition that fires
only once at time zero producing tokens considered by the
initial marking and setting to zero the value of clocks. <
Definition 2. (Labeling function). Given a Petri net N
with set of transitions T, a labeling function ¢ : T —
E|J{e} assigns to each transition ¢t € T" a symbol, from a
given alphabet E, or assigns to it the empty string e. A
labeled Petri net system is a 3-tuple (IV, myg, ¢) where N is
a P/T net, my is its initial marking, and ¢ : T — E |J{e}
is the labeling function. <

Let E* denote the set of all infinite strings of elements of
alphabet F including the empty string e.

The labeling function can be extended to define the
projection operator ¢ : T* — E* recursively as follows:

(i) if t; € T then ¢(¢;) = e; for some e; € E;

(i) if 0 € T* At; € T then ¢(ot;) = ¢(0)p(t;);
Moreover, ¢(\) = € where A is the empty sequence.
Definition 3. (Labeled Time Petri Net System). A Labeled

Time Petri Net (LTPN) system is a couple S = (T, ¢)
where 7 is a TPN and ¢ is the labeling function. &

Given the set of events w, ¢~!(w) is the system of sets
{t; € T | ¢(t;) = e; € w}, and each set is hereinafter
called interpretation of w.

Ezample 1. Assume to have the alphabet E = {e1, ea, e3},
the set of transitions T = {t1,to,ts,t4} and the labeling
e; ifj=1{1,2}

function ¢ such that ¢(¢;) = {e)= 3.4}
3 =)

Consider the set w = {ey, es}, then ¢~ (w) = {{t1,3},
{t1,t4}}. o
Definition 4. (Timed firing sequence). A sequence

G = (Tl,Tl)...(Tq,Tq)...(TL,TL),
where T, is the set of transitions fired at time 7, and
T < T9 - -+ < 71, denote firing time instants, is called timed

firing sequence. The position ¢ that the couple (Ty,7,)
occupies in the sequence is called time step, so (T1,71)
is associated with step 1, (T2, 72) is associated with step
2 and so on; the number of couples (Ty, 7,) in & is called
length L = |&| of the timed firing sequence.

The notation m[&)m/ is used to denote that marking m’
is reached from marking m by firing &. O

The labeling function is extended also to timed firing
sequences G as follows:

(1) o((Ty, 1)) = (Ey,7q) , where E; = {e; € E | ¢(t;) =
€, tj eT,

(i) S(S(Ty.70))=5(&)S((Ty 7).

The set T, is made up of n, = |Ty| transitions whose firing
is observed at the same instant 7,. The firings of these
transitions are enabled either by a marking mj, reached at
a time 7, < 74 or by the firing of another transition fired
at 7, with null firing duration.

Definition 5. (Firing Duration). Given a timed transition
t;, fired at the g-th step, enabled at the k-th step, so that
mg[t;), let my be the first marking that enables ¢; since
its previous firing, the function 6(¢;,k,q) : TxNxN — QF
returns the time elapsed from the enabling of ¢; at 75 until
its firing at 74, i.e., 0(t;,k,q) = 74 — Tw. o

From now on, it is referred to d(t;,k,q) as the firing
duration of transition ¢; € Tj, from the marking m;. When
0(t;j,k,q) = 0 the firing of ¢; at 7, is called immediate,
otherwise, when 6(¢;,k,q) > 0, the firing of ¢; is called
timed.

Let mg be the initial marking of the system, the set of
candidate markings for the enabling of a transition ¢; € T,

can be formally defined as M(t;,q) = {mk | 36}, 6;,
S = 6,6, mo[Sr)mi[G)m,, witht; € &, k <
q : T+l <7y <7+ u;}, having cardinality [M(¢;, q)].

The set T, can be partitioned into the couple of sets
(T}, Tim™): T} = {t; € T,| 3k, my, € M(t;,q)} is the set of
transitions fired at 7, with timed firing, with cardinality
nl = |T}, T;™ = T, \ T}, with cardinality n™, is the set
og transitions fired at 7, with immediate firing.
Immediate firings always follow the timed ones, even
if they are observed at the same time 7,. Indeed an
immediate firing occurs at the same time it has been
enabled, while a timed firing occurs in a subsequent time
with respect to the one at which it has been enabled.
Consequently, a timed firing enabled by an immediate
firing occurred at time 7,4, surely fires in a time greater
than 7.

The firing of transitions in the set T; is concurrent,
however, each firing can have been enabled at a different
marking. On the other hand, the firing of transitions in
T;™ may be sequential. Given the set of transitions T,",
these transitions can fire in any order, which, anyway, can
include concurrent transition firings.

