
Design and Development of a Remote Lab
for Hands-On Education in Mechatronics

and Control Engineering

J. Zumsande ∗ S. Bosselmann ∗ M. Dagen ∗ T. Ortmaier ∗

∗ Leibniz Universität Hannover, Institute of Mechatronic Systems,
Hanover, Germany (e-mail:

johannes.zumsande@imes.uni-hannover.de).

Abstract: Demonstrators expand the theoretical lectures of control engineering by a practical
hands-on experience to teach students the implementation and effects of a control algorithm and
demonstrate the range of field starting with a mathematical model and ending with a controlled
system. For this purpose, remotely controlled laboratories (RCL) are an effective alternative to
supervised laboratories due to their advantages in 24/7 accessibility and interactivity as well
as their low labor consumption. At the Institute of Mechatronic Systems (imes) a RCL was
developed to extend the range of courses with a motivating and application-oriented laboratory.
It was designed considering minimal latency remote control as well as portability to other
environments with different testbeds and different learning management systems. To increase
students’ motivation a challenge and ranking system has been implemented. For each task a
challenge is created with a criterion of optimisation and students compare themselves with their
fellow students by an up-to-date ranking.

Keywords: Virtual and remote labs, internet based teaching of control engineering, control
education using laboratory equipment

1. INTRODUCTION

The constant increasing amount of students visiting lec-
tures, tutorials and laboratories awakens the necessity of
new teaching methods in order to save time, place and
money without any loss of quality or quantity. A remotely
controlled laboratory (RCL) is an opportunity to handle
that issue. It allows students to remotely control a testbed
located anywhere in the world from e.g. their private
computers, smart phones, tablets, etc. via Internet. A RCL
offers a hands-on education without the need of resources
like advisers or rooms. Moreover, it is accessible 24/7 so
that it fits students’ individual schedules. A RCL creates
two interfaces, a web interface for user’s input and the
interface to the testbed, as well as the data processing
between them.

As shown in May et al. (2016), RCL are able to increase
students’ motivation and their skills in personal initiative.
Since they operate real devices, a limited access to the
testbeds is mandatory in order to prevent concurrency
while controlling them. Most of the RCL found on the
Internet use a booking system to lock the laboratory
for a certain time and limit the access to the reserved
time period only. A booking and authentication server
environment called iLab, that can be used in a RCL,
was built by del Alamo et al. (2011). Unfortunately, the
support is outdated since 2011. Heradio and de la Torre
(2016) created a Moodle plug-in called EJSApp which
combines a RCL (including a booking system) with the
learning management Moodle. Ortelt and May (2016),
Frerich and Kruse (2015) and Meyes (2017) developed a

RCL using the iLab booking system. Roth et al. (2017)
designed a RCL for educational use in school. It uses a
blocking system so that only one person can control the
testbed at a time. The connection to the laboratory is only
established when no user is connected to the system.

In this extended abstract we present a new RCL. To
enhance students’ motivation a ”gamifying” aspect is used.
The students can gain a score, while solving special tasks,
and compare themselves with their fellow students. Exist-
ing lectures at the institute already profit from a challenge
and comparison system as the students show increased
motivation and spend more time on lectures. Finally, the
students benefit from a deeper understanding and greater
skills in personal initiative. While the students use the
RCL they reach predefined milestones to check their work.
If all milestones are reached the task is processed com-
pletely and the students are able to submit their results.

The technical implementation was optimised regarding low
latency feedback, to enhance the sense of interactivity and
control for the user, and the actuation of different testbeds
with different communication interfaces. For portability
reasons the developed RCL is hosted by a self-contained
server which offers an easy interface to different learning
management systems. After an user data table (e.g. in
csv format) has been transmitted, the RCL server works
independent and self-contained.

In the lecture ”Mechatronic Systems”, usually part of
the third semester, an inverted pendulum is used as an
educational device to demonstrate typical topics in the
field of mechatronics and control engineering, such as mod-



elling, identification, state observers and control theory.
The controlled inverted pendulum experiences a real sense
of achievement and demonstrates an obvious benefit by
understanding and using control loops. Therefore, it was
used as the first testbed for the presented RCL.

