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Abstract: Hybrid mathematical models are often represented as continuous functions with
discontinuous inputs, or they are visualised as state machines or petri-nets comprising continuous
models linked by discontinuous mappings. The analysis and simulation of hybrid (or nonsmooth
dynamical) models is plagued with difficulty, necessitating careful consideration of energy losses
and state reinitialisation on commutation. The author proposes an alternative model, where
states are discontinuous. The engineer familiar with techniques such as signal flow graphs or
bond graphs can clearly visualise discontinuities as breaks (or joins) in power flow between
parts of the model. A mixed-Boolean state equation can be derived which reflects the physics
of switching behaviour. This has two advantages: first, by considering the physics incrementally
about the discontinuity it can be simulated without the need for state reinitialisation algorithms,
and second, it can be analysed for structural control properties to show how they change with
commutation.

Keywords: Hybrid models, State space methods, Switching variables, Systems models, Bond
graphs.

1. INTRODUCTION

Hybrid models are those containing continuous and dis-
continuous functions. They are used to model variable
structure systems (such as contact), and those where
rapidly changing nonlinear behaviour can be described
by some form of piecewise continuous equation (such as
stiction/friction).

Hybrid systems can be visualised as continuous modes
on areas of state space linked by a discontinuous state
mapping (Mosterman et al., 1998) and described as a
hybrid automaton i.e. one that contains both finite and
continuous state spaces (Van Der Schaft and Schumacher,
1999). The dynamics consist of discrete transitions plus an
evolution of the continuous part in each location.

There are many ways of abstracting a physical system to a
hybrid model and, it appears that the diversity of methods
reflect the many applications and tools available.

Sliding Mode Control for Variable Structure Systems as-
sumes systems “governed by ordinary differential equa-
tions with discontinuous state functions in the right hand
side” (i.e. the input) (Utkin, 1992). It is well established
that a discontinuous control action typically in the form of
a switching input causes the systems structure to vary. A
subspace or hyperplane (the switching surface) divides the
state space of the model into two regions, each with a dif-
ferent control law (or form of). When the system operates
on the switching surface, it is said to be in sliding mode and
sliding control utilises this idea to give robust control in
discontinuous and nonlinear systems. This method can be
extended to variable-structure systems where the param-
eters - and not just the control inputs - are discontinuous
(Marghitu and Irwin, 2001).

Petri-nets can be used to describe a set of interlinked
continuous models, but these can become large: 2n models
where n is the number of switches (Borutzky, 1995).

The linear complementarity problem, comprising a contin-
uous equation (such as a state equation) and complemen-
tarity condition (Van Der Schaft and Schumacher, 1999)
is perhaps the most widely used model in the field of
nonsmooth dynamics. These contain an external signal
which can be thought of as a Lagrange multiplier, and
commutate between zero and a value which must be cal-
culated. This model can be transferred to a single inclusion
or a variational inequality, which have unique continuous
solutions.

Mixed logical dynamical (MLD) systems i.e. those with
interdependent physical laws, logic rules, and operating
constraints, have been established (Bemporad and Morari,
1999) and shown to be equivalent to other classes of
hybrid system (Heemels et al., 2001). The model presented
here differs in that it originates from idealised physical
modelling (i.e. the Bond Graph) and explicitly embraces
the physics and changing causality of the system.

Users of commercial-off-the-shelf software can naively use
‘switches’ in a model without appreciating the impact
this has. In the author’s experience this frequently hap-
pens, with an inexperienced engineer or researcher left
attempting to tackle algebraic loops or integration errors
by randomly inserting transfer functions and sources of
compliance before a pressing deadline. Clearly, this is
an unacceptable strategy. The author’s work on Bond
Graph methodology was motivated by the need to promote
deep understanding of both physics and computational
considerations among analysts, and informs this research.



Willems presents a case for using idealised physical mod-
elling methods (of which bond graphs are an example) to
mitigate against unwittingly creating physically meaning-
less or computationally inefficient models (Willems, 2007).

