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Abstract: Ball and hoop system is a well-known model for the education of linear control
systems. In this paper, we have a look at this system from another perspective and show that
it is also suitable for demonstration of more advanced control techniques. In contrast to the
standard use, we describe the dynamics of the system at full length; in addition to the mode
where the ball rolls on the (outer) hoop we also consider the mode where the ball drops out of the
hoop and enters a free-fall mode. Furthermore, we add another (inner) hoop in the center upon
which the ball can land from the free-fall mode. This constitutes another mode of the hybrid
description of the system. We present two challenging tasks for this model and show how they
can be solved by trajectory generation and stabilization. We also describe how such a model
can be built and experimentally verify the validity of our approach solving the proposed tasks. ∗

∗ All codes and drawings are available at http://github.com/aa4cc/flying-ball-in-hoop
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1. INTRODUCTION

Ball and hoop system is well-established among laboratory
models used in teaching control. Its origin dates back
to Wellstead (1980, 1983) who introduced it as a simple
model having qualitatively the same dynamics as the liquid
slop problem; in addition, Wellstead (1980, 1983) and
Fabregas et al. (2011) also described how this model can be
used in teaching of linear control theory. More specifically,
the model was used in a regime where the ball is close
to the stable position on the hoop and where a linear
approximation of motion dynamics is valid.

In contrast, we consider full repertoire of motions the
system offers. We describe the system as a hybrid model
with a mode where the ball rolls on the outer hoop
and with a mode where the ball has dropped out and
entered a free-fall mode. This description enables us to
generate dynamically richer trajectories (for instance, the
ball can go through the top of the hoop or even fly in
free fall); nevertheless, such trajectories also require more
advanced control techniques. First, one needs to find a
way to generate such trajectories. Second, the trajectories
have to be stabilized; in other words, one cannot simply
take the controls corresponding to a desired trajectory,
apply it to the system and expect to observe the desired
trajectory. This model is ideal for a demonstration of how
these techniques, trajectory generation and stabilization,
can be applied because it is relatively simple and allows
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one to pose tasks which are rather difficult to solve by other
means. We propose and solve two such tasks. Specifically,
we formulate each task as an Optimal Control Problem
(OCP) with nonlinear dynamics and limited control input.
We solve the OCPs and show how to stabilize the obtained
trajectories.

In addition, we added another hoop inside the outer one.
This further extends the variety of tasks that can be solved
on this system; one can, for example, swing up the ball on
the outer hoop, let it fall and stabilize it on the inner hoop.
It is worthy of note that the stabilization of the ball on the
inner hoop can be viewed as stabilization of a disk on a
disk; that itself is an interesting problem (for references,
see Ryu et al. (2013)).

This paper is organized as follows. In Section 2, we derive
a mathematical model of the system. In the following
section, we present two examples of interesting and chal-
lenging tasks for this system and propose an approach
solving them. In Section 4, we describe hardware setup
of the system and verify the viability of the proposed
approach solving the tasks.

2. MODELING

The system is cartooned in Fig. 1 and the modes of the
hybrid description are displayed in Fig. 2. The hybrid
description has three modes: the ball rolls on the outer
hoop (S1), the ball is in free fall (S2), and the ball rolls on
the inner hoop (S3).

Before we delve into the derivation of equations of motion
for each mode, let us devote a few words to coordinate



Fig. 1. A sketch of the ball and hoop system.

systems in which we will describe the motion of the ball.
Due to the rotational symmetry, polar coordinates are a
natural choice for modes S1 and S3. In contrast, Cartesian
coordinates are more suitable for the free-fall mode (S2)
because then the equations of motion are linear. In fact,
it turns out that the description of motion in S2 in
polar coordinates is strongly nonlinear. Thus, from the
implementation point of view (i.e. to increase numerical
stability), one should use polar coordinates for modes S1
and S3 and Cartesian coordinates for S2. Nevertheless,
transformations of the coordinates would make equations
in this paper unnecessarily complicated, and thus we stick
to polar coordinates for all three modes.

