Aller au contenuAller au menuAller à la rechercheAller à la page d'actualités

Laboratoire Angevin de Recherche en Ingénierie des Systèmes


Navigation principale

    Recherche

    Fil d'ariane

    Soutenance de thèse de Madame Amira CHOUCHANE

    Soutenance de thèse de Madame Amira CHOUCHANE

    • Partager la page sur les réseaux sociaux
    • Envoyer cette page par mail

      Envoyer par mail


      Séparés par des virgules
    • Imprimer cette page

    Soutenance de thèse de Madame Amira CHOUCHANE

    14h00 |IstiA | Amphi E | 62, avenue Notre-Dame du Lac | Angers

    Le 17 décembre 2018

    Sujet : Estimation et diagnostic de réseaux de Petri partiellement observables

    Directeur de thèse : Monsieur Philippe DECLERCK

    RÉSUMÉ

    Avec l'évolution de la technologie, l'homme a procédé à la conception de systèmes de plus en plus complexes mais aussi de plus en plus sensibles aux défauts qui peuvent les affecter. Une procédure de diagnostic contribuant au bon déroulement du processus est ainsi nécessaire. Dans ce contexte, le but de cette thèse est le diagnostic des systèmes à événements discrets modélisés par des Réseaux de Petri Étiquetés (RdPE) partiellement observables. Sous l'hypothèse que chaque défaut est modélisé par le tir d'une transition non observable, deux approches de diagnostic à base d'estimation d'état sont développées. Une première approche composée de deux étapes consiste à estimer l'ensemble des marquages de base sur un horizon élémentaire glissant. La première étape consiste à déterminer un ensemble de vecteurs candidats à partir d'une  approche algébrique. La deuxième étape consiste à éliminer les solutions candidates calculées qui ne sont pas associées à une trajectoire possible du RdPE. Comme l'ensemble des marquages de base pourra aussi être important, une deuxième approche de diagnostic évitera cet écueil en n'estimant pas les marquages. Une technique de relaxation des problèmes de Programmation Linéaire en Nombres Entiers (PLNE) sur un horizon fuyant est utilisée afin d'avoir un diagnostic en temps polynomial.