
A Platform for Experimental Education of
Control Science

Alen Turnwald ∗, Francisco J. Garcia ∗∗, Dina Martynova ∗∗,
Zhijie Lin ∗∗, Wen-An Zhang ∗∗∗, Steven Liu ∗

∗ Institut for Automatic Control, University of Kaiserslautern,
Germany, Email: {turnwald , s.liu}@eit.uni-kl.de

∗∗ Student at Institut for Automatic Control, University of
Kaiserslautern, Germany, Email: garciar@rhrk.uni-kl.de,

martyn@rhrk.uni-kl.de, zhijie9lin@gmail.com
∗∗∗ Department of Automation, Zhejiang University of Technology,

HangZhou, Email: wazhang@zjut.edu.cn

Abstract: This paper introduces a concept for control educations based on a combination of
a simulation and a real robot. It is suggested to split the procedure of controlling a robot into
three steps. First, students work with a Matlab/Simulink model for rapid design and testing of
control algorithms. The practical application is split into two steps. Robot Operating System
(ROS) is used for task distribution and communication between different parts of the robot. In
this framework, first the students implement the algorithms on an embedded processor, here
Raspberry Pi, that is connected to a realistic robot simulator Gazebo. The last step is then
to replace the simulated robot with the real robot by taking real sensor signals instead of
those generated by the simulator. This concept is applied in the educational program and some
students were asked about their opinions and experiences. Finally, an extension is presented to
the robot built by the students to demonstrate the flexibility of the concept.

Keywords: Control Science Education, Virtual and Remote Labs

1. MOTIVATION

In this paper we introduce an educational lab concept for
control science and robotics that is defined as a combina-
tion of a virtual multi-user simulation environment and a
corresponding experimental platform.
The main objectives of the development project can be
listed as:

• Hands-on experience for students on different levels
of design and implementation
• An illustrative and practical example for better un-

derstanding of the control science contents
• An easy-to-access platform for every student
• Closing the gap between the theory and praxis of

control engineering in the education

Based on the objectives above, the main requirements were
defined to be:

• An attractive robot system promoting control science
• Covering a large application field such as different

control methods, observers, path planning and fol-
lowing etc.
• A flexible and extendible system allowing future en-

hancements and innovative student developments
• based on low-cost and available hardware and open-

source software

2. FROM THEORY TO PRAXIS

The main concern of this project is how to accompany
students on the way of their learn process from the theory
to the praxis of control engineering keeping always in mind
the relation between these two. For this purpose, a three-
level concept is defined:

(1) Rapid design and test using idealized simulations
(2) Implementation and test of algorithms on real plat-

forms in combination with simulations
(3) Final implementation on a real system

Hereby, the educational objectives can be achieved in a
sequential manner in every step of which the focus is
shifted from the theory to the praxis. Below, the concept
is explained in detail.

2.1 Rapid design and testing under ideal conditions:
Simulink

At the first level, the content of the lectures and different
methods are applied and tested under idealized conditions
so that the student does not need to deal with several dis-
turbances and uncertainties arising in the praxis. Here, the
focus is only on the theory and a visual and intuitive eval-
uation of the designed control loops. For this purpose, a
Matlab/Simulink model is provided that includes the sys-
tem model and an animation for visualization. Using this
model, students are able to rapidly evaluate the control
methods and the affects of changing different parameters.



Fig. 1. Simulink-model including animation

At the same time, the animation illustrates the outcome of
the control loop that can be understood intuitively. Several
tasks such as stabilization, state observing and navigation
can be implemented in a simple manner.

In our curriculum for instance, students learn to ana-
lyze the system features using Matlab such as stability
of an equilibrium, controllability and observability defin-
ing different system outputs. Further, they design linear
controllers for the input-output transfer function as well
as state space controllers by pole placement or LQR al-
gorithm. Finally, the designed controllers are tested and
validated applying them the provided Simulink model.
Figure 1 shows a screen shot where a linear controller
is applied to the system to stabilize and simultaneously
follow a commanded path.

The next step after designing the controller and under-
standing the theoretical aspects is the implementation on
a real platform. However, there are many challenges that
make a direct transfer from Matlab/Simulink to the real
system enormously difficult. On one hand, there are the
programming difficulties in lower-level languages such as
C++, processing and correct interpretation of sensor data
and actuation commands, data-type and rate conflicts etc.
On the other hand, the student faces practical challenges
of a real system such as parameter uncertainties and asym-
metries in the model, unknown or unmodeled effects such
as static friction and motor dead-zone, unexpected faults
e.g. caused by electronics errors etc. Thus, it is reasonable
to split the practical implementation into two further steps
to tackle the mentioned challenges in a sequential manner.