For simplicity, we will not state the time dependence
explicitly. At first, we derive equations of motion for each
mode and after that, we describe guards and reset maps
for transitions between the modes.

2.1 Outer hoop (S1)

A model of a ball rolling in a hoop was derived by Well-
stead (1983). For reader’s convenience—and because Well-
stead made a small mistake in the derivation of the
model—we rederive the model.

We use Euler-Lagrange equation to derive the model. Let
us choose angles ψ and θ (see Fig. 1) as the generalized
coordinates. We assume that the ball rolls without slip-
ping. In addition, we do not consider the dynamics of the
hoop as we assume that we can directly command the
angular acceleration of the hoop θ̈. In fact, the acceleration
will be our input to the model and it constitutes a rheo-
nomic (time-varying) constraint. This constraint reduces
the number of independent coordinates to one.

The kinetic co-energy of the ball is

T ∗ =
1

2
mv2 +

1

2
I(ϕ̇+ θ̇)2, (1)

where m is the mass of the ball, I is the moment of inertia
of the ball and ϕ = s

Rb
= Ro

Rb
(θ − ψ). The translational

velocity v and the angular velocity ϕ̇ of the ball can be
expressed as follows

v = − (Ro −Rb) ψ̇, (2a)

ϕ̇ =
Ro

Rb

(
θ̇ − ψ̇

)
. (2b)
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Fig. 2. Modes of the hybrid description of the ball and
hoop system.

Thus, the kinetic energy expressed in the generalized
coordinates is

T ∗ =
1

2
m (Ro −Rb)

2
ψ̇2+

1

2
I

(
Ro +Rb

Rb
θ̇ − Ro

Rb
ψ̇

)2

. (3)

Potential energy of the ball is given by

V = −mg (Ro −Rb) cosψ (4)

and the system content modeling friction of the ball is

D =
1

2
bϕ̇2 =

1

2
b
R2

o

R2
b

(
θ̇ − ψ̇

)2

. (5)

Defining the Lagrangian L = T ∗ − V , an equation of
motion of the ball can be computed by Euler-Lagrange
equation as

d

dt

(
∂L
∂ψ̇

)
− ∂L
∂ψ

+
∂D

∂ψ̇
= 0 (6)

which results in the following differential equation

āoψ̈ + b̄oψ̇ + c̄o sinψ + d̄oθ̇ = ēoθ̈, (7)

with coefficients

āo = m (Ro −Rb)
2

+ I
R2

o

R2
b

, (8a)

b̄o = b
R2

o

R2
b

, (8b)

c̄o = mg (Ro −Rb) , (8c)

d̄o = −b̄o, (8d)

ēo = I
Ro

Rb

(
Ro

Rb
+ 1

)
. (8e)

2.2 Free fall (S2)

The motion of the center of the ball in free fall can be easily
described in Cartesian coordinates because the only force
acting on the ball is the gravitational force. Considering
the Cartesian coordinate system shown in Fig. 1, we have

ẍ = g and ÿ = 0. (9)

In order to get equations of motion in polar coordinates
(r, ψ) (see Fig. 1), we only need to transform the coordi-
nates by relations x = r cosψ and y = r sinψ. This way,
we get

r̈ = rψ̇2 + g cosψ, (10a)

ψ̈ = −1

r

(
g sinψ + 2ψ̇ṙ

)
. (10b)

To fully describe the state of the system during free fall of
the ball we also need to describe evolution of ϕ; we assume
that the angular velocity ϕ̇ is constant during the free fall.

