

Monocular Odometry for Underwater Vehicles

with Online Estimation of the Scale Factor

Vincent Creuze*

*LIRMM – CNRS / University of Montpellier.

Montpellier, France (e-mail: vincent.creuze@lirmm.fr).

Abstract: This paper introduces a new visual odometry method for underwater vehicles. It is based on

images grabbed by a monocular video camera, and aided by inertial and pressure measurements. This

approach offers several advantages. Firstly, it is compact and runs very fast, even with limited

computational resources. This allows to embed it on very small vehicles. Secondly, and probably most

importantly, the method is able to estimate online the scale factor of the observed scene, thanks to the

combined measures of a low-cost IMU and a pressure sensor. The paper ends with an experimental

validation onboard the Leonard underwater vehicle.

Keywords: Marine Robotics, Computer vision, Localization, Odometry.

1. INTRODUCTION

Accurate localization is required when underwater vehicles are

operating close to the seabed. For instance, while performing

predefined survey tracks (e.g. photogrammetric acquisition of

a wide area) or doing remote manipulation (e.g. collecting

samples or operating on an industrial structure), the accuracy

of acoustic based localization systems is not enough. Indeed,

USBL (Ultra Short BaseLine) or LBL (Long BaseLine)

acoustic systems are accurate enough to control the vehicle

during its descent into the water column, but provide too noisy

measures (from 10cm to several meters), at too low frequency

(often less than 1Hz), for accurate operations near the seabed.

On mid and big sized underwater vehicles, the solution

consists in using inertial measurement systems based on FOG

(Fiber Optical Gyroscopes), combined with the ground speed

measurements of a DVL (Doppler Velocity Log) and the

absolute acoustic localization of an USBL or an LBL for

instance. These methods are unfortunately heavy (several kg)

and very expensive (more than 100k€) and are not suited to

small or very small vehicles, due to the limited payload of such

vehicles. These are some of the reasons for which various

localization and mapping methods based on video have been

proposed for several years. Some works exploit monocular

vision as Garcia (2001), Gracias (2002), or Mahon (2004),

who used also a sonar to preselect best areas for the vision

system. Some other papers are based on stereoscopic systems,

like Negahdaripour (2005). This author performed numerous

real-time experiments (15Hz), demonstrating that stereoscopic

methods have smaller accuracy errors (2%) than monocular

approaches, especially for low contrasted scenes (e.g. ship-

hulls or walls of pools). The author suggests that this is due to

the inaccurate pose estimation of monocular methods when too

few feature points are available. Drap (2015) used a

stereoscopic system to perform real-time (10Hz) stereoscopic

localization and pose estimation of a submarine to guide the

pilot so as to completely cover a shipwreck. After the dive, the

images of a third high resolution camera are combined with the

images of the low-resolution stereoscopic system to build an

accurate 3D model of the scene.

Some other authors have combined vision with other

measurements. This was the case of Eustice (2006), who

performed monocular SLAM, robust to low-overlap

constraint, on a part of RMS Titanic. Using an inertial unit, his

approach improves the reliability of data association. More

recently, Shkurti (2011), proposed to integrate the data from

both a low-cost IMU and a pressure sensor in an Extended

Kalman Filter (EKF). Then, the authors track features (SURF

with Approximate Nearest Neighbor matching) in several

monocular frames. This gives a 3D position estimate, regarded

as true and used to correct the EKF. In particular, the authors

reported for experimental accuracy of 1 meter over a 30-meter-

long straight trajectory, with a system running at 15Hz. In spite

of the heavy computations of feature detection and matching,

real-time was achieved but necessitated trade-offs between

performances and robustness. Warren (2012) used the data

from a magnetometer to constrain the pose estimation of a

stereoscopic system installed on the Sirius AUV. This

minimizes the angular drift and the authors reported for error

smaller than 6.4 meters over a 300-meter-long trajectory. The

stereoscopic system ran at 1Hz to save energy.

The previous examples integrate the data of external sensors

(IMU, depth sensor) either to improve/constrain the pose

estimation process or directly to estimate a state of the vehicle

that will be corrected by the visual information. Most of them

rely on heavy computations. Some of them may fail during

station keeping operations, due to the difficulty to perform

bundle adjustment while keeping the robot still.