The author argues that, in cases where the discontinuity
is an integral part of the physical system (a switch,
mechanical contact, or some highly nonlinear behaviour
abstracted by the modeller to a heaviside function), it is
more physically representative for the state variables to be
discontinuous.

2. CATEGORISATION OF DISCONTINUITIES

Branicky et al (Branicky et al., 1998) categorise hybrid
models into Switching and Impulse models, which can be
controlled or autonomous.

Switching models are defined as those where the vector
field changes discontinuously when the state hits a bound-
ary. Switching systems “comprise a family of dynamical
subsystems together with a switching signal determining
the active system at a current time” (Vu and Liberzon,
2008). They are a subset of hybrid systems, where there
is some discontinuous behaviour modelled by an on/off
switch or other binary signal.

Impulse models are those where the continuous state
changes impulsively on hitting prescribed regions of state
space. The classic example is Newtons Collision law, where
the state of a body changes from positive to negative ve-
locity on impact, and any dissipative effects are accounted
for by a coefficient of restitution. The state changes im-
pulsively, and there is an impulse loss on commutation.

The author proposes a further distinction between Struc-
tural and Parametric discontinuities (Margetts, 2013).

Proposition 1. Structural Discontinuities occur when parts
of the model are connected or disconnected, interrupting
power flow between components. These discontinuities of-
ten give rise to variable topology models.

Engineering examples of structural discontinuities are the
hydraulic valve, mechanical clutch, ideal electrical switch,
or contact between bodies.

Proposition 2. Parametric Discontinuities occur when an
element has a highly nonlinear constitutive equation,
which has been abstracted to a piecewise continuous func-
tion. The structure of the model is unchanged, it is the
equation describing the behaviour of an element which
changes.

Common examples of parametric discontinuities are dry
friction, tyre forces, a two–stage oleo strut ‘breaking out,’
or saturation of an electrical capacitor or hydraulic accu-
mulator.

3. DERIVING THE MIXED-BOOLEAN MODEL

Bond Graphs were instrumental in deriving the mixed-
Boolean model. Bond Graphs are an idealised physical
modelling method, enabling the user to sketch a sys-
tem, assign computational causality, and derive a state
space model. Readers unfamiliar with the technique are
directed to Karnopp, Margolis and Rosenberg’s standard
text (Karnopp et al., 2006).

There has been a significant body of work on Hybrid
Bond Graphs, with numerous variations proposed and
extensive discussion of their implications for structural
analysis and simulation. The author’s work grew from a
desire to construct hybrid models which accurately reflect
the physics of the system – offering the user insight – as
well as being suitable for accurate simulation. Previously,
none of the proposed Hybrid Bond Graphs achieved this.
A thorough literature review is given in (Margetts et al.,
2013).

A form of Hybrid Bond Graph can be defined which incor-
porates ‘controlled junctions’ for structural discontinuities
(Margetts et al., 2013) and ‘controlled elements’ (contain-
ing a mode–switching ‘tree’ of junctions and elements)
for parametric discontinuities (Margetts and Ngwompo,
2015). The control signals are assigned a Boolean parame-
ter, which sets each junction to an ON or OFF state (1 or
0). When ON, power flows through the junction uninhib-
ited. When OFF, the junction is effectively replaced with
null sources or sinks.

Equations relating the elements in the system can hence
be written in terms of Boolean parameters. The equations
fully describe the system in all potential modes of oper-
ation: when Boolean parameters are ‘ON’ or ‘true,’ the
equations are multiplied by one, but when they are ‘OFF’
or ‘false’ the equations are multiplied by zero and cease to
be part of the model for that mode of operation.

