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Abstract: This paper studies algorithmic aspects of deadlock analysis for parameterized
networks of discrete-event systems. A parameterized network consists of interacting finite-state
subsystems, including finite but arbitrarily large numbers of subsystems within each of a finite
number of isomorphism classes. While deadlock analysis of such systems is generally undecidable,
decidable subproblems have recently been identified. The decision procedure of Zibaeenejad and
Thistle (2017) rests on the construction of a finite dependency graph for the network, and the
computation of its full, consistent subgraphs. We present a software tool that takes the template
of a Parameterized Chain Network (PCN) and outputs the set of all full, consistent subgraphs of
the dependency graph. These subgraphs represent infinite set of deadlocked states of the PCN
for all parameter values. As a case study, we investigate deadlock in a complex train network
that extends beyond the current theoretical framework. The results suggest ways in which the
framework could be extended.
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1. INTRODUCTION

A fundamental impediment to analysis and design of
complex control systems is combinatorial explosion: the
state size of a collection of N interacting subsystems grows
exponentially with N . One potential means of coping with
state explosion is to devise methods that are independent
ofN . Vector discrete-event systems Li and Wonham (1993)
and Petri nets support such methods to some extent for
certain classes of systems.
In this paper, we employ the model of parameterized-
chain networks proposed in Zibaeenejad and Thistle (2017,
2015). A parameterized system is generally a family of
finite-state models, indexed by some parameter or param-
eters. In a relatively simple case, a parameterized network
might be a model of N isomorphic, interacting, finite-state
subsystems, where the value of the parameter N is finite
but arbitrarily large; this indeed yields an infinite set of
finite-state network models, indexed by the values of the
integer parameter N .
When a system reaches a state from which there are no
possible transitions, it is said to be in a total deadlock.
If a subsystem reaches a state from which no further
transitions are possible, regardless of any events that may
occur within the larger system, the overall system is said
to be in a partial deadlock. One method of detecting
deadlocks is an exhaustive search over the global system
state set (Chandy et al. (1983)). But this method is not
suitable for a parameterized network with an infinite state-
set.
Model checking cut-offs sometimes apply in deadlock anal-
ysis of parameterized networks whose subprocesses fall
into a finite number of isomorphism classes. Relatively
small bounds, ‘cut-offs’, can, under some conditions, be

established, such that if the property of interest is verified
successfully in all instances limited by the cut-offs, the
satisfaction of the property in a parameterized network is
guaranteed. Unfortunately, results of this nature are based
on restrictive models of subsystem interaction, such as the
unidirectional passing of tokens that carry no data, around
a ring network (Emerson and Kahlon (2000, 2004, 2002)).
In contrast, the approach of (Zibaeenejad and Thistle
(2017)) uses the notion of weak invariant simulation to im-
pose directionality of control flow. This allows the model-
ing of systems such as traffic networks and manufacturing
systems that cannot be modelled under the assumptions
on which cut-offs are based. Specifically, (Zibaeenejad
and Thistle (2017)) investigates existence of deadlocks in
networks comprised of a fixed set of finite-state distin-
guished subprocesses, linked by parameterized networks of
linear topology. Such networks can model, for example,
transportation networks and manufacturing systems. The
notion of weak invariant simulation is used to impose a
direction of control flow on the network, and this structure,
together with additional assumptions, ensures decidability
of the existence of reachable “generalized circular waits.”
To locate these circular waits, a finite dependency graph is
constructed, which shows how the possibility of execution
of an event within a given subprocess of an instance of the
network, may depend on the occurrence of events within
another subprocess. The generalized notion of a “circular
wait” is captured by a subgraph of the dependency graph
that has the properties of consistency and fullness. Such a
subgraph represents in general an infinite set of circular-
wait states that can arise in network instances of various
sizes; in effect, it represents a regular language, each el-
ement of which encodes a generalized circular wait in a
particular size instance of the network. The present paper
discusses algorithmic aspects of the approach. In particu-



lar, it discusses the construction of the dependency graph
and the computation of consistent, full subgraphs of the
dependency graph. For technical reasons related primarily
to analysis of the reachability of generalized circular-wait
states, the theoretical analysis of (Zibaeenejad and Thistle
(2017)), is restricted to a special case in which the network
has a unique, distinguished “input subprocess.” This re-
striction is ignored in the present paper, and our software
tool is used to perform experimental research that extends
beyond the current theoretical framework and will support
extension of the theoretical work.