At this point, we would like to mention that there exist
many different concepts and approaches to lead the step
from the controller design to the practical implementation.
Only to name some, there are concepts to directly connect
Matlab/Simulink to a hardware such as by QUANCER
(2012). Offered by National Instrumentsr, the combina-
tion of LEGO hardware and Labview (NI (2017)) is also
used very often. These concepts have the advantage of
the direct and automatic implementation on the hardware.
However, they use licensed software or hardware that are
not available at every university or educational institu-
tion. The concept introduced in this work uses, except for
Matlab/Simulink that is in the most cases available at uni-
versities, open-source software and low-cost commercially
available hardware. To give a rough estimation, a simple
small wheeled robot including a Raspberry Pi 3 and an
IMU as in the figure 2 costs around e100 each. As a draw-
back, after the controller design in Matlab developing the
corresponding lower-level code such as C++ and Python
is required. A review of the existing educational simulators

Fig. 2. Simple wheeled robots built by students for educa-
tional purposes

is given in J. V. Teixeira (2015). A list of available simu-
lation environments and their features including the one
used in our concept can be found on Smashing Robotics
(2017). Also, a description of different available hardware
and software applied in the robotics education is given in
M. Merdan (2017).

On the software side for the implementation, a Linux
operating system (Ubuntu) is applied that can be run
on (almost) any available hardware and is open-source.
The required flexibility and extendability is achieved by
using Robot Operating System (ROS (2017)) for task
distribution.

ROS is a flexible and open-source framework for program-
ming robots. It can be seen as a task distribution system
that splits a large task, for instance stabilization of an
electromechanical system, into several subtasks or nodes
such as: read the sensor data, calculate the controller gain,
write the control command to the actuators. The most
important advantages of ROS that makes it the best choice
for our concept are

• Hardware independence: Any node within the ROS
network can run flexibly on any available hardware
unit

• Large community: A large amount of students, re-
searchers and hobby-programmers use ROS to de-
velop their robotic tasks and exchange their results
and experiences on the Internet. This makes possible
that often a required piece of code for a certain task
already exists. The approved software codes devel-
oped by the students at our institute for instance, are
at the moment available at:
https://github.com/francisc0garcia/suricate robot
Note that the material provided on this repository
are still under development.

• Inherent communication and data exchange between
the nodes.

• Compatibility with a large number of available inter-
faces

ROS provides a structured communications layer placed
over a host operating system. It was designed initially to
accomplish specific challenges of large-scale robotic appli-
cations at Stanford University and Willow Garage, but
over the time, it became a standard and widely used frame-
work around the world (Quigley et al. (2009)). The main
components of ROS can be summarized as nodes, messages
and topics. Processes that perform computation are called
nodes. Messages are strictly typed data structure such as
integer, floating point, Boolean and also (personalized)
structure types like odometry or pose. Nodes send and
receive data messages by publishing or subscribing them to



Fig. 3. Schematic structure of an example ROS network

a specific topic. Multiple publishers and subscribers allow
large flexibility and scalability of the overall system.

Figure 3 shows a basic example for a ROS network
by which a user communicates with a robot using a
base station PC to move the robot. The overall task
is subdivided into small tasks (nodes) which realized
either on base station or an embedded system inside the
robot. In this example, graphical interface node allows
users to command desired positions. Sensor interface node
transmits the odometry from sensors to the controller node
which computes a velocity command to drive the wheels.

2.2 Programming Almost the Real System: Gazebo

Gazebo (Gazebo (2017)) is a free robot simulation tool
that uses different physic engines to simulate physical sys-
tems as realistic as possible including well-done graphical
interfaces.
Gazebo simulates physical systems in a port-based man-
ner connecting subsystems together to build the overall
system. We provide the students with the ready-to-use
simulation of the robot, however extension of the provided
robot or change and replacement of it can be done easily
following instructions provided by the Gazebo community.
Also, as common for open-source tools, there are already
lots of interesting models developed and available on the
Internet(Gazebo (2017)).

One of the advantages of Gazebo is that custom plugins
can be defined and used to interact with the simulated
robot such as different sensors or actuators. By that, real-
istic components can be defined, for instance to emulate a
certain type of sensor installed on the robot. In fact, many
available components such as specific IMU-sensors and
cameras can be directly emulated since the correspond-
ing plugins are already developed by the community and
provided online.
Further, certain plugins allow us to embed the simulated
robot into the ROS network such that almost every other
software component can be used directly for the real sys-
tem without any changes. In fact from the point of view of
the ROS network, there is no difference between the signals
generated by the real sensors and those generated by the
emulated sensor as a Gazebo plugin. This way, a large part
of the implementation task can be done without the real

Fig. 4. Gazebo Simulation for the robot Suricate. Another
robot is also placed in the world for size comparison.

robot such as signal processing, controller implementation
and different visualization and user interface tasks. The
controller and other nodes can be tested and evaluated
on Gazebo before the simulation is replaced by the real
system. Figure 4 shows an screen shot of the simulation
world provided.