In this paper, we propose a method for underwater odometry

(not for mapping), that is able to online estimate the scale

factor of the observed scene. This method is based on a

monocular video camera, associated with a low-cost MEMS

IMU (Inertial Measurement Unit) and a pressure sensor (depth

sensor). It is fast enough (at least 30Hz) to be included in the

low-level control loop of an underwater vehicle and is enough

computationally efficient to be implemented on very small

computer boards (running at 10Hz on a Raspberry Pi 3 Model

B). Moreover, this method does not drift with time, but only

with the covered distance. This makes it very well suited for

station-keeping, or for accurate control of the motion of a

vehicle during underwater manipulations. It can also be

combined with an external acoustic positioning system (e.g.

USBL) for longer range navigation. Its specificity with respect

to previous work is that the inertial data are directly used in the

image processing, and the depth measurements allow to

compute the altitude of the vehicle in a straightforward

manner. Compared with methods based on stereovision, this

approach uses frames grabbed by a single monocular camera.

This makes it more compact and this requires less computation

and energy. Section 2 will present the details of the algorithm.

In section 3, we present experimental results obtained in a pool

with the Leonard underwater vehicle (Fig. 1). These

experiments have also been reproduced in real-time during the

demonstrator session of IFAC 2017.

2. VISUAL ODOMETRY ALGORITHM

2.1 Technical setup

To perform the visual odometry only three devices are needed

(Fig. 2): a downward facing monocular video camera

(resolution: 640x480), a depth sensor, and a MEMS IMU (9

dof) running at least at the same frequency as the camera frame

rate.

In our case, the IMU is located inside the housing of the

camera, but could be placed anywhere else as long as a

calibration procedure allows to align the axes of the IMU with

the axes of the camera and the axes of the ROV. The positions

of the camera frame and the pressure sensor with respect to the

body frame of the ROV have to be accurately measured. This

will be used later to compensate for the effects induced by

pitch, roll and yaw motions.

2.2 Assumptions

For clarity purposes, in the following, we will assume that the

camera and the IMU axes are aligned. We will also assume

that the camera frame ℛ𝑐 coincides with the body frame ℛ𝑏 of

the vehicle and that the pressure sensor is located at the center

of the body frame of the vehicle. In practical conditions, these

assumptions are not realistic, but can easily be compensated

by well-known geometric transformations that we will not

detail here. We also assume that the calibration of the camera

(pinhole model) has been done, so that the intrinsic parameters

are known. The distortion coefficients, are also assumed to be

known and are used to undistorted any grabbed image. This

will not appear in the following, but is of course taken into

account in the implemented code. Finally, we also assume that

the seabed is quite regular, i.e. without any sudden depth

variation.

Fig. 1. The Leonard ROV (at the top of the picture) during

coordinated archaeological operations with its twin brother

Speedy ROV (at the bottom of the picture), on the Lune

shipwreck (Depth: 90 meters, Toulon, France). Courtesy of:

F. Osada/T. Seguin - DRASSM.

Fig. 2. Example of setup, here mounted on the Leonard ROV.

The IMU is mounted inside the camera housing. The depth

sensor is located on the ROV’s main housing.

2.3 Algorithm

The algorithm is based on several steps:

Initialization

At the initialization of the algorithm (at time 𝑡0), an image 𝐼0

is grabbed by the camera and the depth 𝑝0 is recorded, as well

as the attitude (yaw, pitch, roll) of the camera provided by the

IMU (i.e. the attitude of the ROV) and denoted Θ0 =
(𝜑0, 𝜃0, 𝜓0).

Then one selects an initial set 𝑆0 of 𝑛0 strong feature points.

The selection method is not detailed in this paper but could

done for instance by selecting the most relevant Harris points

in the image, as described by Shi and Tomasi (1994).

Each point of the 𝑆0 set is denoted 𝑚𝑖,0 = (𝑢𝑖,0, 𝑣𝑖,0), with 𝑖 ∈

[1, 𝑛] and (𝑢𝑖,0, 𝑣𝑖,0) being its coordinates in the image 𝐼0, i.e.

at time 𝑡 = 𝑡0.

Side view Front view

video camera + IMU depth sensor

Iterations

The iterative process starts by grabbing a new image 𝐼𝑘 at time

𝑡 = 𝑡𝑘. As for the initialization, the attitude Θ𝑘 = (𝜑𝑘 , 𝜃𝑘 , 𝜓𝑘)
and the depth 𝑝𝑘 are also recorded.

Then, one calculates the optical flow for every points 𝑚𝑖 of 𝑆0

using the iterative Lucas-Kanade method with pyramids, as

proposed by Bouguet (2000). This allows to find the new

positions 𝑚𝑖,𝑘 = (𝑢𝑖,𝑘, 𝑣𝑖,𝑘) of the points of 𝑆0. During this

step, some points cannot be tracked and are lost (e.g. when

optical flow fails, or when points disappear or exit from the

image). In this case, we eliminate them from the set 𝑆0. The

rest of the points form the 𝑆𝑘 set.