2. PRELIMINARIES

2.1 Discrete Event Systems Basics

One of the conventional ways of presenting a DES employs
generators (Wonham (2012)). A nondeterministic genera-
tor is formally defined as a 4-tuple G = (X,Σ, ξ, x0), where
X is a state set, Σ a finite alphabet representing a finite
event set, ξ ∶ X × Σ → 2X is a transition function (where
2X is the power set of X), and x0 an initial state. A shared
event between two generators is an event that is enabled
from states of these generators. It can occur if both of
the generators are in states that allow the shared event:
transitions labeled by a shared event occur simultaneously
in generators that share the event. Local events are not
shared with any other generator. The semantics of shared
and local events are formalized by means of synchronous
products (Wonham (2012)).

2.2 Linear parameterized discrete event systems

A Parameterized Discrete Event System(PDES) P is an
infinite set of synchronous products of M isomorphic
finite-state subprocesses, where M ranges over the set of
natural numbers greater than two. Formally,

P = {∥
M

i=1Pi ∶ M > 2},
where Pi = (Xi,Σi, ξi, x

0
i ), with X1 = X2 = ..., and M is

the unspecified parameter. We are particularly interested
in PDES with linear topology. PDES P has linear topology
if for any member ∥M

i=1Pi ∈ P , subprocess Pi, 1 < i < M ,
has events shared only with both Pi−1 and Pi+1, and P1
and PM respectively have events shared only with P2 and
PM−1.
We assume all subprocesses have the same state set Xs

and instantiated from a template subprocess Pn in the
following manner. Let Pn = (Xn,Σn, ξn, x

0
n), and assume

all event symbols in Σn have either n or n + 1 as indices.
Define instance Pi for any i ∈ N, by replacing the index n
(respectively n+1) with i (respectively i+1), and defining
ξi such that for all x ∈ Xs and σn ∈ Σn (respectively
σn+1 ∈ Σn), ξi(x,σi) = ξn(x,σn) (respectively ξi(x,σi+1) =
ξn(x,σn+1)).
We set Σi = ΣLi∪ΣSi ; ΣLi is the set of local events (events
that are shared neither with Pi−1 nor with Pi+1) and ΣSi

is the set of shared event symbols. Local event alphabets
are pairwise disjoint. Symbols in ΣSi either have index i or
index i + 1: shared events between subprocesses Pi−1 and
Pi have index i, while event shared between Pi and Pi+1
have index i + 1.

2.3 Parameterized-chain networks

Formally, a PCN is a strongly connected, finite, directed
graph whose nodes are partitioned into distinguished nodes
and parameterized nodes (see figure 1 for an example).
The former, represented graphically as squares, will denote
distinguished subprocesses, and the latter, represented as
circles, will denote linear PDES that are subnetworks of
the overall system. Distinguished nodes are finite-state
distinguished subprocesses (a distinguished subprocess can
have a structure distinct from those of other subprocesses).
Each parameterized node is the template finite-state sub-
process for the linear PDES that the node denotes. All
parameterized nodes have an in-degree and an out-degree
of one. We assume that the state sets corresponding to
subprocesses associated with different nodes are disjoint.
We denote the (distinguished) nodes with in-degree larger
than one input nodes, and the nodes with out-degree larger
than one output nodes. For the formal definition PCN
and assumptions on a PCN see (Zibaeenejad and Thistle
(2017)).