2.3 Inner hoop (S3)

A sketch of the ball rolling on the inner hoop is shown
in Fig. 3. The equations of motion for the ball rolling on



Fig. 3. A sketch of the ball rolling on the inner hoop.

the inner hoop can be derived along similar lines as for
the ball on the outer hoop. The only difference is that the
effective rolling radius is Ri + Rb instead of Ro − Rb and
angle ϕ has the opposite orientation. Therefore, we skip
the derivation and state directly the resulting equations of
motion:

āiψ̈ + b̄iψ̇ + c̄i sinψ + d̄iθ̇ = ēiθ̈, (11)

where

āi = m (Ri +Rb)
2

+ I
R2

i

R2
b

, (12a)

b̄i = b
R2

i

R2
b

, (12b)

c̄i = mg (Ri +Rb) , (12c)

d̄i = −b̄i, (12d)

ēi = I
Ri

Rb

(
Ri

Rb
− 1

)
. (12e)

2.4 Transition between modes

Transition from S1 to S2 Mode S1 (outer hoop) is valid
as long as the centripetal force Fc acting on the ball is
larger then the normal component of the gravitational
force Fg with respect to the hoop. Mathematically, it is
valid if

Fg cosψ + Fc = mg cosψ +m (Ro −Rb) ψ̇2 > 0. (13)

If this condition does not hold, the ball drops of the hoop.
It readily follows from (13) that the guard for transition
from S1 to S2 is

γ1 = −g cosψ − (Ro −Rb) ψ̇2 > 0. (14)

The reset map for states r, ṙ, ϕ and ϕ̇ is

r+ = Ro −Rb, (15a)

ṙ+ = 0, (15b)

ϕ+ = (θ− − ψ−)
Ro

Rb
, (15c)

ϕ̇+ =
Ro +Rb

Rb
θ̇ − Ro

Rb
ψ̇. (15d)

The first three relations are apparent. The last one is
derived from the inertial angular velocity (ϕ̇−+ θ̇−) of the
ball and (2b). The remaining states transit to the mode S2

without any change, that is θ+ = θ−, θ̇+ = θ̇−, ψ+ = ψ−

and ψ̇+ = ψ̇−.

Transition from S2 to S1 This transition occurs when
the ball hits the outer hoop. Thus the guard is

γ2 = r −Ro +Rb > 0 (16)

Fig. 4. A cartoon of the challenging tasks to be solved with
the ball and hoop system.

and the corresponding reset map for ψ̇ is

ψ̇+ = ψ̇− + ψ̇−rot (17)

where ψ̇−rot is derived from the angular velocity of the ball
ϕ̇− and can be computed from (2b):

ψ̇−rot = θ̇− − Rb

Ro
ϕ̇−. (18)

The remaining states transit unchanged, that is θ+ = θ−,
θ̇+ = θ̇− and ψ+ = ψ−.

Transition from S2 to S3 Analogously to the previous
case, the transit occurs when the ball hits the inner hoop
and the guard is

γ3 = Ri +Rb − r > 0. (19)

The reset map is also almost the same; the only difference
is that the angular velocity ψ̇−rot here is computed as follows

ψ̇−rot = θ̇− +
Rb

Ri
ϕ̇−. (20)

Transition from S3 to S2 Similarly to the transition from
the outer hoop to free fall, the transition from the inner
hoop to free fall occurs when the centripetal force becomes
larger then the normal component of the gravitational
force with respect to the hoop, that is

γ4 = g cosψ + (Ri +Rb) ψ̇2 > 0.

and analogously to (15), the reset map is

r+ = Ri +Rb, (21a)

ṙ+ = 0, (21b)

ϕ+ = −(θ− − ψ−)
Ri

Rb
, (21c)

ϕ̇+ = −
(
Ri −Rb

Rb
θ̇ − Ri

Rb
ψ̇

)
, (21d)

with the remaining states θ, θ̇, ψ and ψ̇ transiting un-
changed.

3. EXAMPLES OF INTERESTING TASKS

The hybrid description of the system allows us to pose vi-
sually appealing and from control perspective challenging
tasks. In this section, we show two such tasks and describe
control algorithms solving them.