2. WEB INTERFACES

2.1 Interfaces

The web user interface consists of the following compo-
nents: a main page, information web pages, a booking
system (Fig. 1), a testbed control interface (Fig. 2) and
an exam web page (Fig. 3).

Fig. 1. Screenshot of the web user interface: booking
system

Fig. 2. Screenshot of the web user interface: testbed control

The main page shows the up-to-date ranking of the chal-
lenge while all relevant information about the tasks and an
explanation about the RCL can be found on the informa-
tion pages. With the booking system the students book the
laboratory for a certain time. They are able to see existing
reservations of other students or teachers and can choose
a free slot for their lab. The testbed can be controlled
with minimal latency using the control interface. If desired,
all measured values can be exported to a csv table and

Fig. 3. Screenshot of the web user interface: exam web page

analysed after the experiments are completed. To check
their results, the students submit them to the RCL server
and get a direct feedback.

2.2 JavaScript libraries

Common known libraries jQuery and Bootstrap are used
for interactions on the web user interfaces. Other libraries
used are:

• FullCalendar (in combination with Moment.js) as
a calendar for scheduling used for the booking web
page,

• D3.js for showing the real-time data graph on the
control interface and

• MathJax for rendering LATEX equations in html.

3. COMMUNICATION STRUCTURE

The logical sequence of using the RCL is to book the
testbed, execute the lab and finally submit a solution to
the server. This procedure is taken up for demonstrating
the communication structure of the developed RCL, which
is shown in Fig. 4.

3.1 Book the testbed

By accessing the booking web page URL with a browser
an HTTP (hypertext transfer protocol, defined in Fielding
et al. (1999)) request is generated and forwarded by
the web server nginx to the Jinja2 templating engine.
Jinja2 generates an html document, using a library with
predefined html blocks, that is sent back to the client.
Afterwards, the client requests all linked .js and .css files,
which are served directly by nginx, as it is faster and
requires less use of system’s resources than delivering them
with flask, a Python framework for web applications, and
uWSGI, a web application server for deploying flask (see
Unbit et al. (2016)).

The calendar view of the booking web page is created
by using the JavaScript libraries FullCalendar and Mo-
ment.js. Besides viewing the interface, the generated web
page also defines the client side interface to the server



Fig. 4. The server structure consisting of the video stream, view generation and server interactions (from top to bottom)

by specifying the URLs, where server functions can be
invoked.

To separate the previous mentioned view generation from
dynamic server interactions (invoke functions), all follow-
ing server interactions are served by a second flask applica-
tion (see Fig. 4 at the bottom), which links URL addresses
to Python functions. The functions are invoked by request-
ing the unique URLs and parameter (e.g. reservation time)
can be passed within the HTTPS request body.

Two types of server interaction communication are pos-
sible: WebSocket (ws(s), defined in Fette and Melnikov
(2011)) and HTTPS. While HTTPS offers a ”ques-
tion/answer” character between client (question) and
server (answer), wss opens a persistent connection between
server and client in which both (server and client) are
allowed to send packages simultaneously without previous
request.

After the web page is loaded completely, the client joins a
common wss pool with all clients connected. When one
client books the laboratory an actualisation message is
sent from the server to the other connected clients in
order to keep their calendar view up-to-date. Contrary to
HTTPS, the client does not have to request the server
for calendar view updates as wss enables to push the
actualisation from server to client. HTTPS is used, when a
response to the client’s request is desired (e.g. a reservation
request). The flask application checks a reservation request
for permission and refuses it for the following reasons:

• maximum number of tries reached,
• an active, future reservation,
• a past reservation time,
• the selected slot is already booked by another group.

Valid reservations will be registered in the database. After
the request is processed, a feedback is sent back to the
client and the server sends an actualisation message to all
other clients connected to the common wss pool.

3.2 Control the testbed

The control web page is generated similarly like the
booking web page, except that the request is checked for
a valid reservation by the flask application before it is
transmitted to Jinja2.

The controller was designed in Simulink Real-Time to reg-
ulate the inverted pendulum and actuate the carriage. It is
possible to set parameter and signals of the Simulink appli-
cation and output measured signals including timestamps
with Simulink’s UDP (user datagram protocol, defined in
Postel (1980)) blocks. Due to Python’s wide communica-
tion protocol support, such as serial port and Ethernet
communication via TCP (transmission control protocol,
defined in Postel (1981)) and UDP, it is possible to control
different testbeds with the developed RCL structure.