2.4 Deadlock analysis scheme

The deadlock analysis rests upon the construction of a
dependency graph of the PCN. This is a finite graph whose
nodes are states of distinguished subprocesses or of the
template subprocesses corresponding to linear parameter-
ized subnetworks. The presence of an edge from one such
node to another indicates that when neighbouring subpro-
cesses within an instance of a PCN are occupying those
those respective states, then the first subprocess cannot
execute any event until the second subprocess has executed
an event that is shared with another neighbouring subpro-
cess - the first subprocess is dependent on the second in
order to proceed. Consistent subgraphs represent sets of
states of subsystems of network instances. As such, they
include at most one state of any distinguished subprocess
(hence the name ‘consistent’). They are also required to
include a state of at least one input subprocess in each of
their maximal strongly connected components - this rules
out subgraphs that only represent states of parameterized
segments of the network. To capture circular waits, we also
require that each node within a consistent subgraph belong
to a strongly connected component of that subgraph -
in other words, that a strongly connected subgraph be
the union of its strongly connected components. But the
notion of a circular wait must be generalized to account
for the branching in our network topologies. For this, we
define a full consistent subgraph to be one where, for each
node that is a state of an output subprocess, and for each
direct successor subprocess of that output subprocess, if
there exists a shared event between the two subprocesses
that can occur when the output subprocess is in its given
state, then the subgraph must contain an edge from the
state of the output subprocess to some state of the direct
successor subprocess. The fullness property thus ensures
that in any states represented by the consistent subgraph,
each output subprocess is ‘dependent’ on every one of its
direct successors with which it could conceivably execute
a shared event. The reader is referred to (Zibaeenejad and
Thistle (2017)) for more formal definitions and results.



3. THE SOFTWARE TOOL

Our program will draw the dependency graph and all of
its maximal consistent and full subgraphs. To generate the
PCN graph and the automaton model of each node in the
PCN, we use Integrated Discrete-Event Systems Software
(IDES v.3 beta 1 1 ). IDES generates XML files with the
extension of .xmd, and these files are used as inputs to our
program.
The program first reads and parses the input PCN XML
file and all of the other automaton model XML files.
Then it finds all of the parameterized and distinguished
nodes in the PCN graph 2 . The software instantiates
the parameterized nodes by creating two more nodes and
XML files for each parameterized node. After that, it finds
all of the simple loops in the PCN graph using a depth-
first search algorithm. The respective automaton models
of the nodes in the loop are then modified by deleting
all transitions labeled by events shared with parts of the
network that are not included in the loop. In each loop, the
software calculates the synchronous product of each node
with its next neighbor node in the PCN graph. Each state
in the synchronous product is an ordered pair of states
of the automata corresponding to the respective nodes of
the PCN graph. The algorithm then finds the states of
the synchronous product where the only enabled events
are shared with the successor of the second component
of the synchronous product (within the loop). All of the
found states from the synchronous product will form the
nodes and edges of the dependency graph. Each state is
an ordered pair of nodes and in the dependency graph the
first node in the pair will be connected to the second by an
edge. After forming the dependency graph the tool locates
all full, consistent subgraphs of the dependency graph.
To find all of the maximal full, consistent subgraphs of the
dependency graph we will find all of the simple loops in
the dependency graph; then we will assign a number to
each of these simple loops and call them s ‘super-node’.
We will create an undirected graph, named the super-
graph, with each node being one of these super=nodes.
We assign an edge between any of these nodes if the
corresponding simple loops have at least a common node in
the dependency graph. Now using the super-graph, we can
investigate consistency and fullness properties. To have a
consistent subgraph, there are two conditions that must
be satisfied by each subgraph:
(1) Any strongly connected component of the subgraph

must contain at least one input node.
(2) There should not be more than one state of each

distinguished node in any subgraph.
To satisfy the above conditions, we create the adjacency
list of the nodes in the super-graph. We traverse this graph
and eliminate those paths that have more than one state of
a given distinguished node in their simple loops and that
do not include any input node. At the end we will generate
all of the maximal consistent subgraphs. To satisfy the
fullness condition, we find all of the output nodes’ states
in each simple loop of the dependency graph and check if
1 https://qshare.queensu.ca/Users01/rudie/www/software.html
2 The user must specify the name of the parameterized nodes that
have in-degree and out-degree of one.

in the PCN graph those output nodes in that specific state
have any shared events with their neighbors. If there is any
shared event with a successor in the PCN graph, to satisfy
fullness, there should be an edge from that specific output
node to that successor in the corresponding subgraph of
the dependency graph. So, to have maximal consistent and
full subgraphs, we eliminate generated maximal consistent
subgraphs that do not satisfy the fullness property.

