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Abstract

Various kinds of manufacturing systems can be modeled and analyzed by Timed Event
Graphs (TEGs). These TEGs are a particular class of timed Discrete Event Systems (DESs),
whose dynamic behavior is characterized only by synchronization and saturation phenom-
ena. A major advantage of TEGs over many other timed DES models is that their earliest be-
havior can be described by linear equations in some tropical algebra structures called dioids.
This has led to a broad theory for linear systems over dioids where many concepts of stan-
dard systems theory were introduced for TEGs. For instance, with the (max,+)-algebra linear
state-space models for TEGs were established. These linear models provide an elegant way to
do performance evaluation for TEGs. Moreover, based on transfer functions in dioids several
control problems for TEGs were addressed. However, the properties of TEGs, and thus the
systems which can be described by TEGs, are limited. To enrich these properties, two main
extensions for TEGs were introduced. First, Weighted Timed Event Graphs (WTEGs) which,
in contrast to ordinary TEGs, exhibit event-variant behaviors. In WTEGs integer weights are
considered on the arcs whereas TEGs are restricted to unitary weights. For instance, these
integer weights make it straightforward to model a cutting process in a production line. Sec-
ond, a new kind of synchronization called partial synchronization (PS) was introduced for
TEGs. PS is useful to model systems where specific events can only occur in a particular
time window. For example, consider a crossroad controlled by a traffic light: the green phase
of the traffic light provides a time window in which a vehicle is allowed to cross. Clearly,
PS leads to time-variant behavior. As a consequence, WTEGs and TEGs under PS are not
(max,+)-linear anymore.

In this thesis, WTEGs and TEGs under PS are studied in a dioid structure. Based on these
dioid models for WTEGs a decomposition of the dynamic behavior into an event-variant and
an event-invariant part is proposed. Under some assumptions, it is shown that the event-
variant part is invertible. Hence, based on this model, optimal control and model reference
control, which are well known for ordinary TEGs, are generalized to WTEGs. Similarly, a
decomposition model is introduced for TEGs under PS in which the dynamic behavior is
decomposed into a time-variant and time-invariant part. Again, under some assumptions, it
is shown that the time-variant part is invertible. Subsequently, optimal control, as well as
model reference control for TEGs under PS is addressed.
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Zusammenfassung

Viele Produktions- und Fertigungsanlagen kénnen mit Hilfe von Synchronisationsgra-
phen modelliert und analysiert werden. Diese Synchronisationsgraphen sind eine speziel-
le Klasse der zeitbehafteten Ereignisdiskreten Systemen, deren dynamisches Verhalten nur
durch Synchronisations- und Sattigungsphanomene gekennzeichnet ist. Ein Vorteil dieser
Synchronisationsgraphen gegeniiber vielen anderen Modellen besteht darin, dass ihr schnells-
tes Verhalten durch lineare Gleichungen in einigen "tropischen" Algebren, den sogenann-
ten Dioiden, beschrieben werden kann. Dies hat zu der Entwicklung einer umfangreichen
Theorie fiir lineare Systeme in Dioiden gefiihrt, wobei viele Konzepte aus der Standard
Systemtheorie auf Synchronisationsgraphen tibertragen wurden. Zum Beispiel die (max,+)
Algebra biete elegante Analyseverfahren und Reglerentwurfsverfahren fiir Synchronisati-
onsgraphen. Allerdings ist die Systemklasse, die mit Hilfe von Synchronisationsgraphen
beschrieben werden kann, eingeschrankt. Zum Beispiel lassen sich Fertigungsanlagen mit
Gruppierungs- oder Vereinzelungsschritten nicht mit Synchronisationsgraphen modellieren.
Daher wurden einige Erweiterungen fiir Synchronisationsgraphen eingefithrt. Zum einen
wurden die Kanten von Synchronisationsgraphen mit ganzzahligen Gewichten erweitert.
Diese gewichteten Synchronisationsgraphen weisen im Gegensatz zu gewoéhnlichen Syn-
chronisationsgraphen ereignisvariantes Verhalten auf und erméglichen es nun Gruppierungs-
oder Vereinzelungsschritte zu beschreiben. Des Weiteren wurde eine neue Art der Synchro-
nisation namens partieller Synchronisation (PS) eingefiihrt. Diese PS ist niitzlich fiir die Mo-
dellierung von zeitvarianten Systemen, bei denen bestimmte Ereignisse nur in einem be-
stimmten Zeitfenster auftreten koénnen. Ein solches Verhalten tritt zum Beispiel an einer
Kreuzung mit Ampelsteuerung auf, die Griinphase der Ampeln beschreibt das Zeitfenster, in
dem ein Fahrzeug die Kreuzung iiberqueren darf.

Aufgrund ihres ereignisvarianten bzw. zeitvarianten Verhalten kénnen gewichteten Syn-
chronisationsgraphen sowie Synchronisationsgraphen unter PS nicht mehr mit linearen Glei-
chungen in der (max,+) Algebra beschrieben werden. In dieser Arbeit werden gewichteten
Synchronisationsgraphen und Synchronisationsgraphen unter PS in Dioiden modelliert. Ba-
sierend auf dieser Modellierung wird eine Zerlegung des dynamischen Verhaltens von ge-
wichteten Synchronisationsgraphen in einen ereignisvarianten und einen ereignisinvarian-
ten Teil vorgestellt. Analog wird fiir Synchronisationsgraphen unter PS gezeigt, dass ihr dy-
namisches Verhalten in einem zeitvarianten und zeitinvarianten Teil zerlegt werden kann.
Unter speziellen Voraussetzungen wird gezeigt, dass dieser ereignisvarianten bzw. zeitvari-
anten Teile invertierbar ist. Dies ermoglicht die Ubertragung von etablierten Analyse- und
Regelungsentwurfsverfahren von gewo6hnlichen Synchronisationsgraphen auf die allgemei-
neren Klassen der gewichteten Synchronisationsgraphen und Synchronisationsgraphen un-
ter PS.
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Résume

De nombreux systémes de production peuvent étre modélisés et analysés a ’aide de graphes
d’événements temporisés (GET). Les GET forment une classe de systémes a événements dis-
crets temporisés (SEDT), dont la dynamique est définie uniquement par des phénomenes de
synchronisation et de saturation. Un avantage majeur des GET par rapport a d’autres classes
de SEDT est qu’ils admettent, sous certaines conditions, un modele linéaire dans des espaces
algébriques particuliers : les dioides. Ceci a conduit au développement d’une théorie des sys-
temes linéaires dans les dioides, grace a laquelle de nombreux concepts de 'automatique
classique ont été adaptés aux GET. Par exemple, 'algébre (max,+) (i.e., le dioide basé sur
les opérations (max,+)) offre des techniques élégantes pour I'analyse et le contrdle de GET.
Cependant, les conditions nécessaires pour modéliser un systéme a événements discrets par
un GET sont trés restrictives. Pour élargir la classe de systémes concernés, deux extensions
principales ont été développées. D’une part, les GET valués ont été introduits pour décrire
des phénomeénes d’assemblage et de séparation dans les systémes de production. Cette exten-
sion se traduit par ’association de coefficients entiers aux arrétes d’un graphe d’événements.
Contrairement aux GET, ces systémes ne sont pas invariants par rapport aux événements et
ne peuvent donc pas étre décrits par des équations linéaires dans I’algébre (max,+). D’autre
part, la synchronisation partielle (PS) a été introduite pour modéliser des systémes dans les-
quels certains événements ne peuvent se produire que pendant des intervalles prédéfinis.
Par exemple, dans une intersection réglée par un feu tricolore, une voiture peut traverser
Pintersection lorsque le feu est vert. Contrairement aux GET, ces systémes ne sont pas in-
variants dans le domaine temporel et ne peuvent donc pas étre décrits par des équations
linéaires dans I’algeébre (max,+). Dans cette thése, une modélisation des GET valués et des
GET avec PS dans des dioides adaptés est présentée. A I’aide de ces dioides, une décompos-
tion pour les GET valués (resp. GET avec PS) en un GET et une partie non-invariante dans
le domaine des événements (resp. dans le domaine temporel) est introduite. Sous certaines
conditions, la partie invariante est invertible. Dans ce cas, les modeles et contrdleurs pour le
GET valué ou le GET sous PS peuvent étre directement dérivés des modeéles et controleurs
obtenus pour le GET associé.
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Introduction

Discrete Event Systems (DESs), e.g.[9], are systems where the dynamic behaviors are de-
scribed by the occurrence of asynchronous discrete events. This class of systems is useful to
model man-made systems - such as complex manufacturing lines, computer networks, and
transportation networks - on a high level of abstraction. Typically, signals of such systems
take discrete values that mostly belong to countable sets; for instance, the state of a machine
could be busy, idle or broken. Furthermore, state changes are given by asynchronous events.
For example, an operator can start a working process when the machine state is idle. At this
particular time, the state of the machine changes from idle to busy. Many different model-
ing approaches have been introduced for DESs, among which are Petri nets and finite-state
automata. These models give a formal way to describe how events are related to each other.
Besides the logical order in which the events occur, in many applications, the time which
elapses between consecutive events is important. In this case, the dynamic behavior of the
system is described by timed DESs, e.g. by timed Petri nets or timed finite-state automata.

This thesis focuses on a particular class of timed DESs, where the dynamic behaviors
are only governed by synchronization phenomena. Synchronization is essential in many
systems; for instance, in public transportation networks, at a train station, the departure
of trains may be synchronized with the arrival of other trains. In manufacturing systems,
in order to start a task, the raw material is needed, and the required production machines
must be ready. In a computer system, to perform a computation, data and the processing
unit must be available. The time behavior of those systems can be naturally described by
a subclass of timed Petri nets called Timed Event Graphs (TEGs). More precisely, TEGs are
timed Petri nets where each place has exactly one upstream and one downstream transition
and all arcs have the weight 1. An advantage of TEGs over the more general class of timed
Petri nets is that the evolution of events can be described by recursive linear equations in
a tropical algebra called (max,+)-algebra [40], or more generally in dioids [1]. Within the
last decades, this has led to the development of a broad theory of linear systems in dioids,
including many methods for performance evaluation and controller synthesis. E.g. through-
put analysis for TEGs can be stated as an eigenvalue problem in the (max,+)-algebra. The
transfer function of a TEG is described by an ultimately cyclic series in a specific dioid called
(MEX v, 8], @, ®) [1]. Moreover, many control methods for linear systems in dioids have
been studied, among which are: optimal feedforward control [12, 51], state and output feed-
back control [25, 15, 47, 48, 34] as well as observer based control [33, 35]. Moreover, in
[59, 60], model predictive control for (max,+)-linear systems was introduced. It was also



1. Introduction

shown that the obtained results are suitable to handle scheduling problems in complex real-
world systems. For instance, in [7] dioid theory was applied to the modeling and the control
of high throughput screening systems. These systems are used in the field of drug discovery
of chemical and biological industries.

However, TEGs are quite restrictive in terms of their modeling capabilities. To enrich the
model properties it is reasonable to consider weights (values in N = {1,2,---}) on the arcs
of TEGs. This leads to Weighted Timed Event Graphs (WTEGs), which have clearly more
expressiveness and allow us to describe a wider class of systems. The weights are suitable
to express batch (resp. split) processes; for instance, when several occurrences of events are
needed to induce a following event or when one event can result in several following events.
Clearly, such batch and split processes are quite common in many manufacturing systems;
for instance, when a workpiece is cut into several parts. Another example in the field of com-
puter science is provided by data streams in multirate digital signal processing. The weights
are suitable to model data flow caused by up- and down-sampling. Unlike TEGs, WTEGs
have an event-variant behavior and cannot be described by (min,+)-linear or (max,+)-linear
systems anymore [14]. Another restrictive property of TEGs is that they can only represent
time-invariant systems. In order to describe time-variant behavior, in [20], a new form of
synchronization, called partial synchronization (PS), has been introduced for TEGs. Such a
partial synchronization is useful to describe systems where particular events can only occur
in a specific time window. To motivate the practical relevance, let us consider an intersection
controlled by a traffic light. A vehicle which arrives at the traffic light can only cross when
the traffic light is green. If the vehicle arrives in the red phase, it has to wait for the next
green phase. Therefore, the vehicle is delayed by a time that depends on its time of arrival
at the intersection. The traffic light control causes a time-variant behavior which cannot be
modeled by an ordinary TEG. In this thesis, dioid theory is applied to study the behavior of
WTEGs as well as the behavior of TEGs under PS. Moreover, results for control synthesis of
TEGs are generalized to the more general classes of WTEGs and TEGs under PS.

Motivation

A TEG can be conveniently modeled as a linear system over some dioids. For this, a counter
functionx : Z — Zmin, wWith Zmin = ZuU {400}, is associated with each transition giving the
accumulated number of firings up to a time t. Using the particular dioid (M [y, 8], ®, ®),
it is straightforward to obtain transfer functions for TEGs. E.g., the earliest firing relation
between an input transition and an output transition of a TEG is modeled by an ultimately
cyclic series h € MY [y, 8]. This transfer function h maps an input counter function into
an output counter function, which are respectively associated with the input transition and
output transition of the TEG. The dioid (M [y, 8], ®, ®) was formally introduced in [1,

n
12] and is based on the event-shift operator y” and time-shift operator 8" with t,v € Z.



These operators map counter functions to counter functions in the following way:
(Y'x) (t) =x(t)+v and (8"x)(t) = x(t —1). (1.1)

Time-shift operators model holding times associated with places and event-shift operators
model initial markings of the places. For instance, see Figure 1.1, where X1 and x; are asso-
ciated with transition tj and t,.

O] @

t P1 t2 t P1 t2
t
24 X(1) g4 x(0)
6 ~——{— 7 PN I
5 6 o - -—
4 > 5
3 — - T T
2 o x1(t) 5 I ex1 (V)
Ho— - ox; () = 8% (x1)(t) 11 e ox5 (1) = v3(x7) (1)
>t >t
1234567891011 12345678910

Figure 1.1. — Manipulation of the counter function x; by the 8% and y> operators. The 5, and v3
operator model the earliest behavior between input transition t; and output transition
t in the TEGs above. The holding time of two time units is modeled by the 52 operator
and the three initial tokens by the y3 operator.

Moreover, by considering sums and compositions of these operators it is possible to de-
scribe the complete dynamic behavior of an ordinary TEG. As in conventional systems the-
ory, transfer functions are convenient to solve some control problems. For instance, model
reference control introduced for TEGs in [46, 15, 47] and [34] needs such an input-output
representation in the dioid (M [y, 8] ,®, ®). Usually, the reference model describes the
desired behavior and is as well specified in the dioid (M [y, 8] ,®,®). To enforce this
behavior, a controller is computed such that the closed-loop behavior follows the behavior
of the reference model as close as possible, but is not slower than the reference. Therefore,
it is also known as a model matching control problem. This control method is of practical
interest for manufacturing systems. For instance, we can specify the desired throughput be-
havior of a production line in a reference model. The controller obtained from this reference
optimizes the production process under the "just-in-time" criterion while guaranteeing the
specified throughput. Thus, materials spend the minimum required time in the production
line, which leads to a reduction of internal stocks.

The aim of this thesis is to describe the transfer behavior of extended TEGs, namely
WTEGs and TEGs under PS, with a similar set of operators. This is necessary to extend the
result for model reference control to the more general classes of WTEGs and TEGs under
PS. In order to model the weights on the arcs in WTEGs, two new operators are considered,
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namely pny, (event duplication) and By (event division). These operators are given by, for

m,beN,

(1) () = mxx(t) and (B0 () = | Y],

See Figure 1.2, for an example of how these operators can be used to manipulate a counter
function. The dynamic behavior of a WTEG can then be described by sums and compositions

P1 P1

||2|< ) I|| || |< >3|||
t t2 t 1%
o4x() o4x()
8 O----- g1 ex1(t)
7 71 axp(t) = B3 (x1)(1)
6 - -—— 6 —
5 5
4 -—— 4 -——
3 — 3 -~—
2t 3 -- oxq(t) 2 o - -
1 e—— oxz (1) = uz2(x1)(t) 1 el
-t t
12345678910 12345678910

Figure 1.2. — Manipulation of the counter function x; by the u, and 33 operators. The u, and 33
operator model the earliest behavior between input transition t; and output transition
t, in the WTEGSs above.

of the operators {y", 8%, tm, Bv} in a dioid called (E[[8]], D, ®).

To model the behavior of TEGs under PS, it is more convenient to associate dater functions
instead of counter functions, with transitions. A dater function is a function X : Z — Zmax.
with Zmax = Z U {£o0}, with x(k) is the time when the transition fires for the (k + 1)t
time. To model periodic time-variant phenomena with dater functions, a new operator is
introduced, i.e., for w € N

(AwjwX) (k) = [x(k)/w]w.

Observe that this operator models a synchronization of the dater function with times t €
{wk |k € Zpax}. For instance, see Figure 1.3 where the operator A3 is applied to a dater
function x4, thus the values Azj3(x1) (k) € {3k [k € Znax}. Therefore, with the Azj3 operator,
we can model the earliest functioning of the TEG under PS given in Figure 1.4, where the PS
of transition t; is given by a signal S, : Z — {0, 1} where Sy(t) = 1fort € {3k |k € Z} and
0 otherwise. This signal enables the firing of transition t; at time t € Z where S;(t) = 1.

The dynamic behavior of a subclass of TEGs under PS, i.e. the class where PS of transitions
are given by periodic signals, can be modeled by sums and compositions of the operators
{v", 8%, Ay|w} in adioid called (Tv], ®, ®).
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Related Work

Weighted Timed Event Graph

For manufacturing systems and embedded applications, buffer size, throughput, and la-
tency times are key features which can be analyzed and optimized. In general, we want
to maximize the production rate (or data throughput) while keeping buffer size as small
as possible. This kind of optimization problems have been widely studied in the context of
WTEGs. Note that WTEGs are also referred to as Timed Weighted Marked Graphs and Timed
Weighted Event Graphs in literature. In [53, 55], an important subclass of WTEGs, which we
will call consistent WTEGs, is studied. For this class of WTEGs, it is possible to define a fir-
ing sequence which involves all transitions in the WTEG, and if it occurs from marking M,
it leaves M invariant. In other words, these WTEGs exhibit T-semiflows. In [53] and [55],
a transformation of a consistent WTEG to an "equivalent” TEG was established, which is in
particular useful for the performance analysis of the original WTEG. However, in general,
this transformation significantly increases the number of transitions in the corresponding
TEG and therefore does not scale very well when increasing the size of the original WTEG.
In [55], it is shown that the computational complexity of this transformation is polynomial
with respect to the T-norm of the T-semiflow of the original WTEG.

In [50], complexity results for cyclic scheduling problems for WTEGs are provided. This
includes, for instance, throughput computation and buffer minimization with respect to
throughput constraints, also often referred to as marking optimization. In this work, it is
implicitly assumed that the successive firings of a transition in the WTEG do not overlap.
More precisely, holding times are only modeled with transitions, and a self-loop at each tran-
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sition with one place and one token in the place is implicitly assumed. As a consequence,
the considered models are a subclass of WTEGs, where it is assumed that a transition can
potentially fire infinitely often concurrently.