One important point highlighted by use of the hybrid
bond graph is the presence of dynamic causality. Bond
graphs are an acausal modelling method i.e. the model
is constructed before inputs and outputs are defined.
This means that the state space model derived from the
bond graph can be put in ‘preferred integral causality’
so as to aid computation. However, in hybrid models the
ideal ‘preferred integral causality’ assignment can change
on commutation. Many users seek to constrain dynamic
causality, usually by adding sources of compliance or
‘causality resistance’ (Asher, 1993; Breedveld, 2000, 2002).
This is somewhat controversial as it can yield stiff models
and slow simulation times, while disregarding important
physical information (Cellier et al., 1994; Buisson, 1993).
For example, in the case of rigid contact the dynamic
causality reflects the genuine kinematic constraint between
two bodies (which can temporarily be considered as a
single rigid body).

For the Hybrid Bond Graph. The same rules for de-
riving a state space model from a regular bond graph
are followed. This derivation revolves around turning the
graphical bond graph model into a ‘Junction Structure
Matrix.’ This is a matrix of 1’s and 0’s which link all
of the inputs and outputs in the model. The difference
with the Hybrid bond graph is that a Boolean term can
be inserted. For parametric discontinuities, Boolean terms
are contained in the expression for an element. For struc-
tural discontinuities, Boolean terms are introduced to the
Junction Structure Matrix where the relationship between
inputs and outputs depends on commutation. The matrix
equation equation is then rearranged into state space form,
by placing it in terms of the states (which are the inputs
to the storage elements). A generalised Junction Structure
Matrix is shown in equation (1). Fig. 1 shows the key



variables used in the causally dynamic hybrid bond graph
as inputs to and outputs from this junction structure.

Note that dynamic causality is handled in the hybrid bond
graph by assigning two inputs and two outputs to the
affected elements: in each mode of operation one input and
output is ‘true’ and the other is removed from the model
by multiplying it by zero. When a state space model is
derived, the order will reflect the potential states in any
mode, and the model may be implicit.
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Ẋd

Din

U

 (1)

Here X is a vector of states or – where there is derivative
causality – pseudo-states. These are associated with stor-
age elements (i.e. inertias and compliance). Subscripts i
and d denote integral and derivative causality respectively,
and the circumflex and tilda denote static and dynamic
causality respectively. Z is a complementary vector of
a state vector. U is the vector of inputs and V is its
complementary vector. D describes the input and output
associated with dissipative elements (subscript in and
out). Finally, S are submatrices of the Junction Struc-
ture Matrix, composed of 1’s, 0’s, Boolean parameters λ,
and coefficients associated with Transformer and Gyrator
elements TF and GY . It is worth noting that an element
can only have two modes of operation (flow input / effort
output and effort input / flow output), although a model
can have several modes of operation overall if it contains
multiple controlled junctions.

There are two inputs and two outputs for each 1-port
element in dynamic causality. The input/output sets are
exclusive of each other, and the Boolean terms in the
Hybrid Junction Structure Matrix will activate one of
these for each mode of operation.

In order to establish which outputs of the junction struc-
ture are active, the vector of outputs must be multiplied
by a diagonal matrix of Boolean expressions Λ(λ). In
any one mode of operation, some rows of the matrices
will be set to zeros and others will give the Junction
Structure for that mode. Therefore, outputs which are in
static causality are assigned a 1 in the diagonal of the
matrix Λ(λ) because they are fixed outputs, while variables
associated with elements in dynamic causality are assigned
a Boolean function f(λ) determined by the combination of
the switch parameters λ that dictate the output status of
the variable. For each Boolean term f(λ), there will always

be a NOT term f(λ) present in the matrix Λ(λ) which
activates another row to describe the dynamic elements
behaviour in its other state.

In general, the mixed-Boolean state equation takes the
form:

Λẋ = f1(x, z,u, λ, t) (2)

0 = f2(x, z,u, λ, t) (3)

Where x is the state vector, z is a vector of semi-state
variables, u is the input vector, λ is a vector of the
Boolean variables associated with switching, and Λ is a
matrix of Boolean terms which activate/deactivate states
according to the mode of operation. For Linear Time-
Invariant systems, the model becomes:

E(Λ)ẋ = A(λ)x + B(λ)u (4)

4. STRUCTURAL ANALYSIS

A major advantage of the mixed-Boolean state model
is that a user can see how its properties change with
commutation.