Denote m,, the marking reached by firing transitions
belonging to T;, Denote my,, with s > 2, the markings
reached after the immediate firings of transitions.

Given the firing sequence associated to the set Tgm, it can

be considered made up of the union of nflm disjoint subsets
of concurrent transition firings. Hence, firing of transitions
in T3 can be considered occurred in ng™ substeps; each

substep is denoted by g5, with s € [2, nfzm + 1]. Finally, it
. mo iy
holds that Tim = \Joo, " Tim.
This paper focuses on the context of automated manu-
facturing systems, where a control architecture interacts
with a plant according to a scan time faster than the time
evolution of the system. In this context, the multiple firing
of a transition in the same time instant has no sense. This
motivates the next assumption.

Assumption 1. A transition can fire only once in the same
time instant.

However, the results presented in this paper are still valid
removing this assumption, introducing some technicalities.

Definition 6. (Timed event sequence). A sequence
V= (ElaTl) s (EllaTq) cee (EL,TL) ’

where E, is the set of events occurred at time 7,, 71 <
To - -+ < 711, denote firing time instants, is called timed event
sequence. The position ¢ the couple (Eq, 1) occupies in the
sequence is called time step, so (Ey, 1) is associated with
step 1, (E9,72) is associated with step 2 and so on; the
number of couples (Eg, 7;) in v is called length L = |y| of
the timed event sequence. &

The operator ¢~1(-) can be extended to the timed event
sequence 7, as shown in the follow:

¢~ 1(y) is the set of sequences {&, = (T,1,71)...
(Tr,anq)“' (T, 71) P(&;) = 7, Trq € ¢71(Eq)};
and each sequence G, is hereinafter called interpretations
of ~.

The set of events is partitioned into the set E° of con-
trollable events, assumed known, and the set E“¢ of un-
controllable events. Consequently, the transition set T is
partitioned into the set T of controllable transitions, with
cardinality n., and the set T%¢ of uncontrollable transi-
tions, with cardinality 1.

Assumption 2. (Controllable transitions). It is assumed
that:

(1) All controllable transitions are known and immediate
since they are associated to events managed by the
controller.

(2) All transitions that make up a choice — i.e., all tran-
sitions ¢ € p® with [p®| > 1 — must be controllable.
Hence if |p*| >1 = I(t)=[0,0] ¥Vt € p®, for all
the places in P. This assumption is motivated by the
fact that, when a timed activity is associated with
conflicting transitions, a conflict resolution policy
may be a race between conflicting transitions, which
is pointless in the context of manufacturing systems.
Then, conflicts only include controllable transitions
which are immediate and known, so a set of con-
straints, which must be fulfilled in order to guarantee
this assumption holds, can be devised. &

The approach used in this paper does not perform any
controlling action on the system by means of controllable
events, but only assumes that the set of controllable events

is known. This is realistic in the context of manufacturing
systems, where controllable events are the outputs of the
controlling agent, which is usually accessible.

Assumption 3. A maximal upper bound u;,q.(e;) and a
minimal lower bound ,,:,(e;) are available for each event
e; € F.

Given the step k, reached at time 7y, if an event e; occurs
later than 7y + Umaz(e;) then the activity associated to
the event does not start at 7,. When wmaz(e;) is not
explicitly defined, then it is assumed umqz(e;) = 0o and
consequently the occurrence of e; at step ¢ can be associate
to any activity started at time 7, < 7,. Given an activity,
started at time 75, an event e; occurs in a time greater
than or equal to lyin(e;). When I, (e;) is not explicitly
defined, then it is assumed I,,in(e;) = 0. <o

Knowledge of such bounds helps to devise counterexam-
ples, that are sequences that cannot be generated by the
LTPN.

Assumption 4. (Properties of the observed system). The
observed system is modeled by a LTPN system with the
following assumptions

(1) A-free labeled nets, i.e., there can be multiple transi-
tions with the same label but there are no transitions
labeled with the empty string.

(2) k-bounded nets, i.e., the number of tokens in each
place of the net is never greater than k.

(3) Single-server firing semantic (more details in Seatzu
et al., 2013), i.e., no concurrent firings of the same
transition are possible.

(4) Enabling memory policy of timed transitions, i.e.,
when a new marking is reached and a timed transition
is not enabled, the elapsed time is reset. &

3. TOOL OVERVIEW

IdentifyTPN tool allows two different modes of operations:
a) the interactive execution and b) the execution from
file. In the former, the user interacts with the tool by
means of menus and guided procedures. In the latter,
the user runs the program implementing the sequence
of operations to be executed from MATLAB® command
window. IdentifyTPN tool behavior is summarized in
Fig. 1.

