

Spécialité : Automatique, Robotique, Traitement du Signal Nom du laboratoire : LISA, Université d'Angers **Équipe :** Traitement de l'information pour les processus physiques complexes

Imagerie multimodalité appliquée au domaine du végétal:

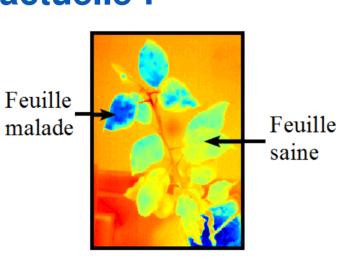
Couplage d'un capteur de profondeur à éclairage structuré avec une caméra thermographique

Directeurs de thèse : François Chapeau-Blondeau David Rousseau

Yann Chéné

Mél: yann.chene@univ-angers.fr

Directeur du laboratoire : Jean-Louis Boimond

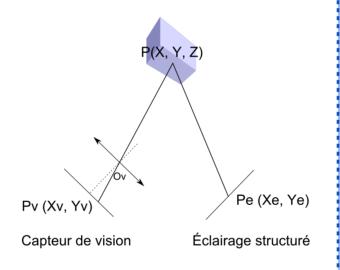

1. Contexte

Problématique végétale :

Analyser la dynamique de population des pathogènes (agents infectieux) à la surface des feuilles pour créer des espèces résistantes aux pathogènes.

Méthode d'acquisition actuelle :

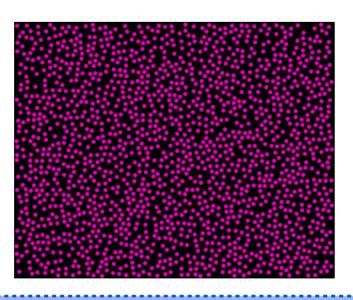
- Caméra thermographique
- Acquisitions sur feuille unique
- Acquisitions destructives ou intrusives


Objectif:

Étudier la dynamique de population des pathogènes sur plante entière

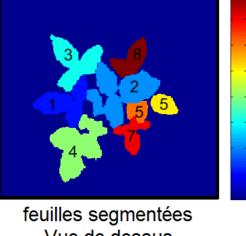
2. Un capteur de profondeur pour segmenter les feuilles


Principe physique d'un capteur de profondeur à éclairage structuré :


- Émission d'un pattern de forme connue
- Visualisation de la disposition du pattern
- Calcul de la profondeur par triangulation

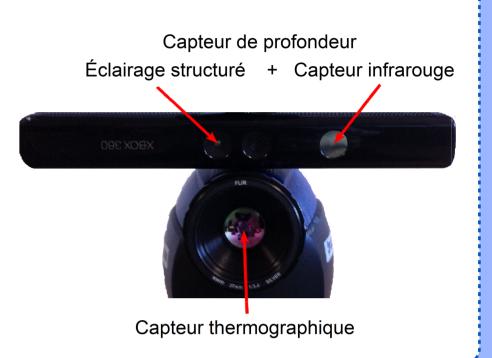
La Kinect, capteur de profondeur bas-coût :

- Nature de l'éclairage : émission dans le proche-infrarouge
- Forme de l'éclairage : une grille de points binaire remplie selon une loi pseudo aléatoire (voisinage unique pour chaque point)


Segmentation des feuilles des plantes mono-axiales : (méthode de [1])

Vue latérale

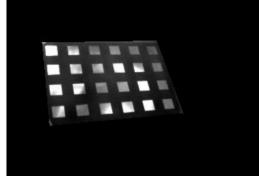
Image de profondeur


Vue de dessus

3. Un capteur multimodalité pour la quantification de pathogènes sur plante entière

2 modalités d'imagerie :

- Capteur de profondeur Segmentation des feuilles
- Caméra thermographique Détection des pathogènes



Calibration du capteur multimodalité : (méthode de [2])

- Objectif : déterminer les paramètres intrinsèques et les paramètres extrinsèques du capteur multimodalité
- Rôle : les paramètres de calibration permettent de projeter l'image de profondeur dans le plan du capteur thermographique

Exemple de scène de calibration

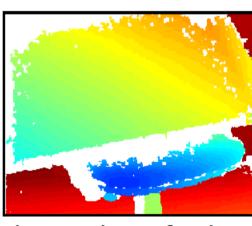



Image thermographique Image de profondeu

Utilisation du capteur multimodalité pour obtenir des images thermographiques des feuilles individuelles :

4. Conclusion et perspective

- Capteur multimodalité pour la quantifification de pathogènes
- Possibilité d'utiliser d'autres capteurs physiologiques
- Analyser l'influence des dépassement sur les bords

and Machine Intelligence, 34:2058–2064, 2012.

[1] Y. Chéné, D. Rousseau, P. Lucidarme, J. Bertheloot, P. Morel, E. Belin, F. Chapeau-Blondeau. "On the use of depth camera for 3D phenotyping of entire plants." Computers and Electronics in Agriculture, 82:122–127,2012. [2] C. Herrera, J. Kannala, J. Heikkilä. "Joint depth and color camera

calibration with distortion correction." IEEE Transactions on Pattern Analysis