Consider the control properties frequently obtained from
LTI State Space models, such as solvability, stability,
controllability, and observability. Where Boolean terms
occur in the state matrix, they can set a row or column to
zeros or finite values depending on the mode of operation.
This means that the rank and order of the model can
change with commutation. Since solvability, controllability
and observability are usually established from the rank of
the state matrix, they consequently change also.

This reflects the physics the systems. An electrical switch
or mechanical clutch might disconnect two subsystems
when ‘OFF,’ resulting in an uncontrollable, unobservable
subsystem. When two parts make rigid contact, a kine-
matic constraint might be formed with obvious conse-
quences for solvability.

Stability and dynamic modes can also be established from
the state matrix. The presence of Boolean terms in the
state matrix means that eigenvalues will change with
commutation. Again, this reflects he physics of the system:
as elements are connected and disconnected, the inertias,
compliance and dissipation in each subsystem is altered,
and hence the dynamic behaviour will change. A falling
body clearly has different dynamics to one in contact with
the ground.

5. SIMULATION

Hybrid models are typically problematic with regards to
simulation. A number of issues merit consideration, as
outlined by Acary and Brogliato (Acary and Brogliato,
2008).

• Switching must always occur at the end of a time-
step, in order to be captured. This usually motivates
an event-driven method. However, this can be im-
practical where there is a large number of switching
instants or it is not known where they occur.

• Chattering may occur where a sliding mode cannot
be reached due to numerical approximation.

• A procedure for accurately finding the location of
events may be required, along with some method for
reinitialising states after the event.

• Where there are a number of events, there may be a
finite accumulation point past which the event-driven
method cannot progress.

• There may be an impulsive term on commutation
giving a Dirac or Steltjes measure. For example, the
differential measure of velocity which manifests on
impact between bodies.



Fig. 1. Quantities used in Hybrid Junction Structure Matrix and Subsequent Development
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ṗ1
ṗ2
ṗ3
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The mixed-Boolean model does present a partial solution.
The Hybrid Bond Graph it is derived from is a Switched
model, not an impulsive one. It includes all modes of
operation – no matter how short – hence there is no
impulse loss. Since there is no impulse loss, states do need
to be reinitialised: they can simply be calculated from their
value prior to commutation.

This, however, presents another problem. Hybrid models
are often used to avoid unnecessarily stiff dynamic models
which are slow to simulate. Including a negligibly short
mode of operation (for example, the ‘in contact with
the ground’ phase of a bouncing ball) necessitates an
extremely stiff model, with small time-steps required to
capture the short mode. This is why collision problems
are usually abstracted to impulse models. In these cases,
the mixed-Boolean [switching] state model can be used to
derive a coefficient of restitution, and generate an impulse
model (Margetts and Ngwompo, 2014).

Where events occur at a given time, it is relatively trivial
to simulate the mixed-Boolean model. It can be modelled
in commercial software such as MATLAB R© using the
symbolic math toolbox (Margetts et al., 2017). Values
are assigned to the parameters (including the Boolean
ones) and the model is simulated up until the event
time. New Boolean parameters are then assigned, and

the simulation continues. If the model is implicit in some
modes of operation, an implicit solver must be used: these
are now commonplace in most commercial modelling and
simulation packages and work well with models of this
type (Boudon et al., 2015). Alternatively, the model could
be simplified in each individual mode of operation (e.g.
combining rigid bodies which are in contact), although this
could represent significant work in a complex model unless
automated.