Marking optimization for WTEGs are studied in [58, 64, 37, 38, 39]. One main problem is
to determine a minimal admissible marking for a given WTEG such that a given throughput
is guaranteed. In the context of manufacturing systems, for instance, this yields a minimiza-
tion of internal buffer sizes in an assembly line. In [64], the problem is addressed based on a
branch and bound algorithm. In [58] and [37], heuristic methods are presented. In [38], the
heuristic methods are compared to the optimal approach which is based on the transforma-
tion given in [55] and has high complexity.

Dioid models of WTEG

For ordinary TEGs, it is known that their behavior can be described by linear equations
over some dioids (or idempotent semirings) [1, 40]. In [14] and [16], dioids based on a spe-
cific set of operators are introduced to describe the dynamic behavior of WTEGs. In [14],
a fluid version of WTEGs is investigated for which recurrent equations are obtained. Fluid
WTEGs can be seen as continuous approximations of the WTEGs discussed in this thesis. A
linearization is introduced for fluid WTEGs. Therefore, the behavior of a fluid WTEG can be
analyzed by a (min,+)-linear system and approximate results can be obtained for the original
WTEG. However, in some cases, the results obtained for the fluid WTEG are quite far from
the original WTEG, for instance, a WTEG which is blocking may have a fluid approximation
which is alive. In [31, 30], "just-in-time" control for WTEGs are studied in a similar dioid
of operators, called (Dyin [0], D, ®). In [16, 17], a slightly different dioid is introduced to
describe the dynamic behavior of WTEGs. This dioid is denoted (£[[3]], ®, ®) and based on
the operators {y", 8%, tm, Bp}. In these works, an important subclass of WTEGs - the class
of WTEGs where parallel paths have balanced weights - are studied. This class is therefore
called Weight-Balanced Timed Event Graphs (WBTEGs). It is shown that the input-output
behavior of WBTEGs can be described by ultimately cyclic series in this dioid. Subsequently,
based on these series an interpretation of the impulse response for WBTEGs is given [17]
and some model matching control problems for WBTEGs are addressed [16, 65].

Synchronous Data-Flow (SDF) Graphs

In the field of computer science, an equivalent graphical representation for WTEGs is
known as SDF Graphs [61]. In this model, edges are associated with places, actors are asso-
ciated with transitions and data exchange between actors are associated with tokens. These
graphs were introduced in [44, 43] to model data flow in digital signal processing applica-
tions. They are useful tools to obtain, optimize and verify scheduling algorithms for parallel
processing [26]. Moreover, SDF Graphs are suitable to obtain performance bounds for the
underlying systems. Clearly, an important performance indicator is the throughput of a sys-



tem, i.e, the maximal rate at which a system produces an output. Unsurprisingly, lots of
research focuses on throughput analysis of SDF Graphs. In [28, 62], an algorithm is intro-
duced to explore the state space of an SDF Graph. The basic idea is to obtain the throughput
based on the simulation of the SDF Graph. In [23], an approach is presented based on the
(max,+)-algebra. Buffer size minimization, with respect to throughput constraints, for SDF
Graphs have been studied in [27]. Clearly, minimizing buffer size is important for embedded
systems due to the high costs for memory.

Time-variant Timed Event Graphs

Time-varying DESs have been studied in [5, 6, 10, 42]. The models considered in these
works are TEGs in which holding times of places change periodically based on event se-
quences. Therefore, these systems can describe event-variant time behaviors. For these
TEGs, places must respect a first-in-first-out (FIFO) behavior, in other words, tokens must
not overtake each other. In [42], optimal feedforward control problems for these systems are
studied. In [17], it is shown that the input-output behavior of these systems can be repre-
sented by WTEGs. Another class of time-variant DESs has been discussed in [20, 19]. There,
TEGs are extended by allowing a weaker form of synchronization, called partial synchro-
nization (PS). PS of a transition means that the transition can only fire when it is enabled
by an external signal S : Z — {0, 1}. S enables the firing of the transition at times t € Z
where S(t) = 1. Such time-variant behaviors occurring in TEG under PS can be modeled
as a (max,+)-linear systems under additional constraints [21]. In the case where such signals
are predefined and ultimately periodic, it is possible to obtain transfer functions for TEGs
under PS [21, 19]. Moreover, some control problems for TEGs under PS have been tack-
led in 21, 22]. A similar extension was introduced in [60], where TEGs with hard and soft
synchronization are studied.

Contribution

The main contribution of this work relates to modeling and control of extended TEGs,
namely Weighted Timed Event Graphs (WTEGs) and Periodic Time-variant Event Graphs
(PTEGsS), in dioids. First based on dioid theory, a decomposition model for consistent WTEGs
is introduced, in which the event-variant and the event-invariant parts are separated. It is
shown that the event-variant part is invertible, thus many tools developed for analysis and
control of ordinary TEGs can be directly applied to the more general class of consistent
WTEGs. In particular, based on this model decomposition, optimal feedforward control and
model matching control for TEGs are generalized to WTEGs. Second, to describe the time-
variant behavior of some DESs, Periodic Time-variant Event Graphs (PTEGs) are introduced.
PTEGs are an alternative model to TEGs under PS to describe periodic time-variant behav-
iors. In PTEGs, holding times of places depending on the firing times of their upstream
transitions. More precisely, the holding time 7{(t) is time-variant and immediately periodic,



1. Introduction

ie. H(t + w) = H(t). The current delay is then determined by the firing time t of the
corresponding upstream transition. In contrast to FIFO TEGs considered in [42], which are
event-variant, PTEGs have a time-variant behavior. However, in PTEGs places must respect
a FIFO behavior as well which implies a constraint on holding time values. A comparison
between TEGs under PS and PTEGs is provided. The input-output behavior of PTEGs can
be described by ultimately cyclic series in a new dioid denoted (7 Y]], ®, ®). Similarly, it is
shown how TEGs under periodic PS can be modeled in this dioid (7 [[y]], ®, ®).

As for consistent WTEGs with a dioid model in (£[[8]], @, ®), a decomposition for series
in T|y] is introduced, where the time-invariant part can be separated from the time-variant
part. The time-variant part is invertible, therefore many problems concerning performance
analysis and control synthesis for PTEGs (resp. TEGs under periodic PS) can be reduced
to the case of an ordinary TEG, and solved efficiently by applying the already established
tools for TEGs. Especially, optimal feedforward control and model reference control for
PTEGs (resp. TEGs under periodic PS) are studied. Based on the dioids (£[[8]],®,®) and
(TTv],®, ®) similarities between WTEGs and PTEGs (resp. TEGs under periodic PS) are
investigated. Finally, the results for WTEGs and PTEGs (resp. TEGs under periodic PS) can
be combined, so that a class of periodic time-variant and event-variant TEGs can be handled
in a new dioid structure. These TEGs can model synchronization, time delay, batch/split and
also some periodic time-variant behavior which, for instance, arises in traffic light control.

QOutline

This thesis is structured in two parts, Chapter 2, Chapter 3, Chapter 4 and Chapter 5,
introducing the dioids (MY [y, 8], ®,®), (E[[8], B, ®), (T[], ®,®) and (ET, D, ®), re-
spectively. In Chapter 6 and Chapter 7, these dioids are then applied to the modeling and the
control of WTEGs, TEGs under PS and PTEGs.

Part 1 Algebraic Tools

Chapter 2 summarizes fundamentals of dioids and residuation theory. The chapter begins
with explaining the general properties of dioids and recalls the (max,+)- and (min,+)-algebra.
Then more sophisticated dioid structures such as dioids of formal power series are given.
Moreover, residuation theory is introduced to give an approximate inverse of some mappings
defined over complete dioids. Finally, the particular dioid (M [y, 8] ,®,®) is recalled,

which is useful to analyze TEGs and plays a key role in this thesis.

Chapter 3 introduces the dioid (£[[8]], ®, ®). This dioid is based on the operators {y", 8%,
Um, Bb}. Moreover, in Section 3.3, it is shown that under some conditions all relevant opera-
tions (B, ®, ¥, #) on elements in £[[8] can be reduced to operations on matrices with entries
in MY [y, 8].

n



Chapter 4 introduces the dioid (7], ®,®). This dioid is comprised of the basic oper-
ators {y", 8", Aw|w}. This dioid is used to model the time-variant behavior of PTEGs, and
TEGs under PS. As for the dioid (£[[8]], ®, ®), it is shown that under some conditions all rel-
evant operations (®, ®, %, #) on elements in 7 [[ Y]] can be reduced to operations on matrices
with entries in M [y, 8].

Chapter5 combines the results obtained in Chapter 3 and Chapter 4. The dioid (€7, ®, ®)
is introduced, which can be seen as the combination of the dioids (£[[3]], ®, ®) and
(TTv]l,®,®). This permits the description of event-variant and time-variant behaviors in
the same dioid structure. Therefore, it is applicable for the modeling and the control of WTEG
under PS.

Part 2 Modeling and Control

Chapter 6 shows how the earliest behavior of TEGs, WTEGs, PTEGs, and TEGs under PS
can be modeled in a dioid structure. In particular, the input-output behavior of a WTEG can
be modeled by a matrix where the entries are ultimately cyclic series in E[[8]]. These transfer
function matrices are used to compute the output for a given input of a system. Subsequently,
the relation between the transfer function and the impulse response of a system is elaborated.
Similar to WTEGs, the input-output behavior of PTEGs and TEGs under PS are modeled by
ultimately cyclic series in 7[y]. Moreover, an interpretation of the impulse response is
given for these systems. In the last part of this chapter, the modeling of WTEGs under PS in
the dioid (£7,®, ®) is addressed.

Chapter 7 generalizes some control approaches already introduced for ordinary TEGs to
the more general classes of WTEGs, PTEGs, and TEGs under PS. The control problems are
stated in a dioid framework and are efficiently solved by applying residuation theory. In
particular, optimal control and model reference control are investigated.






Mathematical Preliminaries

This chapter introduces the basic mathematical concepts needed to understand this thesis.
In particular, dioid and residuation theory are recalled. Dioids are suitable to obtain linear
models for particular DESs where dynamic behaviors are only governed by synchronization
and saturation phenomena. Furthermore, residuation theory has an application in the con-
troller design process and the performance evaluation of DESs modeled in a dioid setting.
Most of the following results are taken from the literature, especially from [1]. For a broader
overview on dioids and residuation theory, see [1, 4, 11, 12, 40].

2.1. Dioid Theory

Definition 1 (Monoid). A monoid is a set M endowed with a binary associative operation +
and an identity element O such thatVa e M, a+0 = 0+ a = a. A monoid is denoted by
(M, +,0).

A monoid (M, +,0) is said to be commutative if the binary operation + is commutative.
And a commutative monoid is said to be idempotent if + is idempotent, i.e., Va € M,a+a =
a.

Definition 2 (Dioid). A dioid is a set D endowed with two binary operations, denoted ® (called
addition) and ® (called multiplication), such that
— @ is associative, commutative and idempotent, i.e. Va € D, a @® a = a, moreover ®
admits a neutral element denoted ¢.
— & is associative, distributive over ® and ® admits a neutral element denoted e.
— ¢ is absorbing for®, ie,VaeD, a®e=e@Qa = ¢.
Moreover, ¢ is called the zero element and e is called the unit element of D. A dioid is denoted

by (D, ®,®).

Clearly, let (D, ®, ®) be a dioid, then (D, ®, ¢€) is a commutative idempotent monoid and
(D, ®,e) is a monoid. If multiplication ® is commutative, then dioid (D, ®, ®) is said to
be commutative. Note that, as in conventional algebra, the multiplication symbol ® is often
omitted.

Example 1 ((max,+)-algebra (Zmax, D, ®)). The (max,+)-algebra is the set Zmax = Z U
{—0o0} endowed with max as addition @ and + as multiplication ®, e.g.,5®4 @7 = max(5 +
4,7) = 9. Moreover, the zero element is ¢ = —c0 and the unit element is e = 0, respectively.

11
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Example 2 ((min,+)-algebra (Zmin, ®, ®)). Conversely, the (min,+)-algebra is the set Zin :=
Z U {0} endowed with min as addition @ and + as multiplication ®, eg., 5 ®4 D7 =
min(5 + 4,7) = 7. The zero element is ¢ = o0 and the unit element is e = 0, respectively.

Example 3 (Boolean Dioid (B, ®, ®)). The set B = {¢, e}, consisting of the zero and the unit
element, with the two binary operations addition ® and multiplication @ constitute the Boolean
dioid. Since the zero element € is absorbing for ® and neutral for ®, the operations @ and ®
are definedbye Qe =eQ@e=candePe=e®Pec =e.

Definition 3 (D-Semimodule [56]). Let (D,®,®) be a dioid with unit element e and zero
element €. A D-semimodule is a commutative monoid (M, +,0) with an external operation

i DxM — M, (a,x) — a-x, called scalar-multiplication, such that the following conditions
holdVa,b € D and Vx,y e M

(a®b)-x=a-(b-x),

a-(x+y)=(a-x)+(a-y),

(a®b) x = (a-x) + (a-y)
e-x=a-0=0,

e-X=X.

Subdioids

Definition 4 (Subdioid). Let (D,®,®) be a dioid with unit element e and zero element e,
then a subset S of D is a subdioid of (D,®,®) ife,e € S and S is closed for ® and @, that is
Va,be S, a®beSanda®beS.

Example 4. Consider the dioid (Zmax, ®, ®), the dioid (N ax, ®, ®) with Nygy = Nou —0,
is a subdioid of (Zmax, D, ®).

2.1.1. Order Relation in Dioids

An order relation < on a set S is a binary relation which is reflexive, i.e, Va € S, a < q,
transitive, ie, Va,b,c € §, a < bandb < ¢ = a < c and anti-symmetric, i.e, Va,b €
S,ax<bandb < a = a="b. AsetS is called totally ordered if for every pair of elements
a,b € § we can either write a > b or a < b. Moreover, if a pair of elements a, b € S exists,
for which a * b, a X b, the set S is called partially ordered.

The idempotent characteristic of the addition induces a canonical order relation on dioids.

Let (D, ®,®) be a dioid, then Va, b € D, the relation < defined by
Va,beD, a®b=b<a=x<b, (2.1)

is an order relation. In general in a dioid (D, ®,®) with a,b € D, the sum a @ b is not
equal to either a or b. Thus, general dioids are only partially ordered, i.e, a * b, a £ b.

12
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However, the sum a@®b € D gives a natural upper bound for the set {a, b}. Therefore, with
€ as bottom element, i.e. Va € D, a > ¢ a dioid is an ordered set.

Complete Dioids

Definition 5 (Complete Dioid). A dioid (D, ®,®) is said to be complete if it is closed for
infinite sums and if @ distributes over infinite sums, i.e., for all subsets S of D and for all
aeD,

a® <(—Db) = P(a®b), (@b)@a=@(b®a).

beS beS beS beS

Remark 1. Similarly, an idempotent commutative monoid (M, @®, €) is said to be complete if
it is closed for infinite sums.

A complete dioid (D, ®, ®) admits a top element T = @ ., a € D which is given by the
sum over all elements in the dioid. Furthermore, in a complete dioid the infimum operator
is defined as, a,b € D,

arb=PxeDxda<ax®b<b}.

The A operator is associative, commutative, idempotent and admits T as neutral element,
ie,Vae D, a A T = T. Then, for complete dioids the A operation defines a lower bound
for the set {a, b}. Thus for a complete dioid (D,®,®) with a,b € D,

a>besa=a®db<=b=aAab.

One can show that a complete dioid equipped with A and T is a complete lattice, for a more
exhaustive description see [1, 3].

Note that in general for a partially ordered dioid (D, @, ®) multiplication is not distribu-
tive over A, but one can show that for a,b,c € D,

c(anb)<canscband(ab)c<ac A bec. (2.2)

Furthermore, distributivity of A with respect to @ and conversely @ with respect to A is not
given either. However, for a, b, ¢ € D, the following inequalities are satisfied,

(aArb)@c<(a®c) A (bPo),

(a@b)rc>=(anc)@®(bac).
Example 5. The (max,+)-algebra extended with the top element T = o0 is a complete dioid.
Since the zero element € is absorbing for multiplication one has, T ® ¢ = ¢ or differently
—00 @ o0 = —oo. This dioid is denoted by (Zmax,®,®), With Zmax = Z U {—00, +o0}.
Conversely, the (min,+)-algebra with T = —o0 is a complete dioid, denoted by (me,@, ®),
With Zoin = Z U {—00, +00}.

Example 6. The Boolean dioid (B, ®, ®) is a complete dioid where the top element is equal to
the unit element, i.e., T = e.

13
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Kleene Star

Definition 6. Let (D, ®, ®) be a complete dioid, the Kleene star of an element a € D is defined
as,

o0
=@ a', where a®=eandad =a®ad.
i=0

Theorem 2.1 ([1]). In a complete dioid (D, ®, ®) with a,b € D, x = a*b is the least solution
of the implicit equationx = ax @ b.

The Kleene Star satisfies the following relations, for a complete dioid (D, ®, ®) with a, b €
D

(a®)* = a¥, (2.3)
a*a* = a¥, (2.4)
a(ba)” = (ab)* a> (2.5)
(a®b)* = (a*b)*a” = b*(ab®)", (2.6)
(ab*)* =e@a(adb)". (2.7)

Furthermore, for a commutative complete dioid (D, ®, ®), with a,b € D, ab = ba,
(a®b)* = a*b*. (2.8)

For the proofs of these relations see [1].

Rational Closure

Definition 7 (Rational closure). Let S be a subset of a complete dioid (D,®,®), such that
S contains the zero and unit elements € and e. The rational closure of S, denoted by S*, is
the least subdioid of (D, ®, ®) containing all finite combinations of sums, products, and Kleene
stars over S. The subset S is rationally closed if S = S*.

2.1.2. Matrix Dioids

Addition @ and multiplication ® can be extended to matrices with entries in a dioid
(D,®,®). For matrices A,B € D™ C € D"*9 and a scalar A € D, matrix addition
and multiplication are defined by

(A® B)i,j = (A)j ® (B)ij, (2.9)
(A®C)y; =D (A)ik® (Chj), (2.10)
=1

A®A); == A® (A)i
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The order relation in the matrix case coincides with the element-wise order, ie., for A, B €
D™ A > Biff Vi,j (A)i; > (B)i;. The identity matrix, denoted by I, is a square matrix

with e on the diagonal and ¢ elsewhere. The zero matrix, denoted by €, has only ¢ entries.

Proposition 1 ([1]). The set of square matrices, denoted D™*™, with entries in a dioid (D, ®, ®),
endowed with (2.9) as addition and (2.10) as multiplication is a dioid denoted by (D™ ™, ®, ®).

The unit and zero element is 1 and e, respectively. Moreover, if (D,®,®) is complete then

(DM B, ®) is complete.

Remark 2. Note that non-square matrices can be included by adding additional rows (resp.
columns) with «.

Furthermore, if we assume that (D, ®, ®) is a complete dioid the Kleene star can be ex-
tended to square matrices A € D™ ™. For this, A € D™*" is partitioned into sub-matrices
as follows,

A— B C ’
D E
where B e DM XM Ce DM X" D e D™2*™ and E € D™2*™2 andn = ng +ny. Then A*
can be written as

(2.11)

A+ _ |B*®B*C(DB*C®E)*DB* B*C(DB*C®E)*
(DB*C ® E)*DB* (DB*C @ E)*

Clearly, if we assume A € D?*2 then B, C, D, and E are scalars in D and the Kleene star of
the matrix A is obtained by sum, product, and Kleene star operations between scalars. Thus
for a square matrix A € D™*™ with arbitrary dimension, the star A* can be obtained in a
recursive way.