Task 1: Roll the ball around the outer hoop

This task is sketched in Fig. 4 on the left side. In the
beginning, the ball is in the steady position on the outer



hoop and the goal is to roll it around the hoop and get it
back to the steady position. One might roughly imagine
this task as the famous Loop-the-Loop stunt where a car
rides around a vertical circle.

Naturally, this task is an instance of an Optimal Control
Problem (OCP). The ball is supposed to stay on the outer
hoop and thus the hybrid model remains in the mode S1.
To simplify the notation, let us define a state vector as

x =
[
θ, θ̇, ψ, ψ̇

]>
. (22)

and the state-space description corresponding to the mode
S1 as

ẋ = fS1(x, u), (23)

where u = θ̈ and

fS1(x) =


x2

u
x4

1
āo

(
−b̄ox4 − c̄o sinx3 − d̄ox2 + ēou

)
 . (24)

Now, we formulate the task as an OCP. In the initial time
T0 := 0, everything is steady and thus the initial condition
is x(0) = [0, 0, 0, 0]>. In a final time Tf , we require that
the ball has rolled around the hoop, is back in the steady
state and the hoop does not move; that imposes conditions
x3(Tf) = −2π, x4(Tf) = 0 and x2(Tf) = 0. Furthermore,
to ensure that the ball does not drop out of the hoop,
we require that the guard γ1 is inactive during the whole
trajectory. Instead of specifying the final time, we leave
it as an optimization variable; we only require that the
final time is smaller than a certain value Tmax. We also
put bounds on the control u. Finally, the objective is to
minimize the control u. Altogether, the OCP is

min
u(t),x(t),Tf

∫ Tf

0

u2(t)dt, (25)

subject to: x(0) = [0, 0, 0, 0]>,

x2(Tf) = 0,

x3(Tf) = −2π,

x4(Tf) = 0,

γ1 (x(t)) < 0,

0 < Tf < Tmax,

|u(t)| ≤ umax,

ẋ(t) = fS1(x(t), u(t)).

To solve this OCP we use direct collocation (Hargraves and
Paris (1987)) to discretize it to N equidistantly distributed
knots in time and formulate it as a nonlinear programming
problem (NLP). This simplification, however, comes at a
cost. NLP solvers usually does not guarantee optimality
and provide only suboptimal solutions. Let us denote a
(possibly suboptimal) solution provided by a NLP solver
by u∗, x∗ and T ∗f .

By solving the NLP, we obtain a discrete trajectory of
the system evaluated at certain time instants separated
by sampling time Ts = Tf

N . Ideally, if the model captures
the real system well enough and the sampling time Ts

is short enough (say, a few milliseconds), an application
of the control input u∗(t) results in the desired state
trajectory x∗. Nevertheless, short sampling periods imply
large number of knots N and thus make the NLP larger
and possibly intractable. Furthermore, the model usually

mismatches the real system to some extent. Therefore, we
need to stabilize the trajectory; we need to keep the system
as close as possible to the desired trajectory.

Trajectory stabilization To stabilize the trajectory, we
invoke the powerful framework of Linear Quadratic Regu-
lators (LQR) and neighboring extremals (Bryson and Ho
(1975)). We linearize the model around the trajectory and
thus obtain a linear time-varying deviation model

δẋ(t) = A(t)δx(t) + B(t)δu(t), (26)

where δx = x − x∗ and δu = u − u∗. The time-varying
matrices are

A(t) =
∂fS1 (x(t), u(t))

∂x

∣∣∣
x(t)=x∗(t),u(t)=u∗(t)

, (27)

B(t) =
∂fS1 (x(t), u(t))

∂u

∣∣∣
x(t)=x∗(t),u(t)=u∗(t)

. (28)

Now we design an LQR stabilizing the deviation model
hence keeping δx(t) small and the system close to x∗. We
stick to a common notation and denote the state and input
weight matrices by Q and R, respectively. The control law
of the LQR is

δu(t) = −R−1B>(t)S(t)δx(t), (29)

where matrix S(t) is given by the solution of the differen-
tial Riccati equation

−Ṡ(t) = S(t)A(t)+A>(t)S(t)−S(t)B(t)R−1B>(t)S(t)+Q
(30)

with final time condition S(Tf) = Q.