We now apply a yaw, pitch and roll compensation to the points

of 𝑆𝑘. This gives the attitude-compensated points 𝑚𝜑𝜃𝜓𝑖,𝑘
=

(𝑢𝜑𝜃𝜓𝑖,𝑘 , 𝑣𝜑𝜃𝜓𝑖,𝑘), located where the feature points should be

(in the image) if the pitch and roll angles had not changed with

respect to their initial values (at time 𝑡0). For this, we use the

attitudes Θ0 = (𝜑0, 𝜃0, 𝜓0) and Θ𝑘 = (𝜑𝑘 , 𝜃𝑘, 𝜓𝑘) measured

by the IMU respectively at time 𝑡 = 𝑡0 and 𝑡 = 𝑡𝑘.

Once the variation of the attitude has been compensated, the

mean zooming ratio < 𝜌𝑘 > is computed. For this, for every

duets of the 𝑛𝑘 points remaining in the 𝑆𝑘 set, we firstly

compute (𝑑𝑖𝑗)𝑘 the distance between points 𝑚𝜑𝜃𝜓𝑖,𝑘
 and

𝑚𝜑𝜃𝜓𝑗,𝑘
 at time 𝑡 = 𝑡𝑘 and (𝑑𝑖𝑗)0 at time 𝑡 = 𝑡0, with 𝑖 < 𝑗

and 𝑖, 𝑗 ∈ 𝑆𝑘.

Then, the mean zooming ratio < 𝜌𝑘 > is defined as:

< 𝜌𝑘 >=
2

𝑛𝑘(𝑛𝑘 − 1)
∑

(𝑑𝑖𝑗)𝑘
(𝑑𝑖𝑗)0𝑖<𝑗 𝑎𝑛𝑑 𝑖,𝑗∈𝑆𝑘

 (1)

It has to be mentioned that the observed zooming effect is only

due to the depth variation of the robot between 𝑡0 and 𝑡𝑘.

Indeed, 𝜌𝑘 is not affected by the seabed depth variations as the

features points used correspond to fixed point of the seabed

that are tracked from 𝑡0 to 𝑡𝑘.

From the mean zooming ratio < 𝜌𝑘 >, and the depth 𝑝𝑘

measured by the pressure sensor, one can compute as follows

the altitude 𝑎𝑘 of the vehicle, i.e. its distance to the seabed. Let

us consider the 2D example of Fig.3. For better readability, the

yaw-pitch-roll compensated feature points 𝑚𝜑𝜃𝜓𝑖,𝑘
 are simply

denoted 𝑚𝑖,𝑘 on the figure. The seabed point corresponding to

𝑚𝑖,0 and 𝑚𝑖,𝑘 image points is denoted 𝑀𝑖.

The focal length of the camera is denoted 𝑓 and the center of

projection (optical center) coincides with the center of the

ROV’s body frame ℛ𝑏. The position of the ROV is denoted 𝜂𝑘

and 𝑢𝑘 is the image coordinate of point 𝑚𝑖,𝑘. The distance

between the principal axis and the seabed point 𝑀𝑖 is denoted

𝑑.

For sake of clarity, in this example, we consider the distance 𝑑

between a point 𝑀𝑖 and the principal axis, but the same results

could be obtained between two points 𝑀𝑖 and 𝑀𝑗 by

application of the intercept theorem.

From the pinhole model, we have:

𝑢𝑖,𝑘 . 𝑎𝑘 = 𝑢𝑖,0. 𝑎0 = 𝑓. 𝑑 (2)

Introducing 𝜌𝑖,𝑘 =
𝑢𝑖,𝑘

𝑢𝑖,0
 the individual zooming factor, we can

rewrite (2) as:

𝜌𝑖,𝑘. 𝑎𝑘 = 𝑎0 (3)

As the relation between altitude 𝑎𝑘 (in meters) and depth 𝑝𝑘

(also in meters) is:

𝑎0 = 𝑎𝑘 + (𝑝𝑘 − 𝑝0) (4)

we can combine (3) and (4), and get:

𝑎𝑘 =
𝑝𝑘 − 𝑝0
𝜌𝑖,𝑘 − 1

 (5)

Once applied to the entire set 𝑆𝑘 of feature point, this gives:

𝑎𝑘 =
𝑝𝑘 − 𝑝0

< 𝜌𝑘 > −1
 (6)

Fig. 3. Positions of a seabed point 𝑀𝑖 in the camera image

plane, when the ROV is at altitude 𝑎0 and altitude 𝑎𝑘.