Additionally, for (D, ®, ®) a complete dioid the infimum operation is extended to matrices
as follows, for A, B € D™

(A AB)ij = (A)ij A (B)iy- (2.12)

2.1.3. Quotient Dioids

Definition 8 (Congruence [1]). A congruence relation in a dioid (D, ®,®) is an equivalence
relation R which satisfiesVa,b,c € D,

(a®c)R(b&c),
aRb =4 (a®@c)R(b®c),
(c®a)R(c®Db).
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For a dioid (D, ®, ®) with an equivalence relation R the equivalence class of a € D is
defined by [a]g := {b € D|aRDb}.

Proposition 2 ([1]). The quotient of a dioid (D,®,®) by a congruence relation R is again a
dioid, denoted by (Dr,®, ®), with addition and multiplication given by,

[(1]72 @ [b]R = [a @ b]R and [(1]73 ® [b]R = [a® b]R

The zero element € and unit element e in D correspond to the equivalence classes [e|r and

[e]r of D.

Remark 3. Let (D, ®,®) be a complete (resp. commutative) dioid, then (Dr,®,®) is a com-
plete (resp. commutative) dioid.

2.1.4. Dioid of Formal Power Series

Definition 9 (Formal Power Series [1](Chap. 4.7)). A formal power series in p commutative
variables with coefficients in a dioid (D, ®, ®) is a mapping from ZP into D, i.e., s : ZP — D.
The variables are denoted by z1,--- ,z, and Vk = (ki,...,kp) € ZP, s(k) represents the

. k . . .
coefficient of z]f‘ ...zp". An equivalent compact representation of s is
k
s= P s(k)zl]q R A
keZp

Definition 10 (Support, Degree, and Valuation). Support (supp), degree (deg) and valuation
(val) of a formal power series s are defined as

— supp(s) = {k & Z[s(k) # ¢},

— deg(s) is the least upper bound of supp(s),

— val(s) is the greatest lower bound of supp(s).
A polynomial (resp. monomial) is a formal power series with finite support (resp. the support is
reduced to only one element).

The set of formal power series with coefficients in a dioid (D, ®, ®) and variables z1, - - - , z,
is denoted by D [z1, - - - , zp]. On this set addition @ is defined as, for s1,s; € D [z1,- -+ , zp],

Yk e ZP, (S] @ Sz)(k) = S (k) &) Sz(k). (2.13)
Additionally, multiplication & is defined by the Cauchy product, thus

VkeZP,  (s1®s2)(k)= @D s1(i) ®s2())- (2.14)
=k

Proposition 3 ([1]). Let (D,®,®) be a complete dioid, then the set D [z7,- - ,z,], endowed
with addition and multiplication defined by (2.13) and (2.14) is a complete dioid.
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In [1] it is shown that in general Prop. 3 holds only for complete dioids since the defi-
nition of the product (2.14) includes infinite sums. In the dioid (D [z1,---,zp],®,®) the
zero element €(k) is defined by, Vk € ZP, ¢(k) = e. Likewise, the unit element e(k) in
Dz1,- - ,zp] is defined as

e for k = O (the zero vector),

e(k) =

¢ otherwise.

The top element T (k) in D [z1,-- - ,zp] is defined by T(k) = T, Vk € ZP.
Since (D [z1,- -+ ,zp] ,®,®) is a complete dioid the greatest lower bound of two series
1,82 € D[z1,- - ,zp] is given by

Yk e Zp, (S] N Sz)(k) = S](k) N Sz(k).

Moreover, if the dioid (D, ®, ®) is commutative and the variables z, - - - , z, also commute,
then the dioid (D [z1,- -+ ,2p],®, ®) is commutative as well.

Proposition 4 ([19]). Let (S,®, ®) be a complete subdioid of a complete dioid (D, ®, ®), then
(S[z1y- ,zp] , B, ®) is a complete subdioid of (D [z1,- -+ ,zp] , D, ®).
2.1.5. Mappings over Dioids

Definition 11. On a dioid (D, ®, ®) the identity mapping, denoted by 1dp, is a mapping from
D into itself defined as,

Vae D, Idp(a) = a.

Definition 12. Let f : D — C be a mapping from a dioid (D,®, ®) into a dioid (C,®,®),
then f is a ®-morphism if

Va,beD, f(a®b)="f(a)®f(b)andf(e)=e.

Definition 13. Let f : D — C be a mapping from a dioid (D, ®,®) into a dioid (C,®,®),
then f is a ®-morphism if

Va,beD, f(a®b)="f(a)® f(b)andf(e) =e.

A mapping f is said to be a homomorphism if it is both a @-morphism and a ®-morphism.
A homomorphism f : D — D is called an endomorphism. Furthermore, if f is a homo-
morphism and the inverse of f is defined and itself a homomorphism then f is called an
isomorphism.

Definition 14 (Isotony). A mapping f from a complete dioid (D, ®,®) into a complete dioid
(C,®,®) is called isotone (or order preserving) if

Va,beD, ax>b= f(a)>f(b).
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Definition 15 (Antitony). A mapping f from a complete dioid (D, ®, ®) into a complete dioid
(C,®,®) is called antitone (or order reversing) if

Va,beD, ax>b= f(a)<f(b).

Definition 16 (Lower semi-continuity). A mapping f from a complete dioid (D, ®, ®) into a
complete dioid (C,®,®) is called lower semi-continuous if

vScD, f (@ a) = P f(a).
aes aesS

Definition 17 (Upper semi-continuity). A mapping f from a complete dioid (D, ®, ®) into a
complete dioid (C,®, ®) is called upper semi-continuous if

VS = D, f(/\a> = A\ f(a).

aes aes

A mapping f which is both, upper semi-continuous and lower semi-continuous is called
continuous. A lower semi-continuous mapping f such that f(¢) = ¢ is a @-morphism. More-
over, f is a @-morphism implies that f is an isotone mapping. Note that in general the op-
posite is not true, however, an isotone mapping f : D — C satisfies Va,b € D, f(a@® b) >
f(a) @ f(b). In the particular case where f : D — C is an isotone mapping and the dioid
(D, ®, ®) is a totally ordered set, i.e., for a,b € D the sum a @ b is either equal to a or b, f
is a @-morphism.

In analogy with the definition of endomorphism for dioids one can define endomorphism
for a monoid (M, @®, €) and lower semi-continuity for complete monoids.

Definition 18. A mapping f : M — M, from a monoid (M, @, €) into itself, is called an
endomorphism if,

Va,be M, f(a®b)="f(a)®f(b)andf(e) = c.

Definition 19. A mapping f : M — M, from a complete monoid (M, ®, €) into itself; is
called lower semi-continuous if,

VSc M, f <Q—) a> = P f(a).

aesS aeS

Proposition 5 ([52]). Let (M, @, €) be a commutative monoid and S be the set of its endo-
morphisms. The set S endowed with addition and multiplication defined by

f1,f2 eS8, Vxe M : (f] @fz)(x) =1 (X) (—sz(X),
f1,f2€ S, Vxe M: (f ®fz)(x) =f; (fz(X)),

is a dioid. The zero and unit element are given by the mappings Vx € M, e(x) = ¢ and
Vx € M, e(x) = x, respectively.
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2.2. Residuation Theory

2.2. Residuation Theory

In general, the product ® in a dioid is not invertible. However, since a compete dioid
is a complete lattice, then residuation theory, see e.g. [4, 11], is applicable to define an ap-
proximate mapping inverse for particular mappings defined between compete dioids. More
precisely this theory yields the greatest solution of the inequality f(a) < b, with a, b are el-
ements in a complete dioid. By defining the product ® in a complete dioid as a mapping, i.e.,
Rq @ x — a ®x, residuation theory is in particular useful to obtain an approximate inverse
of the product. In other words, we can determine the greatest solution for x of the inequality
a ®x < b (note that a solution always exists, ¢ at least). In this section, we give the condi-
tions under which mappings between complete dioids are residuated and recall some useful
properties of residuation theory.

Definition 20 (Residuated Mapping). A mapping f : D — C, with (D,®,®) and (C,®, ®)
complete dioids, is said to be residuated if

1. T is isotone and,

2. for ally € C, the inequality f(x) < y has a greatest solution in D.

Theorem 2.2 ([1, 11]). Let f : D — C be a residuated mapping from a complete dioid
(D,®,®) into a complete dioid (C,®,®) then, there exists a unique mapping f* from C into
D which satisfies,

fof <Ide (Idc identity mapping in (C,®,®)), (2.15)
ffof > Idp (Idp identity mapping in (D, ®,®)). (2.16)
The mapping % : C — D is called the residual of f.
Remark 4. From (2.15) and (2.16) it follows that Vx € D and Wy € C,
x < F(fx), y=f(f)), (2.17)
fx) = 1(F(Fx)), ) = F(F(F(w)). (2.18)

Conversely, one can define dual residuation which yields the least solution of the inequal-
ity f(a) > b, where a, b are elements in a complete dioid.

Definition 21 (Dually Residuated Mapping). A mapping f : D — C, with (D,®,®) and
(C,®,®) complete dioids, is said to be dually residuated if

1. f is isotone and,

2. forally € C, the inequality f(x) >y has a least solution in D.

19



2. Mathematical Preliminaries

Theorem 2.3 ([1]). Let f : D — C be a dually residuated mapping from a complete dioid
(D, ®,®) into a complete dioid (C,®,®) then, there exists a unique mapping £ from C into
D which satisfies,

fof >1de (Idc identity mapping in (C,®,®)), (2.19)
f of <Idp (Idp identity mapping in (D, ®,®)). (2.20)

The mapping > : C — D is called the dual residual of f.

Remark 5. From (2.19) and (2.20) it follows that Vx € D and Vy € C,

x> (f(x), y=<f(fy)), (2.21)
1) =1(F(00)), P = (1(Pw)). (2.22)

The following theorems give a link between the lower (rep. upper) semi-continuous prop-
erty and the residuated (rep. dually residuated) property of a mapping,.

Theorem 2.4 ([1]). A mapping f: D — C, with (D,®,®) and (C,®,®) complete dioids, is
residuated, iff f(e) = € and f is lower semi-continuous. Furthermore, the corresponding residual
£t is upper semi-continuous.

Theorem 2.5 ([1]). A mapping f: D — C, with (D,®,®) and (C,®,®) complete dioids, is
dually residuated iff f(T) = T and f is upper semi-continuous. Furthermore, the corresponding
dual residual £ is lower semi-continuous.

Clearly, Theorem 2.4 and Theorem 2.5 implies that the residual f* of a mapping f is dually
residuated and thus (fﬁ)b — f. Conversely, the dual residual g’ of a mapping g is residuated
and thus (g°) = g.

Residuation of Multiplication

On a complete dioid the mappings Rq : x — xa, (right multiplication by a) and L, :
x — ax (left multiplication by a) are lower semi-continuous and therefore residuated. The
residual mappings are denoted R&(b) = bfa = @{x|xa < b} (right division by a) and
Lﬁa(b) = akb = P{x|ax < b} (left division by a). An alternative notation for the left and
right division by a are aﬁ and %, respectively.

The following two relations give some useful properties of left and right division in com-
bination with the Kleene star.

a=a*<a=aka=(aka)* a=a* < a=afa=(afa)* (2.23)
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Additionally, for (D, ®,®) a complete dioid left-division and right-division are extended to
matrices as follows, for A € D™ ™ B € D™*4 C e D™*4,

m q
(A%B)ij = N\(A)ikBj,  (BC)ij = N\ (B)ird(Cj (2.24)
k=1 k=1

In Appendix A we provide a list with some basic relations of left and right division in com-
plete dioids. A more detailed representation can be found in [1].

In general, in a complete dioid (D, @, ®), left and right division do not distribute over &,
however for a,b,x € D

x§(a@®b) > xka @ x kb, (a@®b)fx > afx @ bex,

see [1]. Moreover, when we deal with dioids of power series the following proposition pro-
vides a useful result for division between power series.

Proposition 6 ([1], Remark 4.95). Let (D [z] ,®, ®) be a complete dioid of formal power series
in one variable z and exponents in Z, see Prop. 3. Let f(m)z™ be a monomial and (P, h(i)z! be
a series in D [z], then

BOE ) n OROE o R
e~ P s 0 e T D Rmyt

Residuation of the Canonical Injection

Definition 22. Let (S,®, ®) be a complete subdioid of a complete dioid (D, ®,®). The canon-
ical injection, from (S, ®,®) into (D, ®, ®) is a mapping defined by,

Inj:S—>D, Vxes, Inj(x) =x.
Clearly, the canonical injection is lower-semi continuous and therefore it is residuated.

Proposition 7. ([1]) The canonical injection Inj : S — D, as defined in Definition 22, is
residuated. The corresponding residual Inj* : D — S is a projection and satisfies the following
conditions:

1. Inj? o Inj? = Injt,

2. Injf < Idp,

3. xeS < Inji(x) = x.

Conversely, if (S,®, ®) and (D, ®, ®) have the same top element T the canonical injec-

tion Inj : & — D is dually residuated. Moreover, for the dual residual Inj’ the following
conditions hold

1. Inj® o Inj® = Inj’,
2. Inj’ > Idp,
3. xeS < Inj’(x) = x.
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2.3. Dioid of two Dimensional Power Series MY [y, 8]

The dioid (MY [y, 8] , @, ®) is useful for modeling and control of some DESs, e.g. [1], and
plays a major role in this thesis. Here we briefly introduce the dioid (M [y, 8] ,®, ®) and
we give some basic results. These results are mainly based on [1]. For a more comprehensive
representation, the reader is invited to consult [1, 12].

(M [v,8],®,®) is a quotient dioid of formal power series in two variables y and &
and Boolean coefficients. We first introduce the dioid (B [y, d8],®,®) and then develop
(MEX [v, 8] @, ®) by introducing a congruence relation on (B [y, 8] , ®, ®).

Definition 23 (Dioid (B [y, 5],®,®)). We denote by (B [y, d],®,®) the dioid of formal
power series in the two commutative variablesy and & with Boolean coefficients, i.e, B = {e, ¢}
and exponents in Z. An element s € B [y, 8] is represented as s = D, 7 8(v,7)y" 8", with
s(v,7) € {e, e}. The zero element is € = (D, oz, €Y"" and the unit element e = ey05°.

Moreover, we write only the elements of a series s = @, .7 s(v,T)y"0", for which
s(v,T) = e, therefore a monomial m € B [y, 3] is represented as Y¥1571. Since, (B,®,®)
is a complete dioid and due to Prop. 3 the dioid (B [y, 8] ,®, ®) is complete as well. More-
over, since the variable y and & commute and (B,®,®) is a commutative dioid, the dioid
(B [v, 8] ,®,®) is a commutative dioid.

Example 7. A series s € B[y, 8] has a natural graphical representation in the 7?-plane. For

instance, the seriess = y'5' ® y?6° @ y36* is shown in Figure 2.1.

‘5

— N W Rk G
[ ]

123 45

Figure 2.1. — Graphical illustration of s = y'8' @ v?5> @ v35* € B[y, 5].
Definition 24 (Dioid (M [v,8],®,®)). (MX v, 8] ,®,®) is the quotient dioid of
(B [y, 8] ,®,®) induced by the equivalence relation, for a,b € B [y, 8],
aRb < y*(57 ") a=vy*(5"")"p.

The zero and unit element in M) [y, 8] are equal to the zero and unit element in B [y, 8],
and thus ¢ = @, o, ey'0" and e = ey°8°, respectively. Due to Remark 3 the dioid
(MEX v, 0],y ®)’inherits the commutative and completeness properties from the dioid
(B H:’Y) 6:” )@, ®)'
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Two series s1,s; € M [y, 8] belong to the same equivalence class if y* (6_1)*51 =
v* (6*1 )*sz. A canonical representative of an equivalence class is defined to the series of
the class with minimal support. Differently speaking the series in the equivalence class with
the minimal number of elements is the canonical representative of the equivalence class. For

instance consider the following two series s1, s, € M [y, 8]

s1=7'8' @Yy,
s2=7'8' @y’ @y,

both series belong to the same equivalence class but s; is the canonical representative of the
class since s has minimal support. This equivalence relation has a graphical interpretation
in the Z?-plane, unlike to B [y, 5] where a monomial represents a point in the Z?-plane, a
monomial in M [y, 8] represents the south-est cone of a point in the 72-plane. Respec-
tively, a series in M{¥ [y, 8] represents the union of the south-est cones of its elements. If
two series cover the same area in the Z?-plane, then they belong to the same equivalence

class. For instance, the series s7 and s,, shown in Figure 2.2, cover the same area. Note that

)

5

4

3 &

2 ® S1

1t e o B%
123 45

Figure 2.2. — Graphical illustration of the equivalence class represented by s1 = v'8' @ y26° € M&¥ [, §].
The series s; = v'8' @ v26° @ 338! belongs to the same equivalence class, since both series
S1, 2 cover the same area in the Zz—plane.

v26% dominates y35', since

’}/263('}/1)*(6_])* =Y263 @Y363 @,Y463®
ey oyieyie. -

Therefore, this equivalence relation leads to the following simplification rules for monomials

in M7 [v, 8],

5T @ T — smax(Ty ,Tz)’ (2.25)
YV] @sz _ Ymin(\q,\/z). (2.26)
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The order relation on the dioid (M [, 8] , ®, ®), induced by the @ operation, is partial.
This can be illustrated on monomial. Let y¥16™,yY28™ € M& [y, ] theny¥16™ > y¥25™
if and only if T) > T and V7 < v,. For instance, consider the monomials y'5', y263, y38' €
M v, 8], v18! > v381, and y283 > v35! but y'8' + v283 and y'8' « y253. Moreover,
multiplication ®, addition ®, and the infimum operation A between monomial in MY [y, 8]
satisfy the following relations

YV] &M ®YV26T2 — YV] V25T +T2) (2.27)
V8T @YYET? = ,YstmaX(T] ,Tz)) (2.28)
YT @YYt = Ymin(V1 V2) T (2.29)
YT A Y287 — Yrna><(V1 yV2) gmin(T1,72) (2.30)

Recall that a polynomial is a series with finite support, i.e., a polynomial in M [y, 8] can
be written as a finite sum @{:O vYid™, with I € N.

Definition 25 (Ultimately Cyclic Series). A seriess = @;v"10™ € MY [y, 8] is called
ultimately cyclic if s can be written as s = p ® q(y"d")*, where p and q are polynomials in
M1y, 8] and v, T € N. The asymptotic slope of s is defined by o(s) = t/v. The polynomial
p (resp. q) is called transient (resp. cyclic-pattern) and the monomial (y¥8") is called growing-
term.

Example 8. Consider the following ultimately cyclic seriess = (e ®y'8' ®v?*8%) ® (v*8* @
Y288)(v283)* in M [y, 8]. The asymptotic slope o(s) = 3/2, the transient part is given by
(e @v'6" @ V?83) and the cyclic-pattern is (Y*6* @ y>8°), which is repeated by a shift of 2
units in the y-domain and 3 units in the d-domain.