Finally, the applied control to the system is given by a sum
of the nominal input u∗(t) and the trajectory stabilizing
term δu(t):

u(t) = u∗(t) + δu(t). (31)

Task 2: Get the ball on the inner hoop

The second task we would like to solve is to get the ball
from the steady position on the outer hoop to the top of
inner hoop and stabilize it there. This task is sketched in
Fig. 4 on the right side. Once again, we formulate this
problem as an OCP, find a trajectory solving the problem
and design a regulator stabilizing this trajectory.

Apparently, the trajectory we are looking for starts and
ends in different modes of the hybrid model. This poses
especially difficult problem to the trajectory generation
because in the discretization of the corresponding OCP,
one does not know how many knots should be assigned to
each mode. Fortunately, the requirement that the ball ends
up on the inner hoop can be reformulated to a requirement
that the ball ends up on the outer hoop at specific angle
ψdes with specific angular velocity ψ̇des. This is due to
the fact that the free-fall mode is uncontrolled and thus
the state of the system leaving the free-fall mode is fully
determined by the state of the system entering the free-fall
mode. Therefore, we can find a trajectory solving Task 2
by the same approach as we used for Task 1.

In addition to ψdes and ψ̇des, we also require that the hoop
has specific angular velocity θ̇des at the moment when the
ball drops out of it. That is because by reset map (15d),

θ̇des determines ϕ̇ during the free fall and thus by reset
map (20) also ψ̇ just after the ball lands on the inner hoop.



Table 1. Parameters of the demonstration model

Description Parameter Value Unit

Radius of the outer hoop Ro 95.8 mm
Radius of the inner hoop Ri 43.8 mm
Radius of the ball Rb 7.7 mm
Inertia of the ball I 1.28 · 10−6 kgm2

Mass of the ball m 0.032 kg
Friction of the ball b 1.4 · 10−6 Nms
Gravitational constant g 9.81 m s−2

Therefore, we compute θ̇des so that ψ̇ after the impact is
minimized.

The OCP for Task 2 has exactly the same form as (25);
the only difference here is that the conditions for the final
states are

x2(Tf) = θ̇des, (32a)

x3(Tf) = ψdes, (32b)

x4(Tf) = ψ̇des. (32c)

The remaining steps to solve this task are almost the
same as with the previous one. The only additional step
is to design a regulator stabilizing the ball on the inner
hoop. After the ball lands, we hand over the control to a
stationary LQR designed for this purpose.

4. EXPERIMENTAL VERIFICATION

To verify the validity of our approach, we implemented
the proposed control algorithm and tested it on a real
hardware setup.

4.1 Construction of the model

The hardware setup used for the verification is displayed in
Fig 5. Parameters of the setup are summarized in Table 1.
The hoop is 3D-printed 1 and it has imbedded rubber o-
rings serving as high-friction rails for a metal ball. The
hoop is attached to a BLDC motor driven by a PearControl
ESC3 regulator enabling us to control the motor in a speed
and current mode. To simplify the control algorithm, we
let the current control to the motor regulator and used the
speed mode to set directly a desired angular velocity θ̇des.
Nevertheless, in Section 2 we considered θ̈ to be the control
input to the model, thus also the output of the regulator.
Therefore, to get θ̇des, we numerically integrate the output
of the regulator θ̈. Judging from the experiments, the
control system performs surprisingly well in spite of this
simplification.

4.2 Implementation

The control law was discretized by sampling of (31) and it
was implemented in Simulink. We used Support Package
for Raspberry Pi Hardware to generate code, compile it,
and run it on Raspberry Pi 3. Raspberry Pi 3 has sufficient
computational power that it also allows us to measure the
position of the ball by processing images from Raspberry
Pi camera module. The image-processing algorithm was
implemented in Python and OpenCV. Both, the image
processing and control algorithm run at 50 Hz.