The control signals are sent via HTTPS to the flask
application which proves them against predefined condi-
tions like boundaries, sequence of requests and format.
The signal is transmitted via UDP to the target PC and
afterwards, if the request is corresponding to a predefined
milestone, it is registered in the database. The measured
data are sent to the client using wss and the view of the
real-time graph is renewed with each frame reaching the
client.

The testbed can be observed with a real-time video stream.
The multimedia framework GStreamer compresses the raw
video data coming from a webcam into two selectable
H.264 video streams (high and low quality). They are
formatted to RTP (real-time transport protocol, defined
in Schulzrinne et al. (2003)) streams and sent to Janus
Gateway, which secures the streams with DTLS. The
following SRTP stream is forwarded to the client. Janus
Gateway enables the use of WebRTC, which was developed
for client to client video conferencing, for streaming real
time video and audio data from server to client. The
video streams are controlled (start, stop, select high or low
resolution) by a WebSocket connection between the client,
Janus Gateway as the backend server and the web server
nginx as a reverse proxy server. The connection remains
open while the video stream is running.

3.3 Submit a solution

The web page for submitting a solution is also generated
using Jinja2 and user’s results are checked by the second
flask application against predefined boundaries. If all con-
ditions are fulfilled the laboratory is marked as ”passed”
in the database.



4. EDUCATION

After the technical implementation was demonstrated in
the previous chapters, this section will focus in the educa-
tional part of the RCL that is separated in tasks and an
optimisation challenge.

4.1 Possible tasks

To give an impression which tasks are possible some
example tasks for the inverted pendulum will be presented
in the following:

• control of the carriage,
• identify the system’s parameter,
• implement a state observer,
• implement a control algorithm.

To give an introduction to the RCL an easy start can be
to implement a cascade control of the carriage. Students
tune the velocity control loop first by stimulating the
system with a velocity jump signal and when it fulfills
stability conditions they can tune the position control
loop of the carriage. It is a fast first success to increase
students’ motivation. In the associated lecture a mathe-
matical model of the inverted pendulum is deduced and
can be used to identify the system’s parameter. Mass
and length of the pendulum and frictional properties of
the system can be identified by stimulating the system
with user specified trajectories and measuring the drive
torque of the guiding as well as the position and velocity
of the pendulum and the carriage. To see the benefit of an
identified model another task can give an introduction in
state observers. With a comparison between the unfiltered,
low-pass filtered, Luenberger and Kalman Filter observed
velocity signal, students can observe the effects of several
types of signal filtering. They are finally able to submit its
own control method to stabilize the inverted pendulum.
Therefore, many combination of filters and control meth-
ods (e.g. PID controller, state feedback with prefiltering,
PI state feedback) are imaginable.

4.2 Challenge

In contrast to the tasks, the challenge does not have
a specific solution. It is an optimisation task and the
outcome depends on the effort of the students. Possible
challenges for the inverted pendulum are:

• tune a control loop against overshoot and command
response,

• create a frictional function that fits different trajec-
tories the best,

• write an upswing control for reaching the upper
equilibrium position as fast as possible.

In order to increase students’ motivation to improve their
solutions, a ranking system is established. Each student’s
solution gains a score and is listed in the ranking. In
a second try they can improve their results in order to
achieve more score points. To increase the motivation
further a prize system is a possible option.

5. USER STUDY

To validate the developed system and get a first impression
a user study with students and employees of the institute
was designed. The RCL was online for three weeks and
students as well as employees have used the laboratory
simultaneously to validate the structure under intensive
use. The anonymised questionnaire was designed as de-
scribed in Brooke (1996) to calculate a system usability
scale (SUS) with a range from 0 (worst) to 100 (best).
21 Participants (13 employees and 8 students) have tested
the RCL and 12 completed the questionnaire (9 employees
and 3 students).

The developed RCL reached an arithmetic mean SUS of
85. More detailed statistical evaluation can be seen in
Fig. 5, using the grade and corresponding adjectives scales
introduced by Bangor et al. (2009). The resulting score in-
dicates an user-friendly and intuitive system. Nevertheless,
further studies are planned in order to validate the system
with more student participants.