)
10 ---®
9 1
cyclic pattern !
8 1
1
7 r---®
6 e
5 1
transient !
4 _______
3 [ )
2
1 [ )
-y
123 456 7 8 910

Figure 2.3. — Ultimately cyclic series s = (e ®v'8' ®v?8%) ® (vy*8* ®v°6°)(y*6*)* in MEX [y, §].

In the following theorem, we give the basic results for calculations with ultimately cyclic
series in M{X [y, 6].
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Theorem 2.6 ([1]). Lets; = p1 @ qi(yV"'d")* and s = p2 @ q2(y¥28™2)* be two ulti-
mately cyclic series in M [y, 8], where p1,q1,P2,qy are polynomials in ME [y, 8] and
Vi,V2,T1,T2 € N. Furthermore S1 # €, S # € and the asymptotic slope of s1 is defined by
o(s1) = T1/vq (resp. 0(s2) = T2/Vv2 ), then

— s1@ s is an ultimately cyclic series such that 0(s1 @ s;) = max(0o(s1), 0(s2)).

— s1® s is an ultimately cyclic series such that 0(s1 ® s3) = max(o(s1), 0(s2)).

— (s1)* is an ultimately cyclic series.

— S1 A sy is an ultimately cyclic series such that o(s1 A s3) = min(o(s1), 0(s2)).

— s2%s7 (resp. s1#s2 ) is an ultimately cyclic series such that s;§s1 = s16sy = € if 0(s1) <

0(s2) and o(s2%s1) = o(s1#s2) = o(s1) otherwise.

Definition 26 (Causal Series in M [y, 8] [1], [7]). A seriess € ME [y, 8] is said to be
causal if s € € or bothval,(s) = 0 and s > yvalv(s)éo where valy(s) refers to the valuation
iny of series s. The set of causal series, denoted by Mffr [y, 8], is a complete subdioid of
(M [v,8], @, ®) denoted by (M [v,5],®,®).

Remark 6 ([7]). The canonical injection Inj : ./\/lszL<+ lv,8] — MEX [y, 98] is residuated and
its residual is called causal projection, which is denoted by Pr* ./\/lax [y, 8] = ME* [y, 8].
Therefore, Pr (s) is the greatest causal series less than or equal to s € MSX [y, 8].

Example 9. Consider the seriess = y 354 @vy28' @v35* € M [y, 8], then the causal
projection Prt(s) = v°8! @ v36* € M [y, 8]. In Figure 2.4a and Figure 2.4b the causal
projection of this series s is illustrated.

\ 0 A0
5 5
4 ° 4 L)
3 3
2 2
o 1 18
Y
—3—2—_11 123 45 —3727_1] 123 45
—2 -2
° -3 -3
@s=y 5oy 8 oy’ (b)Pr(s) =v%8' @v*s"

Figure 2.4. — Tllustration of the causal projection Pr™ (y257* @ vy25' @y35h).

Remark 7. In [7] a different definition of causality for series in M [y, 8] was given. These
series are called transfer series.

A transfer series s € M [y, 8] is called causal if s € € orif s > v () e, the expo-
nents of  of s are greater than or equal to zero. The set of causal transfer series, denoted by
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MEF [y, 8], is a complete subdioid of (M [y, 8] ,®,®) denoted by (MET [y, 8],®,®)
[7]
This definition allows negative exponents for the variable y and is motivated by expressing

negative tokens in TEGs. Subsequently, Pri, . : M [y,8] — M [y, 8] is a projection

from M [y,8] into MET [y, 8], with Priy(s) is the greatest causal transfer series less
than or equal tos € MY [y, 9].
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Dioids (£,®,®) and (£]/ 8], @, ®)

In the first part of this chapter, Section 3.1, the dioid (£[[8]], @, ®) is recalled. It was intro-
duced in [16] and is useful to model Weighted Timed Event Graphs (WTEGs). In particular,
the transfer function of a single-input and single-output (SISO) WTEG corresponds to an ulti-
mately cyclic series s € £[[8]]. In Section 3.2 it is shown that the dioid (M) [y, 8] ,®, ®) in-
troduced in Section 2.3 is a subdioid of (£[[8]], @, ®). Moreover, particular mappings between
E[8]] and M [y, 8] are studied - which have an application in optimal control of WTEGs.
Some first results of this section have been published in [66]. In the third part of this chap-
ter, Section 3.3, it is shown that under some conditions all relevant operations (@, ®, %, #)
on £[[8] can be reduced to operations between matrices with entries in M [y, 8], some
results of this section have previously appeared in [65].

3.1. Dioid (£[[8],®, ®)

The firings of a transition in a WTEG can be naturally described by a counter function
X : 7o — Zimin, With x(t) is the accumulated number of firings up to a time t. Let us recall
that the order in Z,, is reverse to the natural order, i.e., let X1,X2 € Zmin, then x; > x; <
X1 < X2. Subsequently, counter functions are antitone mappings. In the following the dioid
(€8], ®, ®) is defined as a set of operators on counter functions.

The set of antitone mappings from Z into Zn;y is denoted by Z. On this set addition is
defined to be the pointwise addition in the dioid (Zmin, ®, ®), thus for x1,x; € L,

Vte Z, (x1 (—sz) (t) :==x1(t) ®x2(t) = min(xq(t), x2(t)). (3.1)
Moreover, scalar multiplication is defined as, for A € Zin,

VteZ, (A®x1)(t):=A+x;(t). (3-2)
The zero and top mappings on X, denoted by £ resp. T, are defined by

Vt, E(t):=¢ (recall thatin Zmyin, € = ),

Vt, T(t):=T (recall thatin Zmpin, T = —0).

Note that equipped with the operation @ and the scalar multiplication ® the set  is a Zin-
semimodule (see Definition 3), where~(Z, @, €) is an idempotent commutative monoid. More-
over, by including the top mapping T, (X, @, €) is a complete monoid.

27



3. Dioids (£,®,®) and (£[[5], ®, ®)

The order relation on X, naturally induced by @, is the order in the dioid (me, D, ®),
ie,Vx1,xp € X,

X1 <% & x1®x2 = %2, (3.3)
< x1(t) ®x2(t) =x2(t), VteZ,
< min (x(t),x2(t)) = x2(t), VteZ,
< x1(t) = x2(t), VtelZ.

The infimum (A operator) on the set X is defined by
VteZ, (x1Ax2)(t):=xi(t) A x2(t) = max(x;(t),x2(t)).

Definition 27 (Operator). An operator is a lower semi-continuous mapping f : & — L from
the set X into itself, such that f(€) = €. Including the property f(€) = € implies that f is an
endomorphism. The set of these operators is denoted by O.

Proposition 8 ([16]). The set of operators O, equipped with multiplication and addition as
follows,

f1,f2€ 0, Vxe L (fi@f)(x) = f1(x) @ f2(x), (3-4)
f1,f2€ 0, Vxe L (f1®f)(x) = fi(f2(x)), (3.5)

is a complete dioid.

Proof. This proof is based on a slightly different version given in [1][Chap. 4, Lemma 4.46]
and [19][Chap. 2, Proposition 5]. There, the set of lower semi-continuous mappings from a
complete dioid into itself is studied.

First, due to Prop. 5 the set of endomorphisms S over the monoid (X, ®, €) is a dioid with
the zero mapping and unit mapping given by Vx € Z,

8(x) =g, e(x) = x. (3.6)

Furthermore, the set of operators O (lower semi-continuous mapping over X), such that
Vf e O, f(§) = &, is a subset of S which contains the zero and unit mapping. We have
to show that (O, ®,®) is a complete subdioid of (S,®,®). O is closed for addition and
multiplication, since the lower semi-continuous property is preserved for both operations,
ie, for f;,f, € O and X < X, for addition:

(fy @fz)(@x) = f1(<—Dx) @fz(@x) due to (3.4)

xeX xeX xeX
= E{—) f1(x) ® 6—) fa(x) fy,f, are lower semi-continuous
xXeX xeX
= P (fi®f2)(x) again due to (3.4).
xeX
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Multiplication:
(f1 ® fz)( @ X) =1 (fz( (—B X)) due to (3.5)
xXeX xeX
=1 ( (—D f) (x)) f, is lower semi-continuous

xXeX
= (—B 1 (fz(x)) 1 is lower semi-continuous
XeX
= P (fi®f2)(x) again due to (3.5).
xeX

For completeness it remains to show that O is closed for infinite sums and left (resp. right)
multiplication distributes over infinite sums. Clearly, the set X is closed for infinite sums,
therefore VX € £ and F < O,

D (f(Dx) =D D) =D Df) =D glx), withg(x) =P fx),
feF xeX feF xeX xeX feF xeX feF

and thus the dioid (O, ®, ®) is closed for infinite sums as well. Right multiplication dis-
tributes over addition due to the definition of @ and ®, i.e., for F < O,Vge O, Vx € X,

((f@f) ®9)(x) = fG?Ef(g(X)) - f6?:(1‘® g)(x).

Distributivity of left multiplication is given, since we consider lower semi-continuous map-
pings, i.e., for F < O,Vge O, Vx e X,

(9@ (D)) = 9(Df(x) =D (9®f) ().

feF feF feF
]

To simplify notation we sometimes omit the multiplication symbol ®, e.g., for f1,f; €
O,x € X, fi(f2(x)) = (f1 ® f2)(x) we write fif2(x). Moreover, for f € O,x € L we
sometimes write fx instead of f(x). Due to (2.1) the @ operation induces a partial order
relation on O, defined by

f1 =f, o fi®df =f,
< (fix) (1) @ (f2x) (1) = (f1x)(t), Vxe L, VteZ,

< min (M) (1), (2%)(1) = (fe)(H) ¥xe L, vee . (37)

Subsequently, two operators f1,f; € O are equal iff Vx € X, Vt € Z: (f1x)(t) = (f2x)(t) .
Since (O, ®, ®) is a complete dioid the top mapping is given by, Vx € I,

?(x) _ forx = g,

£
. (3.8)
T otherwise,
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3. Dioids (£,®,®) and (£[[5], ®, ®)

and the infimum is defined as, for f1, f; € O,
fiAfy=@P{f3e 031 <f,f3DF < fL}.

Proposition 9. The following operators are both endomorphisms and lower semi-continuous
mappings, and thus operators in O.

MeN pp:VxeX teZ (um(x))(t) =m x x(t), (3.9)
beN By:W¥xeZ teZ (Bo(x))(t)= [XS)J (3.10)
veZ yY:VxeZL teZ (Y'(x))(t)=v+x(t). (3.11)

Note that | a| denotes the greatest integer smaller than or equal to a.
Proof. The mapping [ is an endomorphism, first, recall that Vt € Z, €(t) = coand m € N
is a finite positive integer, therefore, Vt € Z, (um(€))(t) = m x €(t) = m x 00 = o0, and
thus (um (€))(t) = €(t). Second Vt € Z:
<Hm(X1 @Xz)> (t) = mx (x1 ®x2)(t), dueto(3.9)
= m x min (x;(t),x2(t)), dueto(3.1)
= min (m x x;(t), m x x2(t)),

= min ((1m (1)) (©), (1m(x2)) (1)), due to (39)
- (Hm (x1)> (t)® (pm (xz)> (t), again due to (3.1).

Of course, this extends to all finite and infinite subsets X < X, i.e.,

(1 (D)) (0) = mx (@ x)(1) = m x mip (x(1),

xeX xeX

= min (m x x(t)) = I;él)rfl ((pm(x))(t)>,

xeX

— (@)

xeX

which shows that jiy, is lower semi-continuous. For the mapping (B (x))(t), again b € N
is a finite positive integer, therefore Vt € Z, (By(£))(t) = [E(t)/b] = |00/b| = oo, thus
(Bw(€))(t) = &(t). Moreover, for all finite and infinite subsets X' < £,

(Bo( D)0 - [(@)Xel;; X)(t>J _ [minxe»;(X(t))J,

—min (|52 = mip (o)),
- (@pm)w,
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which proves that 3y, is lower semi-continuous. For the proof of vV, since v € Z is an integer
thenVt € Z, (y¥(€))(t) = v+&(t) = v+ 00 = oo, thus (y¥(€))(t) = &(t). To prove lower
semi-continuity of v we have for all finite and infinite subsets X < X,

(Y (Dx) ) = v+ (D) (1) = v+ min (x(t)) = min (v + x(t))

eX eX xeX xeX

- (@®v' ).

xeX

O

Proposition 10 ([16]). The operatorsy”, i and Py, introduced in Prop. 9 satisfy the following
relations,

Yy =y Yoy =yt (3.12)

Y™ = Y ™ o, Y o = Boy™ " (3.13)
Proof. For the proof of (3.12), recall (3.5) and (3.11), then Vx € £, Vt € Z,

YY) = ) = v+ @R = v+ Y Fx(1) = (X)),

and since (3.4), (3.1) and (3.11), then Vx € X, Vt € Z,

(Y @y )x)(t) = (¥ x@y"'x)(t) = min ((v*x) (1), (v* %) (1)),
= min (v + x(t), v/ + x(t)) = min(v, V') + x(t),

_ (,Ymin(v,v/)x) (‘t)
For the proof of (3.13), since (3.9) and (3.11), then ¥x € X, V¥t € Z,
(Y™ PX) () = 1 (4 x(5) = mn - mox () = (™)) (1),

and, since (3.10) and (3.11), then Yx € £, Vt € Z,

x(t)J _ [x(t) +nb

("Box)(®) = n+ | 2| = (Boy™ ) ().

3.1.1. Dioid of Event Operators

Definition 28 (Dioid of Event Operators, [16]). The dioid of event operators, denoted by
(€,®,®), is defined by sums and compositions over the set {€, €, tm, Pb,v", ‘F} withm,b e N,
v € Z, equipped with addition and multiplication defined in (3.4) and (3.5), respectively.
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3. Dioids (£,®,®) and (£[[5], ®, ®)

An element w € £ is called E-operator (E for event) in the sequel. The dioid (£,®, ®) is a
complete subdioid of (O, ®, ®) [16]. Note that the dioid (£,®, ®) is not commutative, i.e.,
in general for wi,w; € £, wiw;, # wyw;. For instance, consider the operators p, and y],
according to (3.9) and (3.11), (Lz2y'%)(t) = 2 x (1 + x(t)) and (Y'wax)(t) = 1 + 2 x x(t),
these two expressions are clearly not equal for arbitrary x € X.

Again, the @ operation induces a partial order relation on £, defined by

Wi > Wy & w @wy = wy,
< (wix)(t) ® (wax) (t) = (wix)(t), VYxe€Z, VteZ,
< min <(w1x) (t), (wax) (t)) = (wix)(t) VxeZ, VteZ. (3.14)
Note that operators in & only manipulate values of the mapping x € X, therefore an E-
operator can be equally described by a function F : Zin — Zmin. The value x(t) is called

counter-value. And the function associated with an operator w € £ is called C/C (counter-
value to counter-value) function, see the following definition.

Definition 29 ((C/C)-Function [16]). The function Fy, : Zmin — Zmin, ki — Ko maps
counter-value to counter-value and is defined by an E-operatorw € £ such that

VKi € Zmin, Fw(ki) := (W(x))(t), forx(t) =k;andx € .
In other words x(t) is replaced by k; in the expression (W(x))(t).

There is an isomorphism between the set of E-operators and the set of (C/C)-functions.
Thus, the order relation over the dioid (£, ®, ®), see (3.14), corresponds to the order induced
by the min operation on (C/C)-functions, Ywi,w; € &,

Wi =Wy < W @wy = wy,
< -Fw1 (k) > ]:WZ (k), Yk € Zmin)

< min (Fy, (), Fus (K)) = Fuy (K), ¥k € Zminy
& Fu, (k) < F, (k) VK € Zinin. (3.15)

Note that the order in Z iy, is the reverse of the natural order. The (C/C)-functions provide

a graphical representation of E-operators in anin’ which is useful to compare E-operators.
In this graphical representation the horizontal axis is labeled by I-count and the vertical
axis is labeled by O-count, which stand for input counter-value and output counter-value,
respectively.

Example 10. Let us consider the following operatory>uaB3y' @y2uaB2y' with a correspond-
ing (C/C)-function

iy @yipy (k) = min (3 + z[kgij,z + z{%J)
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3.1. Dioid (E[[8],®,®)

This function is shown in Figure 3.1b and is the minimum of the functions F.3 1 and

u2PB3y
Fy2,,p,y1 See Figure 3.1a. In Figure 3.1b the operators Y w22 and Y3 2B3y" @ v uapay!
are compared. The gray area in Figure 3.1b corresponds to the domain of (C/C)-functions less

than or equal to F.3,,p.v1@y2u,p,y! OF €quivalently to operators w € & less than or equal to

YB3y @ v aBay'

y O-count O-count
12 O 12
A A
10 0o 10
[ I ) A A L ]
8 oo 8
() SN oo oo
6 0o 6
o o o A A [ I ]
41 OO 4 °
o0 0 0 Fy24,8,y! A A ° 2 Fy7 058,
ele
118 o2t ']:y3u2[53y‘ . ']:quzﬁzv‘®v3uzf531/‘
= > I- t o > I-count
o4 2 2 4 6 8 cout 4 2 2 4 6 8
oo L () Ly
(@) The  (C/C)-functions  F 3, 5,4 and  (b) The (C/C)-functions Fy7ua8, and
Fy2uspavt Fy3uapsvi@v2uapay!-

Figure 3.1. — In (a) min(Fy3,,p,vy1,Fy2u,p,y') is equal to the function Fy 3,8,y @y21,p.y"
given in (b). In (b) the (C/C)-function F,7,,p, lies in the gray area shaped by the
Fyiuspsyi@y2uapay! function, thus Fo7yop, > Frsy,payi@y2uspyy! 0 (min+)

Fyruspa < Fyipuspsyi@y2uspay! and thus v uoBz < v aBsy' @ v2uafay’.

Periodic E-operators

Definition 30. An E-operator w € & is said to be (m,b)-periodic if Im,b € N such that,
Vx e L, Vte Z, (w(b®x))(t) = m® (W(x))(t). The set of (m,b)-periodic E-operators is
denoted by & |p-

Definition 31. A (C/C)-function F is said to be quasi (m, b)-periodic if3m, b € N such that
Fk®b) = m® F(k), Yk € Zmin, (F(k +b) = m + F(k), VK € Zin)-

Recall that the ® operation in the dioid (Znin,®,®) corresponds to the standard + op-
eration. In the sequel, both representations are used.

Remark 8. Since the periodic property does only depend on the value x(t) we can neglect the
time t for examining the periodic property of an E-operator. Therefore, an E-operatorw € & is
(m, b)-periodic if and only if the corresponding (C/C)-function F,, is quasi (m, b)-periodic.
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3. Dioids (£,®,®) and (£[[5], ®, ®)

Definition 32. The gain of an (m, b)-periodic operatorw € &y, denoted by T'(w), is defined
by the ratio I'(w) = m/b.