As processing platform for the practical implementation,
commercial mini-computers were chosen that are low-cost
and widely available such as Raspberry Pi (Pi (2017)).

The structure of the ROS network used with Gazebo
simulation is shown in Figure 5. The controller node as
well as the sensor data publishers and the twist subscriber
that sends a velocity command to the wheels are running
on the Raspberry Pi as in the actual robot. On a PC, the
graphical user interface and the joystick node are running
to send a desired position to the robot. All of the nodes of
course, can also run on a single computer, as the controller
in the real robot experiment can run on a local computer
too.

Fig. 5. ROS network structure running the simulation by
Gazebo

The two steps above can be done by the students in parallel
locally on the private computers without needing any fur-
ther hardware. After validating the applied software, the
last step can be approached to implement the algorithms
on a real robot.

2.3 Suricate: A Wheeled Inverted Pendulum

The robot Suricate (Figure 6) was developed within stu-
dent projects at the institute of control systems for control
education purposes inspired by F. Grasser (2002). It is a
combination of the benchmark system, inverted pendulum,
and a wheeled robot to allow additional navigation and



Fig. 6. Suricate Robot

path tracking tasks.
There are many low-cost components used such as Rasp-
berry Pir, ODROIDr, Arduinor micro, ASUS Xition
Pror camera, Adufruitr BNO055 IMU (by Boschr) and
many others.
For the body, standard aluminum profiles are used that
allow easy assembling and extension. A power distribution
unit provides tow supply lines, one low-power for the pro-
cessors and sensors and a high-power to supply the motor
drivers. A dedicated micro controller (Arduino micro) is
in charge of a active switch to turn off the high-power line
if necessary due to safety.
Different standard interfaces are used to communicate
among components. An overview on the physical connec-
tions and interfaces is given in Figure 7.

Fig. 7. Physical connections and interfaces

The ROS network is extended by other necessary nodes
such as visual odometry that calculates the orientation of
the robot based on the images received from the camera
or security check that monitors the state of the batteries
and some critical entities to turn off the hight-power line if
necessary. However, the basic structure is unchanged and
the nodes run with the Gazebo simulation can be directly
taken over. Figure 8 illustrates the overal ROS network in
the robot.

Although the robot consists of many different parts and
components it can be used by the students easily for
control educational purposes. In fact, only to verify the
controller and observer algorithms developed in Matlab
on a real robot the students only need to rewrite their
code in C++ or Python. Then, they can directly test their

Fig. 8. ROS network structure running on the real robot

results using Gazebo and if everything works well without
any major change on the real robot. Note that the basic
structure is unchanged and the nodes run with the Gazebo
simulation can be directly taken over. A data logging
and monitoring node run on the local computer provides
the data after every experiment for post processing and
evaluation. A video is generated by the student who
developed Suricate and made available on YouTube (LRS
(2016)).

3. SOME FEEDBACK FROM THE STUDENTS

For evaluation and in order to improve the concept, we
asked tome students for feedback on how useful they found
this concept, if they have experience with other methods
and their suggestions for improvement. Some of them are
summarized below.

(1) I have some experience with robot programming,
especially using AVR micro-controllers. I also worked
with Lego Mindstroms using C. what I like about
the combination Gazebo-ROS was the possibility for
rapid testing of algorithms and codes. Challenging
was the process of getting started with ROS as a new
environment. The main difference to other concepts I
am aware of is the abstraction of the hardware. The
advantage is that the objectives such as controlling
can be achieved very fast without taking care of the
hardware difficulties.

(2) I have already experience with other platforms such
as AVR. Positive was the possibility to figure out the
complications in the system before working with the
real one. Negative was the new-world of ROS that I
needed to get used to firs.

(3) My project with Gazebo and the real robot helped me
to experience the effects of simplifications that are
often done in theory, for example, linearization and
assuming the homogeneous property of the system.
About ROS and Gazebo, I like the simple possibility
of changing the controller parameter and rapid test-
ing.

In general, students seem to like the concept because of the
low-level programming possibility and that the can learn
how to easily work with robots in a realistic environment.
On the other hand, getting used to ROS seems to be the
main challenge. For this, a short introduction on ROS
could be helpful since this could be used in many different
applications, also later in the engineering profession.



