RUTGERS

UNIVERSITY

Mohsen A. Jafari

Industrial and Systems Engineering
Center for Advanced Infrastructure and
Transportation (CAIT)

&
Laboratory for Energy Smart Systems (LESS)




Our Research Program

Application areas:

Distributed Energy Resources (DER)
Sizing and location
Optimization (day-ahead and real time)
Islanding and resiliency

Applications (frequency regulation, cost savings, carbon footprint,

Portfolio planning and management
Smart communities and cities

Utility perspective and the future of power grid

Energy data analytic

Asset management

EV integration and charging infrastructure
EV and energy storage

Demand Side Management (DSM)
Building energy management and zero net

e Total of 24 Ph.D. graduates between
1995 — present

e Currently 5 Ph.D. students; 2 M.S.
students, and 2 undergraduate
students, and 2 engineering staff

Collaborators:

Distributed control of Heating and cooling assets

Near real time response and asset degradation

Energy asset management (O&M)
Smart Manufacturing

Intelligent Transportation Systems
Advanced driver assistance systems

The use of floating vehicle data and driver safety experience for
safety mapping of roads

Common Research Theme of our Research Program

Control and automation
Data analytic

Siemens, DNV GL Energy, IBM, Quanta, Anhui Keli,
Public agencies and cities/townships

University of Cambridge — UK

Poly-technique Milan — Italy

University of California — Irvine

Funding Sources:

DOD, DOT, DOE, CEC, FHWA, Siemens, DNV-GL Energy,
University Transportation Center (UTC/FHWA), NJ Board of
Public Utility, internal, Qatar National Research Foundation



Distributed Energy Resources (DER)

Tri-generation to power wastewater & fuel

hydrogen vehicles

Basic Anaerobic digestion process in wastewater treatment

Schematic figure of Molten carbonate fuel cell (MCFC) iydrogen tri-
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Multi-layer Planning and Control of Energ
Storage Networks

Forecasting, Optimization and Planning

Network Management System

e Network Level Control (Online Opt

» Updating operation planning over control horizon
\ » Updating Energy Storage allocation strategy over control horizon

% | »Updating storage control settings
Monitoring System and Communication Network

Real-time Predictive Controllers (Asset level Control)
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Distributed Energy Resource Portfolio
Optimization — Reliability/ resiliency
/sustainability

= Portfolio: Gas-fired, PV, Wind "

Uncertainty in Planning/Operation
Turbine, Energy storage & Sell-back,

v Electricity demand
v Electricity price

= Uncertainty in Investment ¥ Selar intensity and wind speed
— Gas price

— PV and Storage capita; cost
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*  Weather Data
*  Micro-grid’s
Configuration
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operation of MG under uncertainty and depends
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*Demand

*Renewable resources

* Investment cost
*  Financing
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Case study | 100-year flood zone are in city of
Hoboken, New Jersey




DER Planning for Resiliency Planning
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DSM for Built Environment
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Disaggregation Model (Inputs)

Load Disaggregation — Buildings & communities

DMS for Built Environment

Community based collaboration to reduce quantity risk (CfD measure)

Load forecasting/Day-ahead planning/
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Next Generation BEAM will integrate device and equipment
simulations with cloud computing and IOT for optimal short

and medium term maintenance planning and operation
control.




O&M for building complexes

. Operational planning (hourly) . Maintenance planning (annually)
v Estimation of hourly HVAC consumption v' Assigning best maintenance actions to HVAC assets (possible sets of
v Hourlv HVAC set point schedul action: reactive maintenance, preventive maintenance, replacement,
g ourly HVAL set point schedule repair) considering current health and age condition of assets
Load Sh_lftmg ca}pablllty Annual building performance measure (the percentage of time that
v Evaluation of different schedules (e.g., the internal temperature is in the pre-defined band-gap)
L, on/off, always on, set-back) Expected numbers of assets failure

No need for online energy simulation in

PR Electricity & maintenance cost (present value) under different 0&M
optimization framework

Strategies & Initial Conditions

Annual cost savings under different 0&M Strategies & Initial
Conditions
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Optfonl: Available Bldg. energy model Maintenance >

Option2: BMS systems; HVAC Meter data, occupancy schedules,

external temperatures, zonal internal temperatures
Option3: Constructing Bldg. energy model from scratch; floor plans,

mechanical & occupancy schedules, list of assets, ;
HVAC meter data £ Operation




Infrastructure

Hydrogen Fueling Infrastructure

* How to design and plan a sustainable Transportation Energy Infrastructure
regional infrastructure for hydrogen

e Electric vehicle charging networks

fuel supply chain network under & ° Planning

uncertain demand and in what - | S

capacity and location in macro and .—'%’ * o Charging sequencing control
micro level. i o \.

— The hydrogen supply chain

consists of hydrogen production L Y .
plants, storage facilities and oy | Ostibuionct ° Pa rkl ng IOtS as ene rgy sto rage

Preferences

delivery modes.