3.1 Interactive execution

StartMenu() starts the execution of the tool in the in-
teractive execution mode: a “menu” is printed in the
MATLAB® command window, allowing the user to choose
between 5 options:

(1) Add a new LTPN system: function
modelFromCommandWindows () creates a .m file, where a
LTPN system is saved. Such a file can be used successively
as nominal (partial) model of the system during the
Repaired Model or Partial Model Identification.

LTPN system is acquired by means of a guided procedure,
that allows the user to enter the structure of the net
(number of places and transitions, incidence matrices),
the timed structure (firing interval for each transition),

Arc Meanings Legend
input/output

function O_Lit_p_u_tb file
input
<P

~~~~~~~~~~~~~~~~~~~~~~~~ /Repair‘ed_Model_IdentiFication()} pommmmeeeeeeeeee s e e e ————

I

sequence

1

. i
!

! modelFromCommandWindows () )——— StartMenu() sequenceFr‘omCommandwindows()‘ i
: : :

[} [} I

. 4 ' ;

Model Identification MenuJ

. /

file |[,
¥

Fig. 1. Scheme of the tool behaviour.

the initial marking mg and the labeling function ¢ of the
system.

At the end of the procedure it is asked to the user to select
(an existing or a new) .m file where, automatically, the
function [m0,Pre,Post,l,u,phi]=namefile() is created,
where namefile is the name (without extension) of the file
selected by the user.

(2) Add a new sequence: function
sequenceFromCommandWindows () is executed to create a
.m file, where an observed timed event sequence is saved.
Such a file can be used successively during the (Repaired)
Model Identification.

The sequence is acquired by means of a guided procedure,
that allows the user to enter the length of the sequence
and the couple (E,,7,) for each step ¢. At the end
of the procedure it is asked to the user to select (an
existing or a new) .m file where, automatically, the function
[sequence]l =namefile() is created, where namefile is
the name (without extension) of the file selected by the
user.

Sequence (model) files can be also created manually by the
user along the same line of the ones created automatically,
as long as the keyword %<MODEL> (%<SEQUENCE>) is added
at the first line of the file. Such a keyword is used during
the (repaired) model identification to check that a correct
file is selected by the user, when he/she is invited to do
it. Notice that once checked the keyword coherence, the
correctness of the file content is assumed.

(3) Start identification: a sub-menu is printed in the
command windows, allowing the user to choose between
two kinds of identification:

e whole model identification;
e partial model identification.

In the first case, function Whole_Model_Identification()
is executed and it is required to the user to select a file

where the observed sequence 7 is stored and to enter some
additional information about the system to identify (e.g.,
the set E° of controllable events, the event lower (upper)
bound lyin (Umaz)- These information can be entered both
by means of a guided procedure and loading an existing
file, reporting the keyword %<INFO> at the first line. Then,
the identification procedure starts.

In the second case, function
Partial_Model_Identification() is executed, and the
file where the partial model of the system is stored must
be selected by the user, as well.

In both cases, first an MILPP model is built according to
Basile et al. (2016c) and CPLEX® syntax, then CPLEX©
is invoked; at the end of the identification, the function
returns the identified model S = (N, myg, 1, ¢), that can
be also saved in .m file to be used for successive analysis.

(4) Start Repaired Model Identification: function
Repaired_Model_Identification() is executed to iden-
tify a repaired model. To proceed with the identification,
the user must select the files where the nominal LTPN
system Sy and the observed event sequence ~ are stored.
Moreover the user has the possibility to add additional
constraints, limiting the set of places that can belong to
the pre(post)-set of fault transitions as well as the set of
transitions the firing interval lower (upper) bound ! (u) can
be extend for. Then, an MILPP model is built according to
Basile et al. (2016a) and CPLEX®© syntax and CPLEX©
is invoked.

The function returns the repaired identified model S and
the correct interpretation of the timed event sequence 7,
the timed firing sequence G,., including fault transitions
firings: they can be both saved in .m file to be used for
successive analysis.

(5) Euit: the execution of the tool is ended.



3.2 Execution from file

In addition to the interactive execution, it exists an off-
line mode of operation, running a program the user has
previously written in a file, by means of the function
Execute(program_file).

The program must be written as in the follow:

%<PROGRAM>
instr_1 FROM file_1la, file_1b;
instr_2 FROM file_2a, file_2b;

instr_n FROM file_na, file_nb;
%<END_PROGRAM>

and saved as a .m file.
The following set of high level instructions are available:

(1) identify FROM seqFile starts the model identifica-
tion of the system based on the timed event sequence
v, stored in the file seqFile, and returns the identified
model, S, the additional information used during the
identification, and the correct interpretation of the timed
event sequence <, the timed firing sequence G,., as well;
additional information must be entered by the user in the
same way described in Section 3.1.

(2) p_identify FROM seqgFile, modelFile starts the
model identification of the system based on the timed
event sequence 7, stored in the file seqFile, and on the
partial model stored in the file modelFile, and returns
the identified model S, the additional information used
during the identification, and the correct interpretation of
the timed event sequence -y, the timed firing sequence &,.,
as well; additional information must be entered by the user
in the same way described in Section 3.1.

(3) repair_model FROM seqFile, modelFile starts the
identification of the repaired model of the system based
on the timed event sequence ~ stored in the file seqFile
and on the nominal model stored in the file modelFile; at
the end it returns the identified repaired model S and the
correct interpretation of the timed event sequence +, the
timed firing sequence &,., including firings of added fault
transitions. Additional constraints can be entered by the
user in the same way described in Section 3.1.

A crucial functionality of the tool is the possibility to
combine different identification approaches. In our opinion,
this can be extremely useful because the computational
complexity of available algorithms is very different. Hence,
it would be efficient to use a complex algorithm until the
knowledge of the systems is not sufficient, then one can use
the identified model as input for a less complex algorithm,
as for example a model repair algorithm, dealing as repa-
rations the next discrepancies with observed sequences. To
switch between two different identification approaches the
following syntax must be used

instr_1 FROM filel, file2 UNTIL step THEN {
instr_2 UNTIL end;
}

It allows to execute instr_1 until the step step of
the observed sequence and to execute instr_2 for the

Level 4 P1
566 A
Level 3
RAYAY
Level 2
4
E
Level 1 r0-0-0-01
866610066

t,4,[1-0.5,1]
€3

(a)

Fig. 2. (a) One zone of the prototype of an automated
handling system installed at the University of Salerno;
(b) LTPN model of the example and (c) identified
model.

remaining steps. The second instruction can be either
p_identify or repair_model: in the former case the
model obtained as result of the first instruction is assumed
as the partial known model of the system while in the latter
it is assumed to be the nominal one. For sure, step will be
replaced by a logical condition evaluating the right degree
of satisfaction of the model identified using instr_1.

4. EXAMPLE

This example focuses on the combination of two iden-
tification approaches for obtaining the model of a sys-
tem, starting from an off-line observed timed sequence.
In detail, the example presented in Basile et al. (2016b) is
considered again to show how it is possible to enrich the
identified model using a less expensive approach (in terms
of computation complexity and resolution time).

The scheme of the observed system is shown in Fig. 2(a):
it is one zone of an automatic material handling system,
installed at the University of Salerno, made up of four
levels and an elevator, named E, moving stock units in
vertical way though the four levels. The available events
are e; (start to move to one level up), e (start to move to
one level down), and e3 (elevator is aligned at a level); eq
and ey are controllable.

The LTPN of Fig. 2(b) models the behavior of the elevator.
It is assumed that E is initially stopped to Level 1. The
places have the following meaning: p; - E at a level; ps -
E moving up; ps - E moving down; p4 - number of levels
currently over E; ps - number of levels currently under E.

During the system observation, the timed event sequence
Y= ({61}7 0) ({617 63}, 1) ({627 63}7 2) ({63}a 3) ({62}7 34)
({e3},3.9) (of length L = 6) has been saved into the file
seq_demo.m.

To identify the system model, two different approaches are
executed sequentially: first a whole model identification
is executed, then the identified model is assumed as the



nominal model of the system and starting from the step 5
of sequence 7, a repaired model identification is executed.

With this aim, the following program has been written and
saved in the file demo.m

%<PROGRAM>

identify FROM seq_demo_WI.m UNTIL 4 THEN {
repair_model UNTIL end;

}

%<END_PROGRAM>

When function

identify FROM seq_demo_WI.m UNTIL 4

ends, the identified model and the additional information
about the system are automatically converted in the right
format to be used by function repair_model UNTIL end:
no user action is needed.

Model identified at the end of the first instruction is the
one shown in Fig. 2(c) (discarding red parts). Such a model
generates the timed event sequence v until the step 4 but
not the observation of events ey and e3 at the two succes-
sive steps. Indeed, when the Repaired Model Identification
starts, both occurrences are associated to an unexpected
firing of transitions; in details, the occurrence of event es is
associated to an unexpected firing of transition ¢5, enabled
by a marking reached after the firing of a fault transition,
while the occurrence of event es is associated to a firing
of transition ¢4, enabled after the firing of transition t¢s,
having a firing duration shorter than its firing interval
lower bound.

The final identified model is the one of Fig. 2(¢) including
the fault transition t;; whose firing at time 74 = 3 has
enabled the one of transition ¢t at step 5 and the extension
of the transition ¢4 firing interval of the amount Al = 0.5.
The resulting interpretation of v, updated with the fault
transition firing, is & = ({t1},0) ({t1,t3},1) ({t2,t3},2)
({ta,t51},3) ({t2},3.4) ({ta},3.9).

Instruction identify FROM seq_demo_WI.m UNTIL 4 needs
about 30 seconds to return the solution of the MILPP
while the resolution of each one of two MILPPs (one
for each observed discrepancy) built during instruction
repair_model UNTIL end requires less than 1 second.

Currently, the step at which commuting between the two
approaches is decided in an a-priori way from the user,
further tool developments are in progress to provide a
performance index able to establish the opportune step to
execute the switch. The basic idea is the following: given
an off-line observed sequence of length L, the identification
of the model is stopped at a step ¢, then the ratio between
the number of discrepancies detected in the following L —q
steps, assuming as nominal the identified model, and the
number of these steps is evaluated. The commutation to
the second identification approach occurs only when the
value of such a ratio is less than a fixed threshold.

This example and other ones, as well as the whole Iden-
tifyTPN tool, are available free of charge at the address
http://www.automatica.unisa.it/IdentifyTPN.php.

5. CONCLUSION

IdentifyTPN is a tool for the identification of timed DESs,
based on Time Petri net models and Mixed Integer Linear
Programming Problem solvers. The tool has been devel-
oped by the Automatic Control Group of the University of
Salerno and is available free of charge to interested readers.
The main features of the tool have been shown to be:

(1)
(2)

(3)

indentify a LTPN from a set of observations;

repair a nominal LTPN making it able to generate a
set of observations;

identify a LTPN from a set of observations and a
partial knowledge of nominal systems.

REFERENCES

Basile, F., Carbone, C., Chiacchio, P., Boel, R.K., and
Avram, C.C. (2004). A hybrid model for urban traffic
control. 2004 IEEE International Conference on Sys-
tems, Man and Cybernetics (SMC’04), 1795-1800.

Basile, F., Cordone, R., and Piroddi, L. (2015). A branch
and bound approach for the design of decentralized
supervisors in petri net models. Automatica, 52, 322—
333.

Basile, F., Chiacchio, P., and Coppola, J. (2016a). A
Novel Model Repair Approach of Timed Discrete-Event
Systems With Anomalies. IEFE Transactions on Au-
tomation Science and Engineering, 13(4), 1541-1556.

Basile, F., Chiacchio, P., and Coppola, J. (2016b). Iden-
tification of labeled time Petri nets. 13th International
Workshop on Discrete Event Systems (WODES 2016),
478-485.

Basile, F., Chiacchio, P., and Coppola, J. (2016¢). Iden-
tification of Time Petri net models. IEEE Trans-
actions on Systems, Man and Cybernetics: Systems,
doi=hittp://dx.doi.org/10.1109/TSMC.2016.2523929.

Cabasino, M.P., Darondeau, P., Fanti, M.P., and Seatzu,
C. (2015). Model identification and synthesis of discrete-
event systems. In M. Zhou, H.X. Li, and M. Weijnen
(eds.), Contemporary Issues in Systems Science and
Engineering, IEEE/Wiley Press Book Series, 343-366.
John Wiley & Sons, Inc.

Estrada-Vargas, A.P., Lopez-Mellado, E., and Lesage, J.J.
(2010). A Comparative Analysis of Recent Identification
Approaches for Discrete-Event Systems. Mathematical
Problems in Engineering.

Fanti, M.P. and Seatzu, C. (2008). Fault diagnosis and
identification of discrete event systems using Petri nets.
9th International Workshop on Discrete Event Systems
(WODES 2008), Goteborg, Sweden, 432-435.

Merlin, P.M. (1974). A study of the recoverability of com-
puting systems. Ph.D. thesis, University of California,
Irvine.

Murata, T. (1989). Petri nets: Properties, analysis and
applications. Proceedings of IEEE, 77(4), 541-580.

Roth, M., Lesage, J.J., and Litz, L. (2011). The concept of
residuals for fault localization in discrete event systems.
Control Engineering Practice, 19(9), 978-988.

Seatzu, C., Silva, M., and van Schuppen, J.H. (eds.)
(2013). Control of Discrete-Event Systems, volume 433
of Lecture Notes in Control and Information Sciences.
Springer.