Fig. 5. RCL’s SUS in comparison to US school grades and
corresponding adjectives

6. CONCLUSION

In this extended abstract a new RCL with a booking sys-
tem, a control interface and a ranking system to increase
students’ motivation was introduced. It can be integrated
in different learning management systems by transmitting
the user database to the RCL server and is working af-
terwards self-contained. Due to its wide communication
protocol support, Python was used as the server side pro-
gramming language in order to actuate different testbeds
with different communication interfaces. Minimal latency
feedback was realised by a WebRTC video stream and a
data stream transmitted through wss.

In order to enhance server performance nginx delivers the
static content while the uWSGI application servers are
handling dynamic requests. The testbed can be controlled
by specifying Simulink’s signals and parameter (e.g. refer-
ence variable, gain factor, parameter of transfer functions)
or functions (e.g. start/stop, reset, switch of signal flow).
Due to the use of Simulink’s UDP blocks, the RCL can be
transmitted to other Simulink controlled testbeds easily.

While students are working on the exercises, they have to
reach predefined milestones to check if the exercise was
completed successfully. Finally, they can see their score
for the challenge and can optimise it with a second try.



A procedure video of the developed RCL can be found on
YouTube (Zumsande (2017)).

Portability to other testbeds is planned for future works.
This includes an enhanced modularity and possibilities
of individualisation for the developed RCL. Moreover,
further user studies will be conducted to validate the
obtained first impression.

REFERENCES

Bangor, A., Kortum, P., and Miller, J. (2009). Deter-
mining what individual sus scores mean: Adding an
adjective rating scale. Journal of Usability Studies, 4(3),
114–123.

Brooke, J. (1996). Sus: a ’quick and dirty’ usability scale.
In P.W. Jordan, B. Thomas, B.A. Weerdmeester, and
I.L. McClelland (eds.), Usability Evaluation in Industry,
chapter 21, 189–194. Taylor and Francis, London.

del Alamo, J., Abelson, H., and Mitchell,
D. (2011). The ilab project. URL
wikis.mit.edu/confluence/display/ILAB2/home.

Fette, I. and Melnikov, A. (2011). Rfc 6455: The websocket
protocol. URL tools.ietf.org/html/rfc6455.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masin-
ter, L., Leach, P., and Berners-Lee, T. (1999). Rfc
2616: Hypertext transfer protocol – http/1.1. URL
ietf.org/rfc/rfc2616.txt.

Frerich, S. and Kruse, D. (2015). Virtual learning environ-
ments. URL ruhr-uni-bochum.de/elli/virt.html.

Heradio, R. and de la Torre, L. (2016). Ejsapp. URL
moodle.org/plugins/mod ejsapp.

May, D., Terkowsky, C., T.Ortelt, and Tekkaya, A. (2016).
The evaluation of remote laboratories development and
application of a holistic model for the evaluation of
online remote laboratories in manufacturing technology
education. In 13th IEEE International Conference
on Remote Engineering and Virtual Instrumentation
(REV).

Meyes, R. (2017). Remote labs. URL
www.remote-labs.rwth-aachen.de/.

Ortelt, T. and May, D. (2016). Interna-
tional manufacturing remote lab. URL
mintrelab.tu-dortmund.de/das-remote-lab/.

Postel, J. (1980). Rfc 768: User datagram protocol. URL
ietf.org/rfc/rfc768.txt.

Postel, J. (1981). Rfc 793: Transmission control protocoll.
URL ietf.org/rfc/rfc793.txt.

Roth, D., Maus, S., Altherr, S., Vetter, M.,
Eckert, B., and Gröber, S. (2017). Re-
motely controlled laboratories - rcls. URL
rcl-munich.informatik.unibw-muenchen.de.

Schulzrinne, H., Casner, S., Frederick, R., and Ja-
cobson, V. (2003). Rfc 3550: Rtp: A trans-
port protocol for real-time applications. URL
tools.ietf.org/html/rfc3550.

Unbit, Koskela, A., Mierzwa, L., and Churchill,
D. (2016). uwsgi documentation. URL
uwsgi-docs.readthedocs.io/en/latest/StaticFiles.

Zumsande, J. (2017). Relab for hands-on education. URL
youtube.com/imesVideo.


