Exploitation d'images acquises par drone pour la caractérisation de la structure des rangs de vigne.

Marie WEISS & Frédéric BARET INRA-EMMAH, UMT CAPTE, Avignon

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no [Number]

Objectives

• Develop decision making tools within VINTAGE

- Row structure mandatory for:
 - Some technical practices (pruning)
 - Compute the radiation absorption efficiency
 - Use to interprete remote sensing images
 @decametric resolution

The experiment

THE UAV and the sensor

12 million pixels with a focal length of 14 mm and a pixel size of 4.32 μm

Fixed wing 2 kg mass total 2.0 m wing span 10 minutes autonomy

Data processing

Defining the reference level (soil)

Fit a local plan on the 10% lowest points: relative soil level

Allows to compute the height relative to the reference soil level

Creating binary image

Gridding the 3D point cloud image to get a vertical projection image Select the resolution to get enough points per pixel: 5cm

Creating a binary image

- Separating the soil/inter-row from the vine
 Threshold height: 0.5*max_height
- Take the max height for each pixel (to get the upper enveloppe)

Results: row height

T_{Height}=74% RMSE=15cm

Cover fraction

Limit: missing fraction: strongly depends on the original image resolution and number of images available (should be >9)

Row orientation

2 methods

- Rotating the scene to maximize the differences between row/inter-row
- Identifying objects (after closure) and computing its main orientation

Very good consistency between the methods

Row spacing

Measured

Row width

Trow=65% RMSE=9cm

Conclusion

- Good description of the row structure from UAV if the resolution of the resulting 3D point cloud is sufficient:
 - resolution of original images <3cm</p>
 - Enough overlaping images (>9)
- Very heavy computation!!