Likewise, a Matlab script can be written which halts sim-
ulation and reassigns Boolean variables when some event
occurs, by checking whether some state has crossed a
threshold value. This strategy can however be problematic:
the location of the event may not be accurate, and accu-
mulation of events has not been addressed. Chattering can
still occur. Future work could therefore utilise techniques
such as discrete-time Moreau’s second-order sweeping pro-
cess, where there are no detection times and hence no
accumulation point (Acary and Brogliato, 2008).

6. CASE STUDY

A simple case study is presented to illustrate the mixed-
Boolean model. Consider a power converter supplying a
DC Motor, which drives a rotating load via a clutch. The



Fig. 2. Schematic of a DC Motor and load (simplified)

Fig. 3. Hybrid Bond Graph of the DC Motor and load

schematic is given in Fig. 2 and, for completeness, the
hybrid bond graph is given in Fig. 3

The mixed-Boolean State model is given by equation (5).

In normal operation, switches 1 and 2 commutate alter-
nately at a high frequency. When the clutch is engaged
(i.e. Switch 3 is ‘ON’) the motor mass and load are rigidly
connected. The Boolean term λ3 can be set to 1 to reflect
this, and the model for this mode of operation becomes:
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This is an implicit model, and the pseudo-state ṗ3d gives
the algebraic equation reflecting the rigid connection of
motor and load inertias.

When the clutch is disengaged (i.e. Switch 3 is ‘OFF’) the
motor mass and load are disconnected. The Boolean term
λ3 can be set to 0 to reflect this, and the model for this
mode of operation becomes:
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This is an explicit, solvable model. However, it is no
longer controllable. This can be explored by calculating
the Controllability matrix using the standard equation (8)
(Ogata, 2010).

CM =
[
B AB A2B . . . AnB

]
(8)
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Fig. 4. Voltage: Constant Input, Load Disconnected during
Operation.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Time (s)

T
o

rq
u

e
 (

N
m

)

 

 

p
2
‘ Torque on Motor

p
3
‘ Torque on Load

Fig. 5. Torque: Constant Input, Load Disconnected during
Operation.

Assuming a constant input, a mixed-Boolean controlla-
bility matrix can be obtained for the system. It is rather
lengthy, but utilising software such as Matlab allows a user
to derive it symbolically and calculate CM for each mode
of operation.

The model is simulated in Matlab using a simple script.
A constant input is provided and the load is disconnected
(Sw3 switches from ‘ON’ to ‘OFF’) at 5s. The simulation
is stopped at the event time and some ‘new’ initial con-
ditions (equal to the last state values prior to the event)
defined. This prevents the model from becoming unstable
at the event time. It is worth noting that there is no
state reinitialisation or estimation: the state values are
simply carried over from immediately before the event.
The resulting Voltage and Torque are shown in Fig. 4 and
Fig. 5 respectively. The model runs quickly, and shows a
‘spike’ in voltage immediately after the event at 5s. There
is a corresponding increase in torque on the motor, while
the torque on the load remains negligible (it is in fact
now zero). Since the model is implicit in some modes of
operation, the ode15i solver was used.



This case study is explored in more depth in reference
(Margetts et al., 2017).

7. CONCLUSIONS

By considering the physics of discontinuities and nons-
mooth dynamics, a mixed-Boolean state equation is ob-
tained. This novel model is discontinuous on the states,
rather than on the input. The model sidesteps some of the
issues with simulating hybrid systems, namely the need to
reinitialise states after events. In addition to being suitable
for simulation using common commercial packages, the
model can be used for structural analysis. The Boolean
terms clearly show how the system’s dynamics and control
properties can change with commutation.

ACKNOWLEDGEMENTS

This work follows on from the author’s PhD work funded
via an EPSRC CASE Award with Airbus UK and the
University of Bath. She gratefully acknowledges the sup-
port of her PhD supervisor Dr. R. F. Ngwompo, and her
Industrial supervisor Mr Marcelin Fortes da Cruz. She
also wishes to acknowledge the generous advice of Dr.
Benjamin Boudon and Dr. Thu-Thuy Dang (Université
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