* How to estimate the potential
demand for fuel cell vehicles based
on different household attributes
such as income, education etc.

e Transforming underprivileged
communities to clean energy
ehicte b ove, Hatndricison Matshewes ks - Wikhae! 6l e s s commun |t | es

' _ _ Social Cost
Production Storage Refueling Station Scclal cost categorized by four perspectives

Econamy * Value generation from statewide

» Capital Cost

oy energy storage (completed in
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. Ris‘; Energy Consumption cost S u m m e r' 20 1 6)

—
Transport Mode

e Value generation from statewide
CHP-FC (ongoing)

Two-stage
Stochastic
Optimization
Model

* Demand

* Road Network

+ Traffic flow

* Feedstock Price

+ Technology/Transp-
ortation/Emission/ When?, Where? 4 ‘
Risk Cost By what ?, technologies? "o .
capacity?, Cost? L"L\ :
AL

Optimal hydrogen

infrastructure in New
Q. Jersey for scenario 10in

& 2043-2052 8




Cyber Physical Simulation Platform for Smart communities

Results

Net-Zero energy communities are being established all over the world, and require advanced operational Layout of Testbed in BCVTB Interface pest epresentae e perod
controls and maintenance plans supported by data and innovative technology. While many models have been is fixed for subsequent design
established for individual smart grid components, accurately predicting the behavior of a system that combines

Monthly Average Load ve. Yearly Average Load

renewable technologies with multiple buildings is a challenge necessary for implementing Net-Zero communities on
a larger scale.

Goals

Build a cyber-physical testbed that achieves Net-Zero energy for a given community
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o
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Simulation Results from Both Sizing Methods

Turbine model that best
meets energy

8

1. goal is PW56 =
2. Accurately portray the behavior of multiple renewable energy technologies 5 i
3. Make dynamic decisions in real-time using customizable forecast models o+
4.

Design testbed to model and optimize any community

Power (AW) for Sept 15 10 Oct 14

&

Methodology Conclusions e e,
Control Theor W Complete . Testbed Simulation: Net Power from Wind Design, PW56
y System Framework In progress + Test bed established: o S T o Ton
. —— Load that Wind Needs to Meet
x[n y[n] . ) e Y Incomplete Buildings: (based on D.O.E. models, Renewable Generation: | e
[n] @Ol/ * 2 medium offices 4 PowerWind 900kW 56m 2500 [ ——Shortage of Power |
. Coqtrol Sy§tem Melhodo[ogy 8 fixed generation = 7‘5. + 4 midrise apartments diameter wind turbines —
e ‘\\ Design . system design pans - + 1 full-service restaurant + 120x130 silicon PV solar farm é
Zos | System | Linsysy (TRNSYS) | storage and « 1 primary school « 400x400 batteries, 16.7kW g 1500
S04 |\ \ 4 ... EVchamging ; capacity € 1000
Sod | - Solar PV . setpoints
K o . Intial design ) » Test bed achieves distributed building control 500
L p— R based on onsite generation 0
(ex: max loa ; ) - )
04 capacity) g2 . « Wind design finds best turbine model and s0q i = o
o N . - -
For each dail feration. the forecast model overshoots - VElectric Vehicle charglng quantity from available commercial options Day of Month (September)
but eventually reaches the optimal system behavior . RTweather data i Net zero energy: Surplus power — Shortage power ~=0 | v
power generation data Run
Choosing Generation System Design i OTMATLAB, Simulin) | Geucralion EelSURloN A ST
ol f”t;gn'ggam v Phase 1: +  Simulate basic wind, « Design building geometry = Energy Plus to BCVTB
create sefpoint Setup solar, and storage with Google Sketchup integration
e - schedules for system using TRNSYS « Create deterministic « TRNSYS to BCVTB integration
Parameters o orae, el occupancy models of
= " Time Building Simulation ‘ HVA%V:M lighting typical buildings using
Solar PV Seoy {Energy Plus) control Energy Plus
L q\caﬂ‘::;;: : v/ Phase 2: » Wind farm design « Create additional building « Create forecast models
v | -ti Development models « Incorporate utility electricity
= B [— HVAC and el )
@ sint) 7 RT ocoupencydata : Iightinga:stpoints Wiy prives Part 1 prices
¥ e o
Electric
@ - Vehicle Physlca Phytleal x F uture WO r k
—=— Charging _ °°""°"" Phase 2: « Solar farm design « Use lighting and motion - Create storage/HVAC/lighting
- Development -« Battery storage design sensors to collect real set-point schedules
lighting and N 8 A TE
T Part 2 « electric vehicle charging building occupancy data
Challen ges simulation and design
« Integrating TRNSYS with BCVTB Phase 3: « Design combined « Improve control logic that ~ « Create test plan: vary
. - . . Testing generation system with acts in physical building parameters, analyze results,
« Developing heuristic generation system design methodology load balancing and cost develop design trends
« Initially simulating real-time building occupancy data without using physical sensors minimization * 2'—': Wh0|€;tSYStem in real time
) . . . . . « Achieve net zero energy
« Creating dynamic user-friendly interface that allows easy alteration of system design and forecast models

Achieve net zero energy

« Scaling and accuracy verification



Plan4Saefty (P4S) — A Tool For Systematic Analytics

—
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A Sh

ort Overview Of P4S Predictive Analytics (1)