The last step of the algorithm is the computation of the current

position of the vehicle (at 𝑡𝑘), with respect to its initial position

(at 𝑡0). For this purpose, we firstly compute 𝑚𝜑𝜃𝜓𝝆𝑖,𝑘
=

(𝑢𝜑𝜃𝜓𝝆𝑖,𝑘 , 𝑣𝜑𝜃𝜓𝝆𝑖,𝑘), which are the 𝑛𝑘 positions of the feature

points, compensated for attitude variation, but also for

zooming effect (i.e. variation of the altitude). Once this is

done, the ∆𝑥 and ∆𝑦 variation of the ROV’s position is given

by:

{

 ∆𝑥 = −

𝑎𝑘
𝑓𝑥. 𝑛𝑘

∑ (𝑢𝜑𝜃𝜓𝜌𝑖,𝑘 − 𝑢𝑖,0)

𝑖∈[1,𝑛𝑘]

∆𝑦 =
𝑎𝑘
𝑓𝑦 . 𝑛𝑘

∑ (𝑣𝜑𝜃𝜓𝜌𝑖,𝑘 − 𝑣𝑖,0)

𝑖∈[1,𝑛𝑘]

where 𝑓𝑥 and 𝑓𝑦 are the focal lengths of the camera, expressed

in pixels.

The iterative process is performed while the number 𝑛𝑘 of

points in the 𝑆𝑘 is large enough to smooth the disturbance

induced by the irregularities of the seabed (in fact 𝑎𝑘 is a mean

altitude, as the seabed is not necessarily flat). When too many

points have been lost (for instance when the vehicle has moved

away from its original position), 𝑛𝑘 goes under a certain

threshold 𝑛𝑚𝑖𝑛. Then, the iterative process is stopped and the

algorithm returns to the initialization step, and renew its set of

points. The new “initial position” is set to the last “current

position”.

It has to be noticed also that in case of non-flat bottoms, after

every reset of the process (initialization step) the depth

trajectory has to vary in order to estimate again the altitude of

the ROV. Navigating at constant depth does not allow to

estimate the altitude. However, when the vehicle navigates

close to the seabed (2m or less), a variation of a few

centimeters in the depth trajectory (as almost every

commercial ROVs naturally do) is sufficient.

3. EXPERIMENTS AND DISCUSSION

3.1 Experimental setup

Experiments have been conducted with the Leonard ROV

(Fig. 1). This vehicle has been designed at LIRMM in 2015.

Its features are summarized in Table 1.

Table 1. Leonard ROV’s technical features

Size 70 x 50 x 50 cm

weight 28 kg

max operating depth 100 meters

IMU Sparkfun ArduIMU V2

depth sensor Range: 0-150 m

Relative accuracy: 2 cm

Camera IM-E630 & 640x480 Grabber

Thrusters 6 Seabotix BT150

During the experiments, the visual odometry algorithm and the

control of the ROV were computed from the surface (through

the tether) by a laptop PC (Intel® Core™ i7 5600U 2.60GHz).

The codes are written in C++. For some of the functions

needed in the presented algorithm, we used OpenCV library

(Bradski2000). The frequency of the algorithm was limited by

the fps of the camera, so it worked at 25fps (PAL analog

camera). Under these conditions, the CPU load was around

8%.

3.2 Altitude estimation

To compare the performances of the method with a reliable

ground truth, we performed tests in a pool. The bottom of the

pool was flat with sparse 5-cm-high ripples (a removable

plastic carpet protects the bottom from impacts). These tests

have been reproduced during demonstrator session of IFAC

2017.

The first test consisted in the validation of the altitude

estimation. The ROV remained stable in the horizontal plane

and performed a vertical descending trajectory, as depicted on

Fig. 4. As we knew precisely the depth of the pool (1.05

meter), the ground truth for altitude was computed from the

pressure measures (depth sensor). During this test, the

algorithm has been initialized only once (120 feature points)

as the set of feature points remained larger than 𝑛𝑚𝑖𝑛 = 30.

On this picture, one sees the measured depth trajectory of the

ROV in blue, the true altitude of the ROV in black and the

altitude estimated by the algorithm in red. This latter tracks

well the true one. However, as the position of the optical center

was not accurately known, one observes a 3cm offset. The

noise level in the altitude estimation is about 2cm during this

test, but one can predict that it depends on the altitude range.