4. CASE STUDY: COMPLEX TRAIN NETWORK

In this section we consider a more complex version of
the train network example of (Zibaeenejad and Thistle
(2017)). The model consists of distinguished subprocesses
that represent the intersections within the network and
of linear parameterized segments representing routes of
arbitrary length. It would be seen that the existence of
generalized circular waits will depend on the lengths of
these routes.
Figure 1 is the PCDN graph and represents a network of
six intersections and seven routes. A train will enter the
network from the IA1 “input node” and travel through the
network using any of the specified routes. (Directions of
the movements are indicated by the arrows) Each space in
the network will get filled by the arrival of a train and will
empty upon its leaving. IA1, IB1 and IC1 are the input
nodes and IA2, IB2 and IC2 are the output nodes. Rxi,
R′xi, R′′xi (x could be A, B and C, except R′Bi), Ri and
R′

i are the parameterized nodes. Distinguished nodes have
been represented using square nodes in the graph. The
traffic network represented in figure 1 could be arbitrarily
large with many distinguished and parameterized nodes.
For the purpose of this example the network contains
seven routes, each represented by a parameterized node,
which means their length could be arbitrarily large. Each
intersection is also represented by a distinguished node. To
be consistent with the simpler version of this network we
will assume every train comprises two cars and will occupy
two spaces at a time. In order to satisfy the assumptions
underlying the reachability analysis of (Zibaeenejad and
Thistle (2017)), trains are modeled as entering input nodes
in a single event; they are also modeled as leaving the
network in a single event. Otherwise, they pass through
spaces on the routes one wagon at a time. Each intersection
is blocked after the entrance of a train and will accept new
trains only upon the departure of the first train. Suppose
that a train enters the network from intersection IA1, and
then continues to the main route. Upon arrival at the next
intersection, IA2, it has three choices: it could go to the
upper or lower route to come back to intersection IA1, or
it could continue to reach to the next intersections, IB1
and IB2. Again the train has three different choices. It
could continue to the main route to return to the IA1
intersection, or it could choose the lower or upper route.
By choosing the lower route, it will come back directly
to the IB1 intersection, but by choosing the upper route
it will enter the next intersection, IC1, and again there
is a choice to make, upper route or lower route, both
of which will eventually reach the next intersections IC2
and IB1. We will instantiate the PCDN network using
three subprocesses in each parameterized segment, which
will allow us to analyse fully the parameterized network
ZibaeenejadandThistle (2017).

https://qshare.queensu.ca/Users01/rudie/www/software.html


Fig. 1. PCN graph of train network consisting of 10 parameterized nodes (depicted as circles) and 14 distinguished
nodes (depicted as squares). Parameterized nodes model routes with arbitrary lengths. Distinguished nodes model
intersections or parts of routes that may require separate modeling.

Fig. 2. The input node IA1

All of the input nodes including IA1, IB1 and IC1
intersections, have a structure similar to figure 2, with a
slight relabeling of event names (replacing ‘a’ in IA1 to
‘b’ or ‘c’, to achieve IB1 and IC1 graphs respectively.) In
intersection IA1, the entrance of the train from outside
of the network has been denoted by a local event named
ia. The only difference among these input nodes is that
IB1 and IC1 do not have the local events ib and ic,
respectively because trains cannot enter the network from
those intersections. Their shared events with the previous
space are denoted by d′′′5 , d5 and d′′5 in IA1, IB1 and IC1,
respectively. Shared events d′a5, d′′a5 and d′′′5 represent
entrance of the train from top, bottom and previous
space of the main route, respectively. This intersection
will be emptied when the first and second wagons of
the train leave this intersection by sa1 and da1 events,
respectively. The main route after the first input node has
been represented by a parameterized node RAi.
In figure 3 the first and second wagon will arrive at the ith

space by events sai and dai and they will leave by events
sai+1 and dai+1 respectively. Other routes which have been
modelled by a parameterized node have the same structure

Fig. 3. Parameterized node representing the main route

to this one and can be constructed by proper relabeling of
the above model.
The intersection IC2 has the same structure with a slight
relabeling of the event names.
Figure 4a depicts the structure of the output nodes IA2
and IC2. The first and second wagon will enter this
intersection via events sa4 and da4 from the main route.
After that wagons can leave this intersection in three
different ways; they could go to the lower route using
s′′a1 and d′′a1 events or they could continue along the
main route using s1 and d1 events or finally they could
exit to the upper route using s′a1 and d′a1 events, which
is the only difference between IA2 and IC2, on the oner
hand, and IB2 on the other hand, as depicted in figure 4b.
Intersection IC2 has the same structure as IA2 because
they are both connected to a parameterized node in their
upper route, while IB2 is connected to a distinguished
node in its upper route, and input nodes can accept trains
in just one event.
Figure 5 depicts the models of the other distinguished
nodes in the PCDN network. All of the distinguished nodes
depicted in figure 5a are the same except for a slight change