Historical LX(E) Xo(E) X (t)
Database l l l l ?A(;?ﬁm
e Crash Records

e Traffic Volume

MANUAL
Y,(t) = Average Crash Frequency 15 sdion v

Data Forsiteiat time t 4
A -
- "
.82 Roadway (Engineering) Database: HSM '
\N‘O‘\“ e\,,‘ length of segment, lane width, shoulder width, shoulder e
o 6«\06 type, roadside hazard rating, presence or absence of
%00 horizontal curve, curve characteristics, Lighting, Speed
Limit and ....
e Based on AADT Adjust th'e calculated Adjust SPF to reflect Improve crash
and Roadway SPF predlc'tc?d value for local conditions: estimations by
Length base conditions to Climate , Driver combining
* Models were actua!I 'or proposed populations , Animal predicted data with
developed. I-oy data conditions populations, Crash historical data
from specific states Reporting System.
Crash . : iri
e Calibration Enfplifiee] Average
Inputs Modification Bayesian Crash

Factor

Factor Method Frequency

N, redicted = SPF X (CMF1 x CMF2 X ....) XC

Nexpected = W X N +(1-w) x N

predicted observed



A Short Overview Of P4S Predictive Analytics (2)

Poisson Model (popular model) Negative binomial model

Assume that the Poisson parameter is random
variable (with gamma distribution)

Ni(t): # of crashesin sitei and year t
oADMY

FN©.A)=e" 0

N
FNOIXAVI=[ e 4(") ~GA 1.9

_ Tw+N) (o V 1 )
F(N; [%,v,0) = F)r(N; +2) (1+ 5) (1"‘5)

Va Ni
F(N;|%,0,0) =— i V) L 1 ) [1_ 1 j

FWa) (N +D\ 1+ay 1+au
/ e

E(N;) = exp( Z ﬂjxj)

=(N0)= xp(3. 4,

Average crash at
site jand year t

Roadway
characteristics and
traffic information

P
E(N;) =44 = eXp(Z,Bj X;)
=0



Multiple Data Streams

Weather &
roadway &

Near miss, |IOT
roadway sensors

] : .

conditions real
time

Weather data and roadway
condition

can be reported near real
time by sensors, vehicles,
and roadway sensors.

Crashes are rare events and crash
based safety solutions are reactive;
Near real time near miss data and
unsafe driving conditions can
protect vulnerable users, e.g.,
pedestrians and bicycles.

Naturalistic Driving Data

Traffic flow data
V2V, V21 &
crowdsourcing

I 5] i
8

Warnings & real time unsafe driving
conditions generated between

vehicles and between Vehiclf§ and
infrastructure;



Holistic data fusion approach will becomes possible soon ...

Driver

Driver’s behavioral data
Demographics, etc.

Location

On-board Devices
GPS

Smart phone;
In-vehicle devices

-,

@ Weather — public

web sites
Vehicle condition data
OBD interface

Maintenance history

Legacy Crash Data
Rutgers Plan4Saefty

V2X — connected vehicles

Crowdsourcing
Events, traffic jams,

Roadway static data, SLD
Work zones, Pavement condition, etc.



Onboard Smart Device APP ...

iPhone Screenshot

PLAN YOUR TRIP THROUGH BE AWARE OF REAL TIME ANALYZE YOUR CURRENT ANALYZE YOUR PAST RISK

THE SAFEST ROUTE TRAFFIC SITUATIONS RISK PROFILES PROFILES

Saved Trips Search Settings Saved Trips Filter

Trip Summary Last Week Trips
Trip ID: 000001 Start Time: Trip ID: 000001
10:35 AM 09/28/15

Date: 10/05/15 End Time: Trip ID: 000002
11:06 AM | 09/29/15

Distance: 9.5 miles Avg. Speed: 45 Trip ID: 000003
mile/h 10/02/15

0 Location

Lnand US. 1N

Ta

Settings

Date:
Date:

Date:

Riskieslll'l'llll Riskleslll"l

' Location

Trip Trip Past Trip Trip Past Trip Trip T|_-|p Trip Trip
Planner Monitor Performance Planner Monitor Performance Planner Monitor Analyzer Planner Monitor

Trip
Analyzer

f/ ‘ / f/ KJ

& J

O Instantaneous safety alerts and risk heat maps

O Safety risk profiles for current trip — from start to current
location/time

 Historical safety profiles

O Safe route maps




Safe route mapping technology ...

Towards vision ZERO

To bring road safety information to drivers and traffic authorities in real time
To evaluate safety countermeasures in much shorter time periods

Real time road safety conditions for autonomous driving

Data driven approach
using crash and accident
data

(legacy approach)

Predictive measures
(legacy approach)

Event & infrastructure
Roadway QR ¢ata (semi- Qualicative

legacy approach)
Segment Safety

Data driven predictive
approach using Road/Traffic
data ‘*

(SRM) \

Driver-Centric approach using
data from drivers who use /
Driver based | roadway segment with system
configured frequency

(SRM)