4. EXTENSION EXAMPLE: VISUAL ODOMETRY

One of the important aspect of this concept is the ex-
tendibility of the practical platform. In a recent student
project for instance, the robot was equipped by a 3D
camera and a more powerful minicomputer, ODROID. The
combination of the camera and ODROID was defined to
be the ”head” of the robot where also an LED-matrix
provides a better appearance. The main purpose of the
head within this student project is the estimation of the
robot pose using image processing tools. Here, yet supple-
ments from the large online community is used directly or
with minor modifications. Taking advantage of the flexible
ROS network, the students are able to work on the image
processing tasks such as visual odometry, path planning,
obstacle detection and avoidance etc separately. This way,
two independent student teams can work on the robot,
each setting up a ROS network on their physical platform.
These can be easily merged or connected by just defining
a single ROS-master.

The extension by the visual odometry was done within a
separate student project. First, a model of a 3D camera
was added in Gazebo by using available plugins. The
streamed images from the camera are passed to visual
odometry node. After image processing in the visual odom-
etry node, the resulting pose information is published to
other nodes such as visualization node.

Based on Lepetit et al. (2009), the algorithm for visual
odometry was generally divided into two steps: finding
corresponding key points in images for tracking object
points and estimation of pose with correspondences. In
reality, matching of corresponding points in images is chal-
lenging due to factors such as noise in image and motion
blur. Fortunately in Gazebo, with an ideal environment
a high correctness ratio of found correspondences can be
achieved, thus improving the robustness of estimated robot
pose.

After the development of visual odometry algorithm was
finished, it was tested on the real robot Suricate. The
software structure is almost the same as for the simulation,
only the model of the 3D camera is replaced by a real
camera. During on-line tests, in order to obtain matches
with high quality, the raw images were blurred with an
image smoother for reduction the high frequency noise,
and the corresponding result is showed in figure 9, where
the lines bind the corresponding key points in images. If

Fig. 9. Matching result with application of image smoother

the matching result is acceptable, the data is proceeded
to the second part for pose computation. In contrast to
the simulation, the necessary internal camera parameters
for pose estimation are unknown here, so they need to be

calculated through camera calibration with help of a ROS-
tool in advance.

5. CONCLUSION

A concept for control educations is introduced based on a
combination of a simulation and a real robot. A three-
step manner is suggested where students start with a
Matlab/Simulink model for rapid design and testing of
control algorithms. The practical application is consists of
two steps. In the framework of Robot Operating System
(ROS), first the students implement the algorithms on an
embedded processor, e.g. Raspberry Pi, that is connected
to a realistic robot simulator Gazebo. Then the simulated
robot is replaced with the real robot by taking real sensor
signals instead of those generated by the simulator. This
concept is applied in the educational program and some
students were asked about their opinions and experiences.
Finally, an extension is presented to the robot built by the
students to demonstrate the flexibility of the concept.

REFERENCES

F. Grasser, Aldo D’Arrigo, S.C.A.C.R. (2002). Joe: A
mobile, inverted pendulum. IEEE transactions on in-
dustrial electronics, 49(1).

Gazebo (2017). Gazebo simulation. URL www.gazebosim.
org.

J. V. Teixeira, M.S.H. (2015). Educational robotic simu-
lators: A systematic literature review. Nuevas Ideas en
Informtica Educativa.

Lepetit, V., F.Moreno-Noguer, and P.Fua (2009). Epnp:
An accurate o(n) solution to the pnp problem. Interna-
tional Journal Computer Vision, 81(2).

LRS, U.K. (2016). Suricate: A wheeled inverted pendulum.
URL www.youtube.com/watch?v=Nd9sih3DkKQ.

M. Merdan, W. Lepuschitz, G.K.R.B. (2017). Robotics in
Education.

NI (2017). Inverted pendulum with lego nxt and
labview. URL www . k12lab . com / articles /
inverted-pendulum.

Pi, R. (2017). Raspberry pi. URL www.raspberrypi.org.
QUANCER (2012). Linear inverted pendu-

lum experiment for matlab/simulink users.
URL de . scribd . com / document / 246377111 /
Linear-Inverted-Pendulum-Workbook-Student-1.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote,
T., Leibs, J., Berger, E., Wheeler, R., and Mg, A.
(2009). ROS: an open-source Robot Operating System.
Icra, 3, 5. doi:http://www.willowgarage.com/papers/
ros-open-source-robot-operating-system. URL http://
pub1.willowgarage.com/{~}konolige/cs225B/docs/
quigley-icra2009-ros.pdf.

ROS (2017). Robot operating system. URL www.ros.org.
Smashing Robotics (2017). Most advanced

robotics simulation software overview. URL
www . smashingrobotics . com / most-advanced \
-and-used-robotics-simulation-software.