Example 11. They" operator, withv € Z is (1, 1)-periodic, since Vk € Zin, Fyv (k) = k+v
and therefore, Fyv (k + 1) = (k + 1) + v = 1 + Fyv (k). The y*B3y' w2 operator is (2,3)-
periodic, for which the corresponding (C/C)-function is illustrated in Figure 3.2. In contrast, the
V3 [531/1 (—Byz 153 [521/1 operator, shown in Figure 3.1b, is not periodic.

y O-count

9 °

8 °

7 { 3

6 )

5 L I )

4 °

3t e @

2e
o]

> [-count

-1 1234567829

Figure 3.2. - (2,3)-periodic (C/C)-function F 24,1 ,,-

In the following E-operators of the form (—B{:] vYiumBuyYi are studied. Recall that
Y™ UmPBb = HmPbY® (3.13), thus ¥ umBuy” can be written such that 0 < v/ < b. This
form is particularly useful to check the ordering of E-operators. Given two E-operators
YV umBo YY1, Y2 i BoY 2 € Emjp, With 0 < v{,v) < b, then

vi < vz and vi < V5,

Y umBoY! = ¥ 2 umBry2 & (3.16)

or vy —m < vj.
Proposition 11 ([16]). A periodic E-operatorw € Eyy, has a canonical form, which is a finite
sumw = (—DL] YViumPBuY: such that 0 < v/ <b,vi € Z and I < min(m, b).

Proof. Let us define an operator w = 6—)?;0] Wi, with wi = vy O ByyP 11 Then, first
we show that any (m, b)-periodic operator w € &, can be expressed by w € Enyp, ie,
w = Ww. Recall the isomorphism between an E-operator and the (C/C)-function thus it is
equivalent to show that F,, = Fy. The (C/C)-function to w; is Fy;, = [%Jm +

Fw(1) and therefore the (C/C)-function Fy, (k) can be written as

k+(E—1)Jm

k+ (b—2)

]-}V:min([ o

+ Fu(0), | |m+za), -

,{%Jm+fw(b ).
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Let us recall that F,, is an isotone function and satisfies
Fw(0) < Fu() < < Fp(b=1) <m+ Fp(0) < ---. (3.17)

Since F,, and Fy;, are quasi (m, b)-periodic functions it is sufficient to show that F, (k) =
Fw(k) forallk € {0,---,b— 1}. We now evaluate F;, (k) for k = 0,

Fw(0) = min (l(b;])Jm + Fl(0), l(bgz)Jm + Fp(1), -

0
, lBJm—i- F(b — 1)),
= min (F(0), Fu(1)y -, Fu(b = 1))
= Fw(0), since J, is isotone, see (3.17).

Similarly we can show that for k € {1,--- ;b — 1},

Fa(1) = min (| 2 m + (), [ 2o [mt Fa0)y - [+ Auo - 1),
= min (1 + Fu(0), Fu(1), - Fu(d—=1)) = Full),  see (317),

Fa(b—1) = min (m+fw(0),--- A+ F(b — 2), Fuu(b — 1)) — F(b—1).

The canonical form can then be obtained by removing redundant terms according to (3.16).

O

Example 12. Consider the y>3y'u, operator with a (C/C)-function shown in Figure 3.2. This
operator is (2, 3)-periodic. Moreover, the (C/C)-function F. evaluated on t leads to,

B3y 12
]:Yzﬁs\/luz (0) = 2,
Frpsyin, (1) =3,
Fyapaytu (2) =3,
Fyapayiu (3) = Frapsy1, (0) +2 =4,
Fyapaytue () = Fyapsyi, (1) +2 =5,

Therefore, the operator y>B3y' W, can be written as,

YHuB3v? @V By @ v apsyP.
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Since, Y’ u2B3v' @Y 12B3v° = Y 12Bs(v' @Y%) = Y uaB3Y°, this expression is simplified
to

YB3y @ v B3y,

which is the canonical representation ofy2 B3y . Figure 3.3 shows the (C/C)-functions F\3,,,5,

and F2,,5,2 of the operators Y3 1B3 and v Biy2, respectively. The intersection of the
area beneath F. 3,5, and F\2,,, 5.2 is equal to the area beneath the (C/C)-function F,,

shown in Figure 3.2. Thus, min(]—"ys 1w Fy2 ) = Fys

2B3yTuy
n2B3y? W B3@y2a B3y = T Y23y -

, O-count

o0
O 0o
o o0

Ooao

o0 0

41 O OO

30 0 0 ']:v3

o2
o] o ]:YZ

1 o\ N & o

H2PB3

12 B3y2
> [-count

-1 1234567879

Figure 3.3. - (2,3)-periodic ~ (C/C)-functions ~ F 3,5, and F,2,,p,y2- One has
min(Fys 0,85 Fy2uapsy?) = Fydwps@yluapsy?- O in other words, the inter-

section of the area beneath F 3,5, and F,2,,p5,,2 is equal to the area beneath

‘FYZBW‘ w2 T fv3uzﬁs@vzuz(33v2'

Remark 9. Clearly an (m,b)-periodic operator is also (nm, nb)-periodic. Thus, an (m,b)-
periodic operator w € |, can be represented in a (nm, nb)-periodic form given by

nb—1

w = @ 'Y]:w(i) untnb'an_]_i-
i=0

Proposition 12 ([16]). The (m,b)-periodic pm By, operator can be expressed in the following
(nm, nb)-periodic form
n-1 .
tmBb = B Y™t Brpy ™ Y. (3.18)
i=0

Proof. Recall that the (C/C)-function of the um [y, operator is given by F,, g, = |k/bjm.
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O-count
6 o 00
5 00000
4 A A A A A
3 e e 0 000 'fu3r56y4
200 000 OO Py spey2
S| ATATA D'FYZLlsﬁs
(4 ® > [-count
ol 12345678910

Figure 3.4. — F,, , is equal to min(F, g vy Fyl s pey?r Fy2usBe)-

Due to Remark 9 the (nm, nb)-periodic representation of this operator is given by

nb—1

Hm Py = @ 'Ylk/bjmp'nmf’nbynb_]_ka

k=0
n—1b-1

= YLD Brey™ T ) with k = ib +5,
i=0 j=0
n—1b-1

N Y ™ o Brr Y™ P since forj e {0, b — 1}, |(ib +)/b] = i.
i=0 j=0

Due to the order relation for monomials in &, see (3.16), we have

b—1

@ 'Yimllnmﬁnbynb_l_(ibﬂ) = 'Yimunmﬁnb'ynb_]_(ib+b_1) = 'Yimlinmﬁnby(n_]_i)b
j=0
and thus
n-1 .
HmPb = (‘D Ylmunmﬁnbw/(ni1il)b-
i=0

O]

Example 13. For instance, with n = 3, the operator WP, can be written as u3fey* @
Y'usBey? @ Y2u3Pe. Clearly i, € &1z and W2 € &3 as well. Figure 3.4 illustrates
this extension of the 113, operator.

Definition 33. The minimal representative of a periodic operatorw € Ep[[8] is defined such
that w is expressed in a canonical form and the period (m,b) is minimal.

In the algorithm 1 we show how to obtain this form. In this algorithm, we check for all
common divisors 1 of m and b if an (m, b)-periodic operator w € &y [[8]] can be repre-
sented in an (m/m, b/n)-periodic form.
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Input: Operator w € Epp[[8]]

Output: Minimal form of w € & p[[8]]

Calculate the set S := {n € NJm/n € N and b/n € N} of all common divisors of
(m, b). Store the set S in a vector k in descending order.

j=0;

do
my = m/k[j];
bi=b/K[j]; |
a =@ Y O B,y
j=j+1

while w # q;

return q;

Algorithm 1: Minimal representative of a periodic operator w € &y p[[8]]-

Proposition 13. Given two periodic operators wi € Ep v,y W2 € Em, b, such that wy #
g, Wy # € and TQ—]‘ > %. Then, w1 and w, are not ordered, i.e., wy 3 Wy and wi £ w,.

Proof. Due to Remark 9 and by choosing b = lcm(by, b,) we can represent w; € &

m1|5 as

an (Mp, b)-periodic operator and w; € £
sponding quasi periodic (C/C)-functions

,[6 @s an (1My, b)-periodic operator with corre-
Fwy (kK +b) = Foy (k) + My, Fo, (k+b) = Fo, (k) + 0.

Then by evaluating the functions for k = jb, j € Z we obtain
}—W1 (JB) = -FW1 (0) + jma, sz(JB) = ]:Wz(o) +jmy.

Since Fyy, (0) and Fy,(0) are finite and My > M, there exists a positive integer j such
that 7y, (jb) > Fu, (jb) and a negative integer j such that F,, (jb) < Fy,(jb). Thus, the

operators wy and w; are not ordered. O

Example 14. Consider the (2, 3)-periodic operator y3;B3y' and the (2,2)-periodic opera-
tor Y2 waPB2y". In the graphical representation of the corresponding (C/C)-function, Figure 3.5,
one can see that these two operators are not ordered, for instance, for all k < O one has

Foapayt (K) < Fyau,psyt (k) and for allk > 3 one has F2,,5,41(K) > F3,,p,91 (K).

3.1.2. Dioid of Formal Power Series (£[[5],®, ®)

Besides E-operators introduced in the last section, we now define the time-shift operator
8" as a mapping over I as follows

TeZ 8 :VxeX teZ (8%)(t)=x(t—1). (3.19)
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4 O-count
12 a
10 oo
o e
8 oo
o0 0
6 oo
o e o
41 0 0O
oo 0 05y 2,6,y
o2
oo * Fy3u,psy!
59 > [-count
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Figure 3.5. - Quasi (2,3)-periodic (C/C)-functions .3, 3,1 and quasi (2,2)-periodic (C/C)-function
szuzﬁsY' . For k < O fYZusz‘Y] (k) < fys o By (k) and for k > 3:
]:YZHZ B2y’ <k’) > ‘7:1/3 H2Bsy! (k)

Clearly, the 8" mapping is lower-semi continuous, since for all finite and infinite subsets
Xck

(5(®x) ) = (Bx)E-m),

xeX xeX
= @ x(t—T), dueto(3.1),
XeX
= E{—) (5TX) (t), dueto (3.19).
xeX

Furthermore, (87(€))(t) = €(t—T) and since €(t) = o0, Vt € Z and T € Z then (87(¢))(t) =
€(t), thus 8" is an endomorphism. Consequently, the time-shift operator 6 € O. Moreover,
the time-shift operator commutes with all E-operators [16], i.e., Vw € £, wd™ = 6™w.

((8™w)x)(t) = (8%(wx))(t), due to (3.5),
= (wx)(t —T), due to (3.19),
= (W8™)(t), again due to (3.19).

Definition 34 ([16]). We denote by (E[[8]],®,®) the quotient dioid in the set of formal power
series in one variable d with exponents in 7, and coefficients in the non-commutative complete
dioid (£,®, ®) induced by the equivalence relation Vs € E[[8]],

s=(0"N¥*s =s(d57 1. (3.20)

Hence we identify two series s1, s, € £[[8] with the same equivalence class if s7(571)* =
$2(871)*. Tt is helpful to think of s(57')* as the representative of the equivalence class of s.
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A series s € E[[8] is expressed as s = @, s(T)d7, with s(T) € £. Recall (2.13) and (2.14)
for the definition of addition and multiplication in dioids of formal power series. Therefore,
given two series s1, s, € E[[3]],

s1®s2 =P (s1(t) ® s2(7)) 0",

TEZ
$1®s) = @( D 51(t)®sz(t')>6T.
T t4t/=1

Due to the quotient structure (3.20) of the dioid (E[[8]], ®, ®) the variable b in £[[8]] matches
with the operator § € O defined in (3.19). Moreover, the zero and unit element in £[[3]] are
given by the zero and unit element of O, i.e, Vx € , ¢(x) = ¢ and e(x) = x, see (3.6).

Monomial, Polynomial and ultimately cyclic Series in &, [[0]]

The subset of E[[0]] obtained by restricting the coefficients s(T) to Enp, Le. the set of
(m, b)-periodic operators, is denoted by &y, [8]). For instance, 1y p3y'8% € &3[[8]), since
the ,B3y" E-operator is (2,3)-periodic. A monomial in Empp[[8] is defined as wd™ where
w € Enp. A polynomial in &y [[8] is a finite sum of monomials p = @{:1 w;d%isuch
that Vi € {1,--- I}, wi € &yp. For instance, PR3y 62 @ wPs3y2ed € &3[[0]), but the
polynomial wB3y' 82D u3Pay>6> ¢ Empp[[8]]- Moreover, the gain of an element s € &y, [[8]]
is defined to the gain of its coefficients s(T), i.e., I'(s) = I'(s(T)), for instance, (12 B3y'6%) =

M(u2Bsy') = 2/3.

Graphical Representation

An element s € £[[8]] can be graphically represented in Zmin X Zmin % Z. For a series
s = @iy Wid" € E[[8] this graphical representation is constructed by depicting for every
i the corresponding (C/C)-function F,,, of the coefficient w; in the (I-count/O-count)-plane
of i.

Example 15. For the graphical representation of p = (u3B3v>®v'u3B3y")6* @ usP3y26® €
&E33[[8]], respectively its representative p(8~1)* see in Figure 3.6, with the (I-count/O-count)-
plane fort < 2 (resp. t = 3) shown in Figure 3.7a (resp. Figure 3.7b). To improve readability,
the graphical representation for elements s € E[[8] has been truncated to non-negative values
in Figure 3.6.

The ordering of two monomials Wi8™, W28™ € &y p[[0]] can be checked by

w1d" > wy0™ < 1) = T and wy > wy. (3.21)

Proposition 14 ([16]). Letp € Enp[[8]], then p has a canonical formp = @)121 wj’éti/ such
that the (m, b)-periodic E-operator wy is in canonical form of Prop. 11, and coefficients and

exponents are strictly ordered, forj € {1,---,] — 1}, t/ <t 4 andw] > w/ ;.
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3.1. Dioid (E[[8],®,®)

Figure 3.6. — 3D representation of polynomial (13832 @ v'u3B3y')0% @ u3p3y?83.

O-count

10 O-count 10
9 oo 9 0Oo0o
8 = 8 t=3
- O 7
6 oo 6 Oo0o
5 5
4 O 4
3 oo 3t ooao
72 2 & ]:us B3v2
110 B3 B3y2@y nzBay! 1
B > [-count B > [-count
12345678910 12345678 9210
(a) (I/O-count)-plane for t < 2 (b) (I/O-count)-plane for t = 3

Figure 3.7. — Slices of the coefficients in the (I/O-count)-plane of the polynomial (u3f3y? @
Y'u3B3v')8? @ nafsy?s’

Proof. Without loss of generality, we can assume that p = @L] w;d', with t; < ti,1 for
i=1,---1—1. Asp € E[[8], we can identify s with their maximal representative s(5~')*,
we can also identify p and

as P(é_])* = p'(é_l)*. Therefore, w] > W{H-

!
Wi 511:“ :/W{(ZSTH @ d™i+1) = w{d™i+1. For this reason, we can write p’ as @)L] w].’éti
with Wi > Wi and | < L.

! / : ! SNy
Ifw; = Wi, ; we can write wid™ @

Definition 35 (Ultimately Cyclic Series). A series s € Ex[[8]] is said to be ultimately cyclic
if it can be written ass = p@®q(y*8")*, wherev,t € Ny andp, q are polynomials in &, [ 8],
i.e, p and q have the same period. The expression (y¥8%)* is called growing term.
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3. Dioids (£,®,®) and (£[[5], ®, ®)

Proposition 15 ([16]). An ultimately cyclic series s € Eqp[[8]] has a left- and right-cyclic
form given by:

s=p®\"8™)*qi, (left-cyclic form)
s=p®qr(yd™)*, (right-cyclic form)
wherep, qu, qr € Emp[[8]] are polynomials andti, vi, Ty, vy € No. The left- and right-asymptotic

slopes are respectively defined by o1(s) = T/vi and 0,(s) = T;/v,. The asymptotic slopes of
an ultimately cyclic series s € Ey,[[0]] satisfy the following property

m/b = oy(s)/o1(s).

Proof. Consider an ultimately cyclic series s = p @ q,(Y""0™)* € Enyp[[8]] in a right-
cyclic form. Since, the dioid (E[[3]], ®, ®) is not commutative in general the growing term
(y¥rd™)* does not commute with the q, polynomial, i.e., q(y¥"8™)* # (v 0™ )*q,. How-
ever, due to (3.13), for specific growing terms given by (y"°8%)* with n € Ny we have
qr(y"®8%)* = (y™™8%)*q,. For an arbitrary series s = p @® q,(y""8™)* € Emppl[8]] in a
right-cyclic form we can rewrite g, and (y¥"8™)* such that the conversion is possible. With
nv, = lem(b, v;) the growing term can be expressed as

(YvréTT)* _ (e @ eréTT @ ,YZW 52TT D@ y(n—l)vré(n—l)’rr)(ynvr 5n’rr)*
_ q (,ym/T 6nTr)* )

Since nv; is a multiple of b, we have
qrq (ynvr 6n~rr)* _ (Y(nvr/b)ménn)* qrq

Then by choosing q; = qrq, vi = (nv;/b)m and nt, = Ty the series s can be represented
in a left-cyclic form

s=p®("8Y) qu=p@®(Y™EN) g4

Furthermore, 0;(s) = T:/v, and o1(s) = (nT)/((nv;/b)m) and thus

Tr
0r(s) _ v _m
0‘1(8) (an:F/[{))m b

The conversion of an ultimately cyclic series from a left-cyclic form into a right-cyclic one
can be shown analogously. O

Example 16. Consider the following seriess = v w32y 2@ (v usB2y' @y’ w3 f2)d3 (v 61)*
in a right-cyclic form. By extending the “growing-term” (y'81)* = (e®y'8')(y2?)* the series

can be expressed in a left-cyclic form as follows

s =v'wB2y'8 @ (V'8)* (Y rsBay' @7 13B2)8 @ (vohsB2 @ v wsBay')s).
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3.1. Dioid (E[[5]],®, ®)

The left- and right asymptotic slopes are o1(s) = 2/3 and 0.(s) = 1/1, respectively. This series
has a graphical representation given in Figure 3.8, with the left- asymptotic slope indicated by
the red stairs in the (O-count/t-shift)-plane (I-count value —1) and the right asymptotic slope
indicated by the blue stairs in the (I-count/t-shift)-plane (O-count value 15).

= e e
© O = N W

t-shift

N WA OO N ®

Figure 3.8. — Graphical representation of series s = Yy'upry'8? @ (Y uzfy' @
You3B2)8 (v 81)*.

Clearly, a polynomial p = @{:1 w; 8™ can be considered as a specific ultimately cyclic

series such that s = ((—DL] w;8™)(Y°8°)*. Let us note that the set of (b, b)-periodic opera-

tors, ie. the set & [8]], endowed with ® and ® is a complete subdioid of (E[[8], ®, ®), but
in general the set &y p[[8]] endowed with the @ and ® is not a dioid since it is not closed for
the ®-operation. For instance, consider the operator pB,y'6% € & ‘ 2[[8] the product

wiB2y' 87 @ i Bay' 8% = wiB2y' 82 ® (12Bay’ B v 12Bay')S?
since W12 = H2Bay? @' 12B4 see Prop. 12
= B2y 12Bsy’ 8" @ i Bry 2 Bay' st
= W Bsy’8* @ w1 Bay’s*
= W Bsy38* dueto (3.21)

this operator is (1,4)-periodic and therefore in &;4[[8]] and not in &;,[[8]]. Clearly since
an element s € Eyp[[8]] is also an element in £[[3]], addition, and multiplication between
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3. Dioids (£,®,®) and (£[[5], ®, ®)

elements in &, p[[8]] are defined, however, the result is not necessarily in &, [8]. In the
following proposition, we summarize the conditions under which sum, product, and infimum
of ultimately cyclic series in &, [ 8] are again ultimately cyclic series in &y, [[0]]. The proofs
for these propositions are given later in Section 3.3.