(a) IA2 and IC2 (b) IB2

Fig. 4. Output nodes

(a) AA1, AA2, AB1, AB2, AC1, AC2, A1 (b) A2

Fig. 5. Distinguished nodes

in event names. This space gets filled by entrance of two
wagons via s′a4 and d′a4 events and become empty by the
d′a5 event. The only difference in the A2 node is that it
has one more local event for trains to leave the network,
as depicted in 5b.

4.1 The dependency graph and its full, consistent subgraphs

Figure 6 represents the dependency graph of the traffic
network generated by the developed software tool. This de-
pendency graph contains eight distinct consistent and full
subgraphs. To satisfy the consistency condition, subgraphs
must include an input node and also they must contain
just one state of each distinguished node. For example, in
figure 6, the loop between nodes 2R′A and 4R′A does not
satisfy the first condition of the consistency condition, so
it does not represent a circular wait. The state set of the
nodes are represented by a state number in the dependency
graph. For example, in 3IA1 , the state of the IA1 has been
represented by 3, while in 4R, the state of the all of the pa-
rameterized nodes are 4. In figure 6, a consistent subgraph
cannot contain both nodes 3IA1 and 2IA1 or nodes 3IC1
and 2IC1 , because a subprocess cannot be in two different
states at the same time. As depicted in figure 7, all of
the components of the subgraph satisfy the consistency
conditions by including an input node and not having more
than one state of a distinguished node. It also represents
the satisfaction of the fullness condition by having an edge

from the output node 2IC2 to 2R′′C . Because that output
node has an event shared with its neighbour R′′C in the
PCN graph. The first component of the subgraph in figure
7, requires even number of parameterized nodes for the
2RB and 4RB loop; while the loop containing the nodes
2R′′B and 4R′′B requires an odd number of parameterized
nodes to reach a partial deadlock in the network. In other
words, the partial deadlock can occur only if the number of
spaces on the lower return route from IB2 back toward IB1
is odd. By the same reasoning we should instantiate the
other parameterized nodes in the second component of the
subgraph, 2RC , 4RC , 2R′′C and 4R′′C with an odd number
of parameterized nodes; to have a deadlock in the network.
That is the number of spaces on the lower route RC from
IC1 to IC2 and on the lower return route from IC12 to
IC1 must be odd. We altered some of the configurations
of the automaton models, to see how the changes would
affect the results. First, there is no difference in the results
when the trains can enter the network via any of the input
nodes rather than just via one input node (IA1). Secondly,
if the we let the train to leave the network also via node
AB1, in the dependency graph and subgraphs there would
be no state of the AB1, as expected. Each such subgraph
represents a partial deadlock and if the whole network does
not have any of the states represented by these subgraphs,
then it is free of any deadlocks.



Fig. 6. Dependency graph, generated by the developed software tool for deadlock analysis of parameterized network.

Fig. 7. Some of the full, consistent subgraphs of the dependency graph, generated by the developed tool. Each of these
subgraphs represent an infinite set of partial deadlock states.

5. CONCLUSION

This paper describes a tool used to implement a decision
procedure for checking the existence of reachable gener-
alized circular waits in parameterized networks. By the
nature of parameterized networks, there may be infinitely
many such generalized circular waits. In the framework of
(Zibaeenejad and Thistle (2017, 2015)), all the generalized
circular waits are represented by a finite set of full, con-
sistent subgraphs of the dependency graph of a network;
indeed, each full, consistent subgraph can be interpreted as
a regular language, each word of which encodes a general-
ized circular wait. This paper goes beyond this framework
by allowing networks to include multiple input processes;
the notion of consistency of a dependency subgraph is
therefore appropriately generalized.
The developed tool receives a PCN as its input and gen-
erates maximal full, consistent subgraphs of the depen-
dency graph by forming ‘super-nodes’ and ‘supergraphs.’
Nodes of the supergraph are connected by an edge if the
corresponding cycles intersect. These experimental results
suggest that the present theoretical results can be usefully
extended. The theoretical extension of the framework is
the subject of current research.
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