One observes also that the altitude is not estimated during the

first seconds. Indeed, the estimation is not performed until

< 𝜌𝑘 > −1 is large enough to avoid dividing by a too small

number in (6). This figure also shows that the method does not

drift when time grows, which is normal as errors may

accumulate only during successive resets (initializations) of

the algorithm (i.e. error is dependent on the horizontal distance

covered by the ROV).

Fig. 4. Time history of the depth trajectory of the ROV (in

blue) and the estimated altitude (in red) during combined

horizontal station keeping and vertical descent.

3.3 Horizontal odometry

During the second test, the ROV performed a vertical yoyo

(30cm) to estimate its altitude and the returned to the surface.

After this first motion, it has been manually hauled along a rail,

so as to draw a 2-meter-long straight trajectory. Figure 5 shows

the experimental result. The beginning of the trajectory is

noisy as it corresponds to the yoyo phase. The second part of

the trajectory is straight. The estimated length is 2.07m, while

one observes offsets smaller than 3cm along the ideal straight

trajectory. An accurate evaluation of the performance is

however difficult as the ROV was moved manually and the

undesired induced roll and pitch disturbances (yaw

disturbance was mechanically impossible) could have generate

these offsets in the camera’s position.

Fig. 5. Estimated horizontal trajectory. The ROV firstly does a

yoyo to estimate the altitude and then is manually hauled along

a 2-meter-long straight rail.

3.4 Tests at sea

The ROV has been operated several times at sea, where we

could only obtain a qualitative appreciation of the proposed

method as no ground truth was available. These experiments

demonstrated that natural seafloor always offer far enough

features to track. We also observed that the algorithm is robust

towards erratic motions of a minor part of the feature points.

For instance, we have experienced seabed with moving

shrimps or fishes, without observing any major disturbance of

the estimated position. To improve the robustness, we have

added the computation of the standard deviation of the
(𝑑𝑖𝑗)𝑘

(𝑑𝑖𝑗)0

ratio. Above a certain threshold, we reset the points

(initialization step).

In presence of major disturbances, such as large amount of

suspended particles moving with the sea current, the algorithm

fails.

6. CONCLUSION

In this paper, we have introduced a new method for underwater

monocular odometry. This method combines vision with IMU

and depth measurements. This allows to evaluate the altitude

of a vehicle and its position. The position error of this

algorithm does not grow with time, but only with the covered

distance, which made this method ideal for horizontal servoing

during manipulation or for station-keeping. It is also a good

complement of absolute acoustic positioning systems (USBL,

LBL) for operations close to the seabed. Experiments in pool

and at sea are commented.

REFERENCES

Bouguet Jean-Yves (2000). Pyramidal Implementation of the

Lucas Kanade Feature Tracker. Intel Corporation,

Microprocessor Research Labs.

Bradski, G. (2000). Opencv_library, Dr. Dobb's Journal of

Software Tools.

Drap Pierre, et al (2015). Underwater Photogrammetry and

Object Modeling: A Case Study of Xlendi Wreck in

Malta. Sensors. 15(12), pages 30351-30384.

Eustice RM, Singh H, Leonard JJ, Walter MR (2006). Visually

mapping the RMS Titanic: Conservative covariance

estimates for SLAM information filters. The International

Journal of Robotics Research. 25 (12), pages 1223-1242.

Garcia Rafael, Cufi Xavier, and Carreras Marc (2001).

Estimating the motion of an underwater robot from a

monocular image sequence. IEEE/RSJ IROS 2001 -

International Conference on Intelligent Robots and

Systems, pages 1682–1687.

Gracias Nuno and Santos-Victor Jose (2000). Underwater

video mosaics as visual navigation maps. Elsevier Journal

of Computer Vision and Image Understanding - Special

issue on underwater computer vision and pattern

recognition archive, Volume 79, Issue 1, Pages 66-91.

Mahon I. and Williams S. (2004). Slam using natural features

in an underwater environment. IEEE ICARCV 2004

Control, Automation, Robotics and Vision Conference.

pages 2076–2081.

Negahdaripour Shahriar (2006). An ROV Stereovision System

for Ship-Hull Inspection. IEEE Journal of Oceanic

Engineering, 31(3), pages 551-564.

Shi J. and Tomasi C, (1994). Good Features to Track.

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 593-600.

Warren M., Corke P, Pizzaro O., Williams S., and Upcroft B.,

(2012) Visual sea-floor mapping from low overlap

imagery using bi-objective bundle adjustment and

constrained motion. ACRA 2012 - Australasian

Conference on Robotics and Automation.

ACKNOLEDGMENTS

The author greatly acknowledges support of the European

Union through FEDER grant n° 49793 and support of Région

Languedoc-Roussillon-Occitanie for ARPE Seahand grant.