Proposition 16 ([16]). Let s1 € Em v, [8], 52 € Em, o, [0]] be two ultimately cyclic series
with equal gain, ie. T'(s1) = T'(s2) = my/by = my/by, then (s1 @ s2) € Emp (8] is an
ultimately cyclic series with gain T'(s1 @ s2) = I'(s1) = I'(s2).

Proposition 17 ([16]). Let s1 € Em v, [8], 52 € Em,pp, [0]] be two ultimately cyclic series
with equal gain, ie. T'(s1) = T(s2) = my/by = my/by, then (s1 A s2) € Enp[[8] is an
ultimately cyclic series with gain T'(s1 A s2) = T'(s1) = I'(s2).

Proposition 18 ([16]). Let s € &, v, [8]] and sz € En v, [8]] be two ultimately cyclic series
then (s1 ® $2) € Emym,[byb, 18] is an ultimately cyclic series. Moreover, since I'(s1) = my /by
and F(SZ) = m,/b; the gain F(S1 ®sy) = (m1m2)/(b1b2) =T(s1) x I'(s2).

Proposition 19 ([16]). Let s € Eyu[[0]] be an ultimately cyclic series then s* € Ey|,[[8]] is an
ultimately cyclic series.

Division in (E[[3]],®, ®)

Recall Section 2.2, since (£, ®,®) (resp. (E[[3]], D, ®)) is a complete dioid right and left
multiplication are residuated. We obtain the following results for the left (resp. right) di-
vision of periodic elements. Again the proofs of the following propositions are provided in
Section 3.3.

Proposition 20 ([16]). Let s1 € Enp, [0]] and s € Enyp, [8]] be two ultimately cyclic series
then (s2%s1) € &y, v, [0]] is an ultimately cyclic series. Moreover, since I'(s1) = m/by and
I'(s2) = m/b; the gainT'(s3%s1) = by/by = T'(s1)/T(s2).

Proposition 21 ([16]). Let s1 € En,[0]] and sz € Eny, b [0]] be two ultimately cyclic series

then (s1¢52) € Em,m,[[0]] is an ultimately cyclic series. Moreover, since I'(s1) = my/b and
I'(s2) = my/b the gainT(sa¢s1) = my/my = T'(s1)/T(s2).

3.2. (M&[v,3d],®,®) as a Subdioid of (£[[0], D, ®)

Let us recall the dioid (M [y, 8] ,®, ®) introduced in Section 2.3. The dioid

n

(ME[v,8],8,®) is a subdioid of (E[[8],®,®). More precisely M [y,d] is the set

n n
En o]l ie., the set of (1,1)-periodic series. Then according to Definition 22 the canoni-

cal injection from M [y, 8] into £[[8]) is defined by

Inj : M [y, 8] - E[[5], x — Inj(x) = x.

For instance, Inj(y'8%) = y'u1 3182 = v'82. In the following example, we give a graphical
interpretation of this injection.
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3.2. (MY [y,8],®,®) as a Subdioid of (E[[8]], ®, ®)

Example 17. Consider the seriess = v'6* @ (V383 @v°6%) (v26%)* € M [, 8], the graph-
ical representation of s is shown in Figure 3.9a. Moreover, the graphical representation of the
canonical injection Inj(s) € E[[8] is shown in Figure 3.9b. The series s € M\ [y, 8] (Fig-
ure 3.9a) corresponds to the (O-count/t-shift)-plane for the (I-count) value O of the 3D represen-
tation of the seriesInj(s) € E[[8] (Figure 3.9b). Moreover, the canonical injection Inj(s) € E[[3]]
is (1,1)-periodic, therefore the (O-count/t-shift)-plane for the (I-count) value 1 corresponds to the
seriesy's € ME [y, 8] and for the (I-count) value 2 to the series vis e ME [y, 8], etc. Ob-
serve that the left-cyclic form and the right-cyclic form are the same since (M [y, 8] ,®, ®)
is commutative.

"
""‘“‘
’ / /

)

48 (t-shift)
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Y (O-count) 0011125 6.
1234567891011 10y, 1

(a) Graphical representation of s € M{ [v, 8]. (b) Graphical representation of Inj(s) € E[[8]).

Figure 3.9. — Illustration of the canonical injection Inj : M{Y [v, 8] — £[8]).

The canonical injection Inj : M [y, 8] — £[[8] is continuous and thus it is both resid-
uated and dually residuated, see the following propositions.

Lemma 1. Let W™ € &, [[8] be a (b, b)-periodic monomial. Then residual Inj* (Wd%) and
dual residual Inj”(W87) are given by

Injt (W8) = Y=o (Fw(9-) 5T (322)

Injb (WéT) _ yminﬁ;é (Fw(k)—k) 5”. (3-23)

Proof. By definition, the residuated mapping Inj#(wd%) is the greatest solution x of the fol-
lowing inequality

wbd" > Inj(x) = Inj (@iyv"z‘)Ci) = @ing)li’ (3.24)
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3. Dioids (£,®,®) and (£[[5], ®, ®)

where @P); YVidhi e MEX [y, 8]. Clearly, the greatest (; such that the inequality (3.24) holds
is T and thus,

wd" > @ (YVi8") = y¥o", see, (2.29). (3.25)

Since woT > YV < w > vV, it remains to find the least v such that (3.25) holds. By
considering the isomorphism between E-operators and (C/C)-functions, see (3.14), this is
equivalent to Fyy (k) > Fyv (k) (Fw(k) < Fyv(k)), VK € Zin. Note that in Zin the order

is reverse to the natural order. By using Fyv (k) = v + k, see (3.12), we obtain
Fwk) <v+kev=Fyk) -k VkeZpin. (3.26)

Since Fy, is a quasi (b, b)-periodic function it is sufficient to evaluate the function for Vk €
{0,--- ,b — 1}. Therefore, the least v such that (3.26) (resp. (3.25)) holds is

v = max (Fw(k) — k).

Similarly, for (3.23), Inj’(W87) is the least solution x of the inequality

wbd" < Inj(x) = Inj <@1 yviéci) = (—Diyviéci. (3.27)
Then, the least ; such that the inequality (3.27) holds is T and thus,
wd' < (—D (YVi8") = v¥o", see, (2.29). (3.28)

Again since wd" < yV8" < w < v", it remains to find the greatest v such that (3.28) holds.
Therefore, Yk € Zmin

Fuw(k) = Fv(k) & Fu(k) = v+ ke v < Fyk) —k (3.29)

By considering that F,, is a quasi (b, b)-periodic function the greatest v such that (3.29)
(resp. (3.28)) holds is

b—1
v = 1’1{1:11(’)1 (Fw(k) —X).

Example 18. For the monomial v'u3B3y' 6% € &33[10]], see Figure 3.10b, the residual

max{_ (fwusﬁsy @ )—i) 52 — Ymax(1,o,z)62 252

nj (v w3 B3y'6?) = v -y

We now compare y' uzp3y' 6% to Inj (Injti(y1 u3[331/162)) and show that s > Inj(Inj*(s)) is
satisfied, see Remark 4. The canonical injection Inj (Injﬁ(y] U3 B3y162)) = Inj(y?8?%) = vy*&?
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3.2. (MY [y,8],®,®) as a Subdioid of (E[[8]], ®, ®)

is shown in Figure 3.10a. Clearly, Inj(y?*8%?) = v?86% < y'u3P3y'8? this is illustrated in
Figure 3.11a where the (C/C)-functions F\1,,3,,1 and F2, are shown. Obviously, F,» <
Foruspsy! (Fy2 = Fyiy,psyt)s in particular, F 2 is the greatest quasi (1,1)-periodic (C/C)-
function which is less than F.1,, ... Therefore, Y282 is the greatest operator in &, i [[8]] which
is less thany' u3B3y'82. The dual residual of the monomial y'uzB3y'6% € 53‘3[[6]] is given by

Injb(,y] HSBS,Y] 52) _ ,Ymin(],O,Z) 62 _ '}/062 _ 62.

Again we compare v' u3B3y' 5 to Inj (Inj"(y] ugﬁgy]éz)) and show that s < Inj(Inj’(s))
is satisfied, see Remark 5. The canonical injection Inj (Injb(y] n3P3y'8%)) = Inj(8%) = &
is shown in Figure 3.10c. Clearly, Inj(éz) = 5% > y'uzPsy'd? this is illustrated in Fig-
ure 3.11b where the (C/C)-functions F,1,, 5,1 and Fo, are shown. Obviously, F\1 5.1 <
Fyo (Fyruspsyt = Fyo), in particular, F. o is the least quasi (1,1)-periodic (C/C)-function which
is greater than F\1,,.p.,1 and therefore 082 is the least operator in Er[[0]] which is greater
thany'pz3Bzy' 6%,

t-shift
t-shift
t-shift

(a) Inj (Inj* (v' 13 B3 7' 8%)) (b) v'uspBsy's? (©) Inj(Inj’ (v' 3 B3v'8%))
=y i pi8? =82 =Y w18 =y

Figure 3.10. — Graphical comparison of y'u3B3y' 8%, Inj(Inj*(y'usB3y'8%)) and Inj(Inj’(v' nsBsy'?)).

For all t € Z the slices in the (I/O-count)-planes of Y 'uspsy'8? cover the slices of
Inj (Inj’i (v'usBsy’ 62)), but are covered by the slices of Inj (Injb (v'usBsy’ 62)), see Figure 3.11.

Proposition 22. Let s = D; wid™ € &p[[0]] be a (b, b)-periodic series in the canonical
representation, see Prop. 14, extended to infinite sums, then

i max?_ ] S(k)— i
Injf(s) = Inj* (C—BiwiéTl) = @, Y o P (-5, (3.30)
Second, for s € E[[8]] but s ¢ Eyp[[8]],
Inj*(s) = e. (3-31)

Proof. For (3.30): Consider s = ; w;d™ in the canonical form, such that Ty < iy and
wi > Wiy and let F,, be the (C/C)-function associated with w;. Recall that Inju(s) is
the greatest solution x in M{X [y, 8] of inequality Inj(x) < s. This is given by @, y™ 6™

n
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10 , O-count 8 OO 10 4 O-count oo
9 ® 9 ®
8 ® 8 ®
7 ® OO B 00w
6 ® 6 ®
5 ® = ®
4 ® OO 4 00w
3l ® s F2 3 ® ® F 0
2 o0 Fyiuspay! 2 ® D]:1M(5ﬂ,
®Bl® O ole ®
> J-count > [-count
12345678910 & 123456789210
(a) Graphical illustration of Inj*(y'uzp3y'6%) = (b) Graphical illustration of Inj’ (v'usBsy'6%) =
%52 in the (I/O-count)-planes for t < 2 v°6? in the (I/O-count)-planes for t < 2

Figure 3.11. - Comparison of Inj*(y'u3B3y'6?) and Injb(y1 1z B3y'5%) in the (I/O-count)-planes for t < 2.
In (a) the (C/C)-function . lies in the gray area shaped by the F1 5,1 function, thus

Fy2 < Fyiuypayt @andy? < y'usBsy’. In (b) the (C/O)-function F. VinsBay!
area shaped by the F) o function, thus )1, 5.1 < Fpo and y'u3psy’ < v°.

1 lies in the gray

where n; is the greatest integer such that y™ < w;. Repeating the first step of the proof of
Lemma 1, this is given by n; = max?_} (F, (k) — k). To prove (3.31), recall that Vs € £[[5]]
we must satisfy the following inequality, see (2.17) in Remark 4,

s > Inj (Inj*(s)) . (3-32)

Now let us consider two series $1 € E, |, [0]] and s2 € &, p, [0]] such that s1 # €, s; # €
and # T2, Then s; and s; are not ordered, ie, s7 * s; and s; £ s, (see Prop. 13).
The canomcal injection Inj(8) of an arbitrary series s € MX [y, 8] is (1,1)-periodic, ie,
Inj(s) € &y1[[8]]. Thus, for s ¢ & p[[8]], s and Inj(s) are not ordered and (3.32) holds if and
only if Inj*(s) = e. O

Proposition 23. Let s = D;wid™ € &,u[[0]] be a (b, b)-periodic series in the canonical
representation, see Prop. 14, extended to infinite sums, then

In] InJ (@ W16T‘> = @iyminglg(fwi(k)_k)f)n, (3-33)
Second, for s € E[[8]] but s ¢ Eyp[[8]],

Inj’(s) = e. (3-34)
Proof. The proof is similar to the proof of Prop. 22. O

Example 19. Consider the polynomialp = v'uzp3y'6?®uzp3y26° € &3 [[8]] with a canon-

ical formp = (u3 B3y ® v u3psy! )62 @ u3B3y28° and a graphical representation given in
Figure 3.12a. Then, Injf(p) = v'5* ® v?83 and Inj (Injﬁ(p)) = v'6%> @ v*8* are shown in
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3.2. (MY [y,8],®,®) as a Subdioid of (E[[8]], ®, ®)

Figure 3.1zb. Moreover, Figure 3.13a illustrates Inj* ((u3f3y> @ v'uzB3y')8%) = v'6% for the
(I/O-count)-plane at t = 2 and Figure 3.13b illustrates Inj* (u3p3y?6%) = v283 for the (I/O-
count)-plane at t = 3, respectively.

@p = (3B3v* DY u3Bsy')o* ® uspsy’s’ (b) Inj (Inj*(p)) = v'8* ® V8>

Figure 3.12. — Graphical comparison of the polynomial p = (u3 B3y? ® v'us [53y])62 @ u3Psy?d® and
Inj (Inj’i (p)). Forall t € Z the slices in the (I/O-count)-planes of p cover the slices of Inj (Inj'j (P)).
see Figure 3.13.

104 O-count ® 104 O-count ®

9 ® O & ® 00

8 ) ® 8 = ®

7 ® O 7 ®

6 ® O 6 ® 00

5 ® 5 ®

4 ® O 4 ®

3 & O 3 ® O 0O ® 'FYZ

21 ® ® ]:V] 2 o ]:lls B3v2

1o O B 13 B3v2@y w3 B3y! 8]

I-count I-count
E_T 12345678910 E_T 12345678210
(a) (I/O-count)-plane for t < 2 (b) (I/O-count)-plane for t = 3

Figure 3.13. — Graphical illustration of Inj*(p) = y'8? @ y?6°.

n

Zero slice Mapping V..., : Enp[8] — MY [y, 8]

In addition to the canonical injection Inj : M{X [y,8] — £[[8]), we define a mapping:
qlm\b : <c:m|b[[6]] - M?r)f [h/) 6ﬂ

Definition 36. Lets = (D; wid't € Ep[[8]] be an (m, b)-periodic series, then

Wi () = Wi (D), wis™ ) = D, v 5. (335)
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This mapping ¥, has a graphical interpretation. If we take the 3D representation of a
series s € Emp[[8] the series § = Wy, (s) € MY [y, 8] corresponds to the slice in the (O-

n
count/t-shift)-plane of the 3D representation at the I-count value O, therefore this mapping

is also called zero-slice mapping.

Example 20. Consider the following series s € E32[[3]],

s =v"wsB2y'8 @ (V') (Y rsB2y' @7 13B2)8° © (vors B2 @ v B2y ')8t).
with a graphical representation given in Example 16 in Figure 3.8.
w3‘2(5> _ ’Y] 62 e (y362>* (Y363 @,Y564)

The series W3)5(s) € MY ['v, 8] corresponds to the slice (O-count/t-shift)-plane) for the I-count
value O of the 3D representation of s, see Figure 3.14a and Figure 3.14b. Moreover, the asymptotic
slope of W315(s) € MY [v,8] is the same as the left-asymptotic slope of s € E3,[[8], ie.,
o(Y32(s)) = ou(s) = 2/3.

5 (t-shift)

11

10

9

8 °

7 )

6 )

5 )

4 [}

3 )

21 @

1 ¥ (O-count)
12345678 921011

(b) The (O-count/t-shift)-plane for the I-count
(a) 3D representation of s value 0

Figure 3.14. — Illustration of the zero-slice mapping W32 (s).

The mapping W,y is by definition lower-semicontinuous, see Definition 36, therefore
Wi is residuated.

Proposition 24. Lets = @, v'1d™ € M [y, 8]. The residual‘PEMb(s) € Empllo]l of sisa
series defined by

‘yiﬂb (@ﬂ“yi) = @, v 8" tmBv = SkmBo- (3.36)
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Proof. By definition of the residuated mapping, ‘{’Enlb(@i‘yvi 8%) € Empp[[8] is the greatest
solution of the following inequality

s = Y8 = Yo (x) = Yo (D, w38%), (3.37)

where x = (—Dj Wjéci € Emu 8] First, we show that (3.36) satisfies (3.37) with equality.
1ym|b (@ YViéTi Mmﬁb) = @y Yviumﬁb(o)é'fi — @yviéﬂci’
i i -

since Fyviy, g, (0) = vi + [0/b]m = vy, see (3.11), (3.9) and (3.10). Taking into account that
W is isotone, it remains to show that (D; v"10™ m By is the greatest solution of

DY 8™ = Yoy (x) = Wiy (D w3Y) = D155, (3.38)
i j j

Clearly, to achieve equality we need (; = T; and JFyy, (0) = vi. Furthermore, we are looking
for the greatest wj € Enp[[8]], such that vi = Fy,;(0). Due to the canonical form Prop. 11

we can write an (m, b)-periodic E-operator as @?:1 Y Bry™ with 0 < n{ < b. This
operator corresponds to the (C/C)-function

F(k) = mbin (m + ln{JkJ m).

i=1

Now we examine F (k) for k = 0, thus

Recall that 0 < ny{ < b, hence Fy, (k) = vi+|(0+k)/b]m is the least quasi (m, b)-periodic
(C/C)-function such that (3.38) holds, i.e., Fy, (0) = Fyvip,.p, (0) = Vi +]0/bJm = v;. This
function corresponds to the operator vVt Bp. O

Example 21. Recall Example 20 with,

s =v'wsB2y'8 @ (V&) (Y raBry' @ 13B2)8 © (vouspr @ v uspay')s?),
S = WS‘Z(S) _ Y] 62 @ <Y362)*(Y363 @,Y564)

The residual‘l’gp(é) is given by
¥,(8) = (Y8R0 (VP8 (V'8  @v°5") ) usha,
= v'13B287 @ (Y'8°)" (v 13828 @ v 13 B28").

In Figure 3.15a and Figure 3.15b, s and‘l’gp(‘l’3|2(s)) are compared, as required s < ‘1’§|2 (W312(s)).
see (2.17).
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t-shift

N W e OO g
t-shift

N W 0O

|
- e
e

@s = v'usp2y's? @ (v’8)* (v’ ushay' @ B) Wi, (Wap(s)) = Y'usp2d? @
Y usB2)8® @ (YousB2 @y uspay')s?). (V%) * (v 13B28® @y uspad?)

Figure 3.15. — For a comparison of the series s and ‘l’g‘ 5 (W3|2 (s)) we examine the slices in the (O-count/t-shift)-
planes for all I-count values k € Zmin of the graphical representation of s and ‘Pg‘ 5 (‘1’3| z(s)).
Clearly, for all I-count values k € Zmin the corresponding slice of ‘l’g‘ 2(‘1’3|2(s)) covers the
corresponding slice of s, therefore as required s < \l’gl 5 (Wg,‘ z(s)).