1 The drawings and codes are available at http://github.com/

aa4cc/flying-ball-in-hoop

Fig. 5. A photo of the real hardware setup.
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Fig. 6. A comparison of a nominal trajectory for Task
1 with a trajectory measured on the real system
with feedback (FB) and without feedback (FF). The
comparison has the form of (a) graphs and (b) visu-
alizations of the position of the ball at several time
instants. The time instants are also displayed in (a)
by green dots. The colors of the balls in (b) correspond
to the colors of trajectories in (a). The trajectory
without feedback ends up at approximately t = 1.2 s
because at that time the ball drops out of the hoop.
The dimensions in (b) are not in scale.
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Fig. 7. A comparison of a nominal trajectory for Task 2
with a trajectory obtained by simulation of the model
with the trajectory stabilizing regulator. The compar-
ison has the form of (a) graphs and (b) visualizations
of the position of the ball at several time instants. The
time instants are also displayed in (a) by green dots
and the colors of the balls in (b) correspond to the
colors of trajectories in (a). The dimensions in (b) are
not in scale.

The trajectory stabilizing regulator, as a state regulator,
needs to know values of all states. States x1 = θ and
x2 = θ̇ do not need to be measured because they are given
by integration of the input u = θ̈. Angle of the ball ψ is
measured by a camera and image processing. Nevertheless,
the angular velocity ψ̇ is rather difficult to measure directly
and thus has to be estimated. For this purpose, we used
a discrete Extended Kalman Filter (EKF) in the standard
setting.

Beside the model mismatch and state estimation, in the
reality, one also usually has to deal with a latency in the
measurement. In our hardware setup, we measured the
latency of the measurement of ψmeas to be approximately
two control periods (40 ms). Thus, at control period k, we
at first estimate the state x̂[k − 2] by EKF based on the
previous estimate x̂[k− 3], ψmeas[k] and u[k− 3] and then
compensate for the delay by two-step prediction:

x̂[k − 1] = x̂[k − 2] + TfS1(x̂[k − 2], u[k − 2]), (33)

x̂[k] = x̂[k − 1] + TfS1(x̂[k − 1], u[k − 1]), (34)

where T is the control period and it equals to 20 ms.

4.3 Verification

Regarding Task 1, a reference trajectory x∗ obtained by
the solution of (25) together with a trajectory measured on
the real hardware setup are shown in Fig. 6. Apparently,
the validity of the control algorithm is verified; it is able to
follow the desired trajectory to such an extent that the ball
ends up in the desired position and does not drop out of the
hoop. We have not yet implemented the solution of Task
2 on the real hardware setup. Nevertheless, the proposed
solution works very nicely in simulations as Fig. 7 shows.
Solutions of both tasks are also presented in a video clip
available at https://youtu.be/484GN4KBQnc.

5. CONCLUSION

We showed that the well-known ball and hoop system
can be used not only to demonstrate some aspects of
linear control theory but also to demonstrate strengths
of numerical optimal control. We extended the ball and
hoop system by another hoop and described this extended
system by a hybrid model. We presented two tasks for
the extended system that are ideal for a demonstration of
trajectory generation and stabilization and solve them. As
the model of the extended system is simple, one can also
use it for a demonstration of control techniques that are
based on Sum-Of-Squares programming. For instance, our
proposed solution of the presented tasks can be extended
by LQR trees (Tedrake et al. (2010)) to work also for
varying initial conditions. Furthermore, the inner hoop
can be replaced by something else. For example, one can
replace it by a beam and modify the Task 2 to “get the ball
on a beam and stabilize it there”. Or, the inner hoop can be
replaced by a figure-eight shaped rails and the “butterfly”
task can be solved on the system (Cefalo et al. (2006)).
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