Proposition 25. Lets = @, y"10" € M [y, 8]. The dual residual‘l’?n‘b(s) € Empllo]l of
s is a series defined by

Wi (@iv“fﬁ) =@, ¥V 5 umBry" ! = sumBry* . (3.39)

Proof. The proof is similar to the proof of Prop. 24, with the difference that instead of finding
the greatest solution we are now looking for the least solution, denoted by \Plinlb (@, v¥id™) e
EmpplI8]), of the following inequality

5 = DY < Wy (0) = Yo (D w8°). (3.40)

Again we show that (3.39) satisfies (3.40) with equality.
Yinjo (69 AN umﬁbvbﬂ — @y imeer 1 Ogm _ (P yvis
i i -

since Fyviy, poyb-1(0) = vi + [(b = 1)/bJm = vj, see (3.11), (3.9) and (3.10). Taking
into account that W}, is isotone, it remains to show that @, yvid* W Poy? ! is the least
solution of

Dy 8% = Wi (%) = Ynpy (@ Wif’cj) = Py (3.41)
i j j

Clearly, to achieve equality we need ¢j = Ti and Fy, (0) = vi. Furthermore, we are looking
for the smallest wj € & p[[8]], such that vi = F,,,(0). Due to the canonical form Prop. 11
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an (m, b)-periodic E-operator can be written as @?:] Y o B Y™ with 0 < n{ < b. This
operator corresponds to a (C/C)-function

F(k) = mbin (ni + [n{;r kJ m).

i=1

Now we examine F (k) for k = 0, thus

Recall that 0 < n{ < b, hence Fy, (k) = vi+[((b—1)+k)/bJm is the smallest (i.e. smallest

in the order in Zin, hence greatest in the natural order in Z ) quasi (m, b)-periodic (C/C)-
(0) =vi+[(b—=1)/b]m = v;.

function such that (3.41) holds, i.e., Fy, (0) = Fyviy, poyo-1
This function corresponds to the operator v, By . O

Example 22. Recall Example zo with,
s =v'usB2y'8 ® (V81 (Y usB2y' @ 13B2)8’ @ (vous2 @ ¥ uspay')s?),
3= \yg‘z(s) _ ,Y162 @ (,Y362)>x<(,y353 @Y564).

The dual residual‘l’gp(é) is given by

¥,(5) = (v'8 @ (o)) (V'8  @v°5") )wsBay,
=Y usB2v'8 @ (v?61)* (Y usB2y' 8 @ v ushay'6%).

See Figure 3.16 for a graphical comparison of the series s and the series \Fg‘z (W3pa(s)).

3.3. Core Decomposition of Elements in &[]

This section focuses on a specific decomposition of series in &y, [0]]. This decomposi-
tion is a factorization of an element in &,y [0 ]|, where the core part is a matrix in M{Y [y, 0].
Based on this decomposition it is shown that operations on ultimately cyclic series in &, p[[8]]
can be reduced to operations on matrices with entries in M [y, 8].

A series s € Epp[[8]] can always be represented as my, Qby, where Q is a matrix with

entries in M{* [y, 8], called core matrix, of size m x b. my, is a row vector defined by

My = [Hm Y] Hm - Ym_]um] ’

and by, is a column vector defined by

b= [By® - B! B -
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8 8
7 7
+ 6 Kt: 6
2 Fa
43 3
2 2
1 1
1 -1
Z
(@s = y'uzBav'6? @ (¥*2)*((v3usB2y' @ (b) WE|Z(W3IZ(S)) = v'usBay's? @
You3p2)83 @ (vouzB2 @y uspay')s?). (V382)* (V3 usB2y' 83 @y uspay' o).

Figure 3.16. — For a comparison of the series s and ‘1/';‘ 2(¥3)2(s)) we examine the slices in the (O-count/t-shift)-
planes for all I-count values k € Zmin of the graphical representation of s and \y';‘ 5 (‘P3| z(s)).

Clearly, for all I-count values k € Zimin the corresponding slice of s covers the corresponding
slice of‘l’g‘z (W3)2(s)), therefore as required s > \Pép (W3)2(s)), see (2.21).

The index b (resp. m) determines the division (resp. multiplication) coefficient and gives
the dimension of the vector. First, we illustrate how to obtain this representation on a small
example and then provide a formal proof.

Example 23. Consider the following series s € &2[[9]),

s =7 1B @ (V'8)* (m2B2y' ® v 12B28?).
Due t0(3.13), Y™ " = WmY", this series can be written as

s=Y'm_e Br®m (1/152)* By @ may'8*(v'8%)* Ba.
M, s Y

Sz
Clearly, My, S1,S; € M{X [y, 8]. Furthermore, in this form the entries of the my-vector and

b;-vector appear on the left and on the right of M1, S1,S2. We now can write s in the core-form
m,Qb; as follows,

_ 0 v (veh)* | | Bay!
S= M2 Y2 :
— £ € B2
mz . ~~ <\ J/

Q ba

54



3.3. Core Decomposition of Elements in &y p[[8]]

It is easy to check that this expression myQb,, indeed represents the series s, since

Bzf]
Ba |
= (V’8%)* 1m2B2y' @778 (v'6%)*12B2 @' m2B2,
=v'12B2 ® (V28%)* (n2B2y' @ v 12B28%) = s.

= |2 V) ey ) [

Proposition 26. Let s = @, wid' € Empll8]] be an (m,b)-periodic series, then s can be
written as s = myu Qby, where Q € MY [y, 6]]m><b.

n

Proof. s being an (m, b)-periodic series implies that all coefficients w; of s are (m,b)-
periodic E-operators. Then due to Prop. 11 all coefficients can be expressed in canonical

I
form w; = @]]‘:1 v umﬁbyvli with J; < min(m,b) and 0 < V{j < b. Therefore, s can be
rewritten as

]i /
. v! .
S @ (DY ey )5
i =1
Due to (3.13) and the fact that Yw € £, wd = dw, the series s can be written as
]i \71. 91'_. i V{.
s=@D (Dy T umy 8 Boy 1),
i =1

where 0 < Vi, = vi; — |vi;/m|m < mand 9y, = |vi/m|. Observe that 0 < ¥i; < m an
0< vi’j < b, hence s is expressed by

Bpy® !
Ji )
S:[Hm Y]Um Ym_]um]@(@Qi;) 1 )
L= Bvy
Bo

where the entry (Qi). M43 b/ = yvii ' and all other entries of Qj; are equals ¢. Finally s
j i
is in the required form s = m;,Qby,, where Q = P; ((—B]];] Qi].). O

For the particular case, where s € £, [[8] is a periodic ultimately cyclic series the core-

form can be obtained as follows. Given an ultimately cyclic series s = @E:] wi S @
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3. Dioids (£,®,®) and (£[[5], ®, ®)

@{‘:] w{ SU(YV8T)* € Empp[[8]], we can always write s such that all coefficients wy, Wy are
in the (m, b)-periodic canonical form of Prop. 11, i.e,

I / ] !
s = DY umBry™8" ® D YN mBry ™8 (vV57)".
=1 =1

Recall that Y™ = umy' and By y? = v'Bu, see (3.13). Moreover, we can always represent
an ultimately cyclic series s € & p[[8] such that v is a multiple of b, i.e, we can extend
(y¥6%)* such that, v = Y1 = lem(¥, b)
(,Y{/Sf)* _ (e (_B,Yfléf @®--- G_)Y(l*])ﬁé(l*])”f)(,yﬁlél'f)*’
_ (e (_B,Yf/éi @--- (_By(lfwilé(lf])i)(,y\/é"r)*'

Therefore, in the following we assume v/b € N and thus By, (y'5%)* = (y¥/°8%)*By. It
follows that s can be written as,

r _ , ] B o .
s =@y rn Y8 By @ PV um ¥ (108" By, (3.42)
i1 " =1 —
i j

where 0 < 1/, Nj’ < band 0 < Ay, Nj < m. Clearly, in this representation, M; are
monomials and S; are series in the dioid (M [y, 8] ,®, ®). Moreover, the entries of the by,-
vector appear on the right and the entries of the m,-vector appear on the left of monomial
M; (resp. series S;). For a given s we denote the set of monomials by M = {M,--- , M}
and the set of series by § = {Sj,---,Sy}. Furthermore, the subsets My (resp. Sy ) are
defined as

VIE{O,--')TTL—1}, VQE{O)"')b_]})

I
Myg = {Mi € M| ' umMiBpy? € Py  umMiBoy™},

i=1

I Y ]/
S1g = {Sj € 8| Y'mS;BrY? € DYV mSiBoy .
j=1

The element (Q)H])b,g of the core matrix is then obtained by

(Quip-g= B MO D S

MeMy 4 S€81,4

In other words, monomial M; and series S; are "dispatched" in Q depending on the left factor
Y'um and the right factor By’ of each term of s in (3.42).

56



3.3. Core Decomposition of Elements in &y p[[8]]

Remark 10. Note that, fors = my,Qby, be an ultimately cyclic series in Ey, [0]], the entries
of Q are ultimately cyclic series in MY [y, 8].

Example 24. Consider the following series
s1 =7 13B2y' 8" ® (Y’ usBay' @V u3B2)8 (v'81)* € & [[8].
We first extend (y'8')* = (e ®v'8")(y?8%)*, because in this example b = 2. This leads to
s1=v'13B2Y' 87 ® (V’usBry’ @y 13B2)8 (e @y'8) (v25%)*
=y B2y 8 @ (V’u3B2v' 8 @V 1328’
Y’ usBay?s! @y usBay' 84 (v?6)*
1 152 3 1 5 3 6 5 1y &4 (4,252 *
=Y u3B2y 8" @ (Y H3B2y @ ¥ 1u3B2)8” @ (Y H3B2 @y H3B2y )d") (v707)™.
Now every term in the sum is rewritten as follows

Y'sBry'e? = v uss?ply,

,}/3 13 BZ‘Y] 63 (‘}/262)* _ FL3Y1 63 (,Yl 62)* BZ‘}/])
Y u3p28® (v?8))* = v usy'8° (v'8%)* o,
Yoz B0t (v18%)* = m3y?8* (v'8%)*Ba,

,Y5 HSBZY] 64(')/252)* _ ,YZHS,Y] 64(,Y1 62)* [32'Y1 .

Therefore, s1 can be rephrased as,

s1=v"is 82 By @ s (V'8N ) Ba@ms (VIS (v'8)*) Bay!
M, N Y NI
Sy S,

DV 13 (Y153(Y152)*) B ® V21 <y164(y162)*) By .
For this series we obtain the following subsets
Mijg = {82, Moo =Mo1 = Mio = Moo = M1 = {e},
So0 = (V2 8'(v'&)*},  Son = {¥'8°(v'8%)*},
S20 = (YO8 821 = Y1818,
S10 =811 = {e}.

The core-form of the series s1 is given by m3Qb; where

y1 53 (Y] 62)* 'Y254(Y1 52)*
Q= 52 €
,Y1 64(Y] 52)* ,Y1 63(,Y1 52)*
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Properties of the m,,-vector and the by-vector

In the following, we elaborate some properties of the m,-vector and the by,-vector, which
are useful for computations for series s € & [[0]]. Consider the m;-vector and the b;-vector
with same index 1, i.e., mj-vector and bi-vector have the same length. The scalar product

m; ® b is the identity e, since Prop. 12,

m®@b; = wpy' ' @Y LB TP OV T B = e.

The dyadic product b; ® m; is a square matrix in M{X [y, 8], denoted by E.

n
[ 2.1y 18,1 13410 oo 1821 |
By ' Y B Y By Y BYT T
By 2w By ' Y'Buw o YIBY m
E=bi®m;= : : : :
Bivlmi  Bivimi BiY’mi o Y'Bim
| Bim Biviw  Bivim - By |
e y] oo ‘Y]
_ aE
Y
_e PR ) e_

(3.43)

(3-44)

since Biy™"y = e for 0 < n < 1. If necessary, the dimension of E is stated as an index, e.g.,

E, = bimi € {en/]}i”.

Proposition 27. For the E matrix, the following relations hold
Ei ® Ei = E4,
Ei ® b; = by,
m; ® E; = mj.

Proof. Because of mib; = e, see (3.43), we have
Ei®Ei = bi® m{ ® by ® m; = bi ® e ® m; = E;,
Ei®@bi = bi®m; ®bi = b; ®e = by,
m; ® E;

m@®bi@m; =e@m; = m;.

Corollary 1. Observe that 1 @ E = E and E = EE, as a consequence,

E=1PEQEEDEEE®D - --
= E*.

58



3.3. Core Decomposition of Elements in &y p[[8]]

Since the scalar product m;b; = e (3.43) and E = E* (3.48), under some conditions the left
product and right product of matrices with entries in £[[8]] by my, and by, are invertible, see
the following proposition.

Proposition 28. For D € E[[5]]'*™ and P € E[[8]™*", we have

mp D =bn®D,  Péby, = P@my,. (3-49)
For O € E[[8]™™, N € E[8]°*™, we have

(OE))ﬁmm = OE® by, beQ(EN) = mp ® EN. (3.50)
Proof. See Section C.1.1 in the appendix. O

Corollary 2. For D € £[[8]™*°, E}(ED) = ED and (DE){E = DE.
Proof.
EMED) = (bmmm) &(ED%
= my, §(bm §(ED)), since (ab)¥x = bk(akx), see (A.5) in Appendix A
= my, §(myED), since (3.50)
= bn(mLED), since (3.49)
= EED = ED.

The proof of the right division (DE)¢E = DE is analogous. O

Greatest Core-Form

Given a series s = m;,;,Qby, € 5m|b[6ﬂ, in general, the core-matrix Q is not unique, i.e.,
s = myQby, = m;,Q’by, where Q # Q’. In the following, we prove that s admits a unique
greatest core, denoted Q € M [, éﬂmXb (greatest with respect to the order relation in the
dioid M [y, 8], i.e., Q>QandQ >Q’).

n

Proposition 29. Lets = my, Qby, € &y p[[8]] be a decomposition of s € Exp[8]]. The greatest
core matrix is given by,

Q = EnQEy,. (3.51)

Proof. Consider the inequality m,Xb, < m;Qb, = s. Then because of Prop. 28, the
greatest solution for X is

My, §m, Qbygby = byymy, Qbymy, = En QE, = Q.
Furthermore, because of m, = m,Ey, (3.47) and by, = Eyby, (3.46),

mmabb = myuEQEyby = m;,Qby, = s.
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Remark 11. The greatest core matrix Q has the following properties. Since E® E = E, then
Eﬁ = EEQE = ﬁ and QE = EQEE = Q. Asa consequence, EQE = Q

Remark 12. Due to the order of the entries in the E matrix, the left and right multiplica-
tions of the core matrix with the E matrix induce ordering of the entries in the greatest core
A . . . . . . 3 .
Q. More precisely, in every row the entries are in descending order, i.e. Vie {1,--- ,m}, Vj e
{1,---,5=1} (Q)ij = (Q)ij41 and in every colet\mn the entries are in an ascending order, i.e.
Vie{l,---,m—1}, Vje{l,---,b} (Q)i; < (Q)is1,j. Furthermore, all entries of the great-
est core have the same asymptotic slope. Thus, the greatest core is highly redundant. When we
think about software tools it is desirable to reduce memory usage. Therefore, for implementation
AN . A
the order in Q can be used to define a lean representation of Q.

Example 25. The greatest core of the series considered in Example 24 is given by

Q = E;QE;,,
_e Y] ,Yl Y153(Y] 62)* Y254(’Y]62)* . Y]
=le e ¥ 52 € [ ] )
e (S
e e e Y154(Y]52)* Y]53(Y152)*
y1 630,1 62)* y264(y1 52)*
— 62 @’}/153(’}/1 52)* y162(y162)*
52(‘}/] 62)* ,Y1 63(’}/] 62)*

Note that all entries have the same asymptotic slope (y'6%)*. Moreover, observe that the entries
in Q are ordered, e.g., (Q)11 > (Q)12, asy' 83 (Y'82)* = v28* (v 82)*, respectively (Q)1 2 <
(Q)22, as Y28 (v'8%)* < v'82(v'8%)*, etc.

3.3.1. Calculation with the Core Decomposition
To perform addition between two series s; = mpy, Q by, € &, b, [8], 52 = mp, Q;by, €
Emy|b, [8]] with equal gain, i.e. m/by = m;y/by, in the core-form it is necessary to express

the core matrices Q; € M [y, §]™ *®" and Q, € M [y, §]™2*"2 with equal dimensions.
This is possible by expressing both series with their least common period m = lem(my, m;),
see the following proposition.

Proposition 30. A seriess = m,,Qby, € EmpplI8] can be expressed with a multiple period
(nm,nb) by extending the core matrix Q, ie, s = my,Qby, = mnmﬁ/bnb, where Q/ €
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M [y, §]™™*™ and is given by

Tﬂ’fAMn n'YiA’Yun ny—/\y,un
B n ]Q B n ]Q 1 B n ]Q -
Q/: BnYn—zﬁun Bn'yn—lc\h/]un BnYn_zﬁYn_]pn
n/\]vl.n T‘LAY ™ n/\'y S
[3 Q B Q ! B Q n—1
roof. See Section C.1.2 In the appendix.
Proof. See Section C.1.2 in the append; O

Proposition 31. Lets = my;Qby, s’ = mQ'by, € Enp[[8]] be two ultimately cyclic series,
the sums®s’ = m;,;, Q"by, € €m‘b|16]] is an ultimately cyclic series, where Q" = (Q® Q).

Proof.
s®s’ = mnQb, ®m,Q'by, = My (Q® Q')by, = m;Q by,

Clearly, the entries of the core matrices Q and Q' are ultimately cyclic series in M&¥ [y, §].
Because of Theorem 2.6 the sum of two ultimately cyclic series in M¥ [y, 8] is again an
ultimately cyclic series. Therefore, Q" is composed of ultimately cyclic series in M& [y, 8]

and thus s @ s = m;,Q"by, is an ultimately cyclic series in Epp[8]]. O

Corollary 3. Let s = m,;Qby, s’ = m,Q by € EmplI8] be two ultimately cyclic series,
with Q, Ql are greatest cores, the sums @®s’ = mmCAl”bb € €m|b|16]] is an ultimately cyclic

. " N .
series, where Q" = (Q@® Q") is again a greatest core.

Proof.
s@s’ = muQby, ®myQ'by, = my (EQE® EQ'E)by = m, E(Q® Q')E by,
—_—
6//
O
To perform multiplication between two series s1 = my, 61 by, € 5m1|b1 [8], s2 =

my, szbz € Em, b, [8] in the core-form it is necessary to express the core matrices with
appropriate dimensions. Due to Prop. 30 and by choosing b = lcm(by, m;) we can express
$1,$2 such that s1 = my, (Alllbb ands; = mbﬁébbé, with m{ = my x lem(by, m,)/by and
bé = bz X 1cm(b1,m2)/m2.

Proposition 32. Lets = myuQby € £y b [8]] and s’ = myQ'byr € Eppp[8] be two ulti-
mately cyclic series, the product s ® s’ = mQ"bys € Eny/[[8]] is an ultimately cyclic series,

where Q" = QEQ’.
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Proof.
s®s’ = myQbym,Q'by, = My QEQ'by = m Q" by

Moreover, the entries of the core matrices Q and Q’ are ultimately cyclic series in MEx [y, 8].

Because of Theorem 2.6 the sum and product of ultimately cyclic series in M [y, 8] are

again ultimately cyclic series in M® [y, 5]. Therefore, entries of Q" are ultimately cyclic

series in M [y, 8] and the product s ® s’ = myQ"by- is an ultimately cyclic series in

Sm‘b/[[é]]. O
Corollary 4. Lets = m,;Qby, € Emplld] and s" = my,Q by € Epppr[[0]] be two ultimately
cyclic series, with (/i, (All are greatest cores, the product s ® s’ = mmf\l”bb/ € Em‘b/[[f)]] is an

n" /
ultimately cyclic series, where Q = ﬁﬁ is again a greatest core.

Proof.
s®s’ = myQbym,Q'by = m,QEQ by = m,, QQ by,

Furthermore: QQ/ = EQEECAZIE = CAl”.
O
Proposition 33. Let s = m,Qby € Eyp[[0]]. Then, s* = my(QE)*by € &, [[8] is an
ultimately cyclic series.

Proof. In this case, ['(s) = b/b = 1 means that Q is a square matrix. Moreover, recall that
byE = by (3.44) and therefore s = myQEby,.

s* = e ® m,QEby, @ myQEb,m,QEby, @ - - -
Since, e = mpby, (3.43), E = bymy, (3.44) and E = E* = EE (3.48),
s* = mpby, ® my,QEb, @ m,QEEQEb, @ - - -

—my(I®QE® (QE)* @ --- )by,
= my,(QE)*by.

Again due to Theorem 2.6 the Kleene star, sum, and product of ultimately cyclic series in
MEX [y, 8] are ultimately cyclic series in MY [y, 8] and therefore, s* = my(QE)*by, is an

ultimately cyclic series in Ep|p [[0]]- O
Remark 13. Lets = m,Qby, € Ep|p[8]] be an ultimately cyclic series expressed with a greatest
core. Then, s* = mbﬁ*bb € Sb|b [8]] is an ultimately cyclic series. However, in general,
ﬁ* < EQ*E as:
A A A2
Q' =190QeQ -
~1QEQE®EQE - .
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Whereas,
EQ*E = EIEQ EQE ®EQE - --
— E@Q@ﬁz..._

However, EQ'E = (EQ*E)* asE = E® I and EQ*EEQ*E = EQE. For an illustration,
consider the star of the zero element ¢, clearly (¢)* = e. In the core-from, withm = b = 2,
this can be written as

*
(8)* = m) [8 E] bz = my [e 6] bz.
£ & £ €

Note that in this case, 1 is not the greatest core, i.e. 1 < EIE = E.

In general, for complete partially ordered dioids, such as (E[[3]], ®, ®), multiplication is
not distributive over A, see (2.2). However, in the following lemmas, we show that dis-
tributivity holds for left multiplication by the m,-vector and right multiplication by the
bm-vector for specific matrices with entries in E[[8].

Lemma 2. Let Q;,Q; € E[6]™*P, then
m; (EQ; A EQ;) = mpEQ; A mpEQ,.

Proof. The proof is similar to the proof of Lemma 4.36 in [1][Chap 4.3.]. There distributivity
is proven for c(a A b) = ca A cb for the case that ¢ admits a left and right inverse. For this
proof, recall that e = my, by, (3.43), E = byymy, (3.44) and E = EE (3.45). Moreover, recall
that inequality c(a A b) < ca A cb holds for a, b, ¢ elements in a partially ordered dioid,
see (2.2). Now let us define ; = mEQ; and ¢, = m;;; EQ,, then

a1 A q2 = e(qq A q2) = mubn(dy A dz) < mp(bng; A bndy).
Inserting q; = myEQ; and q, = my EQ; lead to,

my, (bng; A bng,) = my(byymyEQ; A byym EQ)),
= mm(EEQ1 N EEQz),
= mn(EQ; A EQy).

Finally,
my (EQ; A EQy) < mpnEQ; A mpnEQ; = g7 A Q).

Hence, equality holds throughout. O

63



3. Dioids (£,®,®) and (£[[5], ®, ®)

Lemma 3. Let Q;, Q; € E[6]™*P, then
(Q1E A QuE)by, = QiEby, A QuEby,.
Proof. The proof is similar to the proof of Lemma 2. O

Proposition 34. Lets = mmﬁbb, s’ = mmﬁlbb € Sm‘b[[é]] be two ultimately cyclic series,
thens A's’ = my,Q by € Empp 8]l is an ultimately cyclic series, where Q"' =@AqQ)is
again a greatest core.

Proof. Let us recall that Q = EQE, then according to Lemma 2 and Lemma 3 we can write

sAs’ =mnQby A mm(/i/b}J = mnEQEby, A mmE(A)/Eb}J — m (EQE A Eﬁ/E)b}J
= mm(ﬁ N 6/>bb

P/

= mm(Q )bb

It remains to be shown that Q" = Q A (A),) is a greatest core. Clearly, E = E* = I ®E
implies that 6” < Eﬁ”E. Then, according to Lemma 2 and Lemma 3,

EQ”E = E(Q A QI)E = bmmm(ﬁ A 6/)bbmb = bm(mmﬁbb A mmﬁlbb)mb.

Recall, c(a A b) < ca A cband (a A b)c < ac A bc (2.2), therefore

A AN

bm(mmﬁbb N mmﬁlbb)mb =< bmmmﬁbbmb N bmmmﬁlbbmb = Q AQ =Q.

Hence, equality holds throughout. Moreover, note that due to Theorem 2.6 (/i” is a matrix
. . . . . ax / A .

where entries are ultimately cyclic series in MY [y, 8], hence s A s’ = dyQ p,, is an

ultimately cyclic series in &y b [0]]- O

Division in the Core Form

Proposition 35. Lets = m,,Qby, € Emplld], s' = mnQ'by € Empp/ [8]] be two ultimately
cyclic series. Then,

ANV A AN
s"%s = my/(Q %Q)by = my/Q by,
is an ultimately cyclic series in Ey/|, [[0]], where Q' = (AIIXQQ is again a greatest core.

Proof. First, it is shown that

Q"%Q = Ey (Q"5Q)Ey. (3.52)
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(Es (Q"5Q) ) Ev = (Evr (Eo (Q'5Q) ) ) v, since: Corollary 2
Ey/ (Eb’ <<Q Eb’) &Q))) Eyp, since: Q = QE
e e e (070)) )
since: (ab) §x = bg (akx) (A.5)
Ep’ ( )) Ep, since: ak(a(akx)) = akx (A.4)
,Eb’> x2Q> Ey, = (A/§Q) Ey,
since: (ab) kx = bk (akx) (A5) and Q = QE
;szb > Eb> ¢Ep, since: Corollary 2 twice

(a
(a
( &Q) yfzb) Eb) Ey, since: (akx)fb = a(xfb) (A.6)
Q'

— (@"4Q) /By, since: ((xfa)a)ja = xfa ()
- Q'% (QsEy) = Q'xQ,
since: (a'x)fb = ak(x¢b) (A.6) and Corollary 2 .
Second,
(mmﬁ’bb/) % (mnmQby) = (Q'bb/) § (M §(mnQby)),  because of (A.5),

- (Q/bb/) % (bnmmQby),  because of (3.49),
- (ﬁ’bb,) % (Qbp), asbymuQ = Q Remark 11,
- (Q/bb/) % (Qfmy), from (3.50) and Remark 11,
— by Qlk{(Qﬁmb)) , because of (A.5)

= by} (A/%gﬁ);émb) , because of (A.6),

= my/ (Q %Q)byp, because of (3.50) and (3.52).

Due to Theorem 2.6, the quotient Q&Q, is a matrix composed of ultimately cyclic series in

MEX [y, 8] and therefore the quotient s’§s = my/ (Q Q'%Q)by, is an ultimately cyclic series
in gb’|b II&]] ]
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Proposition 36. Lets = m,,Qby, € Emplldll, s' = mQ'by € Empl[8]] be two ultimately
cyclic series. Then,

Al

sps’ = mm(aﬁﬁl)bm’ =mnQ by,
is an ultimately cyclic series in Eyjn/[[8]], where Q' = Q;éﬁ/ is again a greatest core.
Proof. The proof is analogous to the proof of Prop. 35. O

Let us note that to compute the infimum and the quotient of two series in the core-form
both series must be represented with their greatest cores.

Minimal Core-Form

In contrast, to extending a core, see Prop. 30, we can check if a series s € Enp[[8]] can
be represented by a core-matrix with smaller dimensions. In the following, we prove that a
series s € Emp[8]] can be uniquely represented by a greatest core with minimal dimension.

Proposition 37. An ultimately cyclic series s € Enp[[0]] has the minimal core-form s =

A A b . . . . . .
m, Qby,, where Q € Mg¥ v, 6]]mx is a canonical matrix of minimal dimensions m x b.

Proof. In the following, we give an algorithm to obtain the minimal core-form. Given a series
s = m,Qby € Empll8], with X = {n € NJm/n € Nand b/n € N} is the set of all common

divisors of m and b. The biggest n € X such that s = mmQby, = m,, /nﬁ/bb /n determines
the canonical core-form of s. One can check for every n € X if s can be represented with

a smaller core Q' € MEX Ty, 6ﬂm/n><b/n. First a core candidate Q' € MEX Ty, 6]m/n><b/n is
computed based on the first m/n rows of Q. Second, the candidate Q' is extended by n, see
Prop. 30. Therefore, § = mm/ndlbb/n = mebb. IfQ = ﬁ, then s can be represented by
s = mm/nfl/bb /m- To obtain a core candidate we partition the core Q into submatrices of

size m/n x b/n.

3

Q1 Qi - Qi m/n
Qy Qp - Q| (m/n

o
I
3

Q;l] Q'Zn Q;m }m/n

A e ~——
b/n b/n b/n

=%
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where for Vi,j € {1,---n}, Q; € M [v, 6]]m/nXb/n. Then a core candidate Q is computed

n
based on the matrices Qi1,Qq2, - - - , Qi as follows,

Brgy™d™!
5=[um v‘”um]Qn : A
Brgy™d "
Bng'Yg_]
®[um V“'mn] Qi : ,

Bng
= mpa Qyy Bnyn_] b;® - @ mlUnQ]anbga

= m (HnQH Bnyn_] DD HthmBn) by,
= mlflbg.
O

Definition 37 (Causal Series in &y, [8]]). A series s = @y Wid' € Enp [8]], with wiyq <
Wy, is said to be causal, if s = € or for alli < 0, w;y = € and for alli = 0, w; < wnPy. The
subset of causal (m, b)-periodic series of £, [[0]] is denoted by gnt|b 8]

Remark 14. The causal projection Pr::llb tEmplle] — Ent‘bllé]], is given by, fors = m;Qby, €
gm\b [[6]]

Pr;‘b(s) = Pr;rl‘b (mmﬁbb) = mpPr (Q) by,

where Prt(Q) € M®* [y, 5]™*® is the causal projection of the greatest core Q in the dioid
MEX [y, 8], see Remark 6.

Example 26. Consider the operatory~ 8% € &, 11[[8]], clearly, this operator is not causal since
the exponent of vy is —1, i.e, w1 = e = y° < y~!
v°8° = e. Therefore, e is the greatest (1, 1)-periodic causal operator smaller than y~'8°. This
coincides with the causal projection of the operator y~18° € M [y, 8], i.e, Prt(y~18%) =
v°8° = e, see Remark 6. However, if we expressy ™~ 8° in its (2, 2)-periodic form, i.e., (y ™' ua B2y’
B [52)50, and then perform the causal projection, i.e.,

. The causal projection Prr|1 (y18%) =

Py, <(V_]H252Y1 &) usz)ﬁO) = wpB28°

we obtain 11, 328°. Observe that 1328° > e = (WaP2y' @y ' 12B2)0° and hence Przr|2 (y18%
> Pr1+|1 (Y716%). w2280 is the greatest (2,2)-periodic causal operator smaller thany~'8°.
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+
m|b

the greatest causal (m, b)-periodic series such that Pr::db(s) < s, in general, there might be

As shown in Example 26, for s € &y, [0]], the causal projection Pr;’ . (s) only provides

a causal (nm, nb)-periodic series s’ such that Pr:qb(s) <s' <s.

Remark 15. Lets = (—Biezwiéi € Emplld]l, with wiry < wy, and for alli = 0, w; <
Um Py, then the causal (m,b)-periodic series Pr;w(s) is the greatest causal series such that
Pr;“’(s) <s.

3.4. Matrices with entries in &, [[9]]

In the last section the core decomposition for series in &, [0]] was introduced. This
section extends the core representation to matrices with entries in &y, [8]]. We first give the
decomposition for a trivial example and then show how arbitrary matrices A € & [[8]]9*P
can be handled. However, the focus of this section lies on a particular subclass of matrices
with entries in &y [8]], called consistent matrices. The study of this subclass is motivated
by the modeling of consistent WTEGs in the dioid (E[[8]], ®, ®), see Section 6.2. Similarly
to Section 3.3 it is shown that all relevant operations on consistent matrices with entries in
Emp[[8] can be reduced to operations on matrices with entries in M{Y [y, 8].

Example 27. Let us first consider the trivial case, in which all entries of a matrix are (m, b)-
periodic series in £y, [8]]. For instance, the following matrix A € Eyp[8]** with (m, b)-
periodic entries aj1, a2, a1, 022 € 5m|b[[5]]-

A_ o anz| _ [mnQuby, mnQiby
az axz mnQa1by My Qpby

This matrix can be represented in the following decomposed form

A:[mm 8][Q11 Q12] [bb 5].
e mn||[Qn Qn||e by
—_—
Q

Clearly, Q is a matrix with entries in M{X [y, 8] of size 2m x 2b.

In general, for matrices with entries in &y, [[0]], the entries may have different periods.
For instance, consider the matrix

A [an a1z] _ [m3anz sz1zb3]

a ap myQz1bs m3Qybs
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For this matrix, the decomposition as shown in Example 27 is not possible. However, we can
decompose an arbitrary matrix A € £ p [8]™*N as follows,

an aiN manben mTTUNQ]Nbb]N
A — — . .
amr -0 AMN mmI\/HQNH bbrvn T Mgy QMNbeN
= MLQBgr
where,
mm]] .. mm]N £ PR a
E P s
M =
€ €
8 e 8 _mmM] e mmMN
by,, ¢ €
3
€
€ e by,
Br =
by, ¢ €
€
€
€ € boyn
Q¢ 3
€
Qin
Q =
Qmi
3
| € € QMN_

In this form, Q is a block diagonal matrix again with entries in M [y, 3].
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3.4.1. Decomposition of Consistent Matrices

Definition 38. The gain of a matrix A € &, [0]IP*9, denoted by T(A) € QP*9, is defined
by

(F(A»i,j =T ((A)ij)-

Remark 16. Note that, because for an (m,b)-periodic element a € Eyp[[0], m and b are
strictly positive integers, therefore the entries of T (A)) € QP*9 are again strictly positive.

Definition 39. A matrix A € Eqp[8]P*9 is called consistent, if rank(I'(A)) = 1, ie., the
rank of its corresponding gain matrix is 1.

Remark 17. When we consider matrices with entries in &y, [[8]] and some entries equal to
the zero element ¢, the gain to these elements can be freely chosen to any positive value in Q.
Recall that Yk € Znin, Fe(k) = oo and therefore Yk € Zmin, Ym,b € N, Fc(k + b) =
m + Fe(k) = co. Hence, we can choose any period for the ¢ operator (Remark 8). Now recall
that fors € Enp[[8]], T'(s) = m/b (Definition 32), therefore the gain T (¢) can be chosen to any
value in Q. Thus, if we check (minimize) the rank of the matrix I'(A) the entries (A); equal
to € are variables.

Example 28. Consider the following matrix A € Sm‘b[[é]]zxz,

2
A [e uzf5353] _
€ Hafd

The corresponding gain matrix I'(A) is

1 2
ra = 3l

where a € Q, a > 0 is variable. Clearly, for a = 6, the matrix I'(A)) has rank 1 and thus the
matrix A is consistent.

We use the adjective consistent for matrices with entries in &y, [[8] since a consistent
WTEG admits a consistent transfer function matrix H € &, [8]], this is shown in Section
6, Prop. 95. In the sequel, we elaborate the core decomposition for consistent matrices with
entries in Em‘b [8]]- Furthermore, we give the conditions under which the sum, product, and
quotient of consistent matrices are again consistent matrices.

Theorem 3.1 ([41](0.4.6(e))). Let N € QP*9 be a matrix of rank 1, then N can be written as
a product: N = LR where L € QP*! and R € Q'*9.

Remark 18. The full-rank factorization of N is not unique. Therefore, given a matrix N €
QP*9 be of rank 1, then N can be written asN = LR, whereL € ZP*" andR = [1/r1 -+ 1/14] €
Q'™9, whereVie {1,--- g}, 1 € Z.
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Remark 19. Recall the fact that the gain of an element a € &y, [[0] is a strictly positive value.
Therefore, given a consistent matrix A € Eyp[[0]|P*9 we can express the gain T(A) € QP*9
by the product a.a, where a. € QP*' is a column vector with strictly positive entries and
a, € Q"9 is a row vector with strictly positive entries.

In general, a consistent matrix A € Enp[[8]]9°P can be decomposed into a M [y, 8]
matrix (core), a matrix My, and a matrix B,,, which are block diagonal matrix where the
entries are my,-vectors and by-vectors, i.e.,

my, & -- € by, ¢ €
e . e
M,, = ) B, = .
€ . . . €
| £ £ mmp_ | € £ bbg_

Theindicesw = [my - --mp]andw’ = [by - - - by] are vectors, the entries of which represent
the multiplication and division coefficients.

Example 29.

[Hs v'us qus] €
M) = 1
€ [uz Y uz]
_[Bzv]] ¢ |
B2
B2s) = B3y
¢ B3Y'
i B3 1

Similarly to the scalar case, where mib; = e and bim; = E, the product M,,B,,s and
B.,’M,, are specific matrices. Let us consider a specific matrix M, and a specific matrix B,
such that w = w’, thus both matrices have the same weight vector w. Then, by recalling
that my, b, = e (3.43),

My, bn, ¢ € e € €
e .o e .o
My B,, = . = = 1.
: . . c RS e
i € e € mmpbmp_ (e - & e
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Moreover, because of by, mm, = En, (3.44),

bnmy, ¢ - € Em, €& -+ ¢
€ : £
B.M,, = = _
€ : L €
i € s € bmpmmp_ | ¢ € Emp_

This product B,yM,, is denoted by E,,. As in the scalar case, one has EyE,, = Ey; MyE,, =
My, and E,'B, = By,.

Proposition 38. For My, (resp. By,’) we have

My, 5D = ByD, OfB,, = OMy/, (3.53)
(NEW)%MW = (NEW)BW» Bw’\g(Ew’G) = Mw’(Ew’G)> (3-54)

where D, O, N and G are matrices of appropriate size and with entries in E[[8].
Proof. See Section C.1.3 in the Appendix. O

Proposition 39. Let A € Eyp[[0]|P*9 be a consistent matrix, then A can be decomposed in
the following form:

PAaN AN
ar s Qin mmn, Qpby, - mp, Qigby,
A= : N : : )
Pay Pay
| Ap1 ©+ Opn mm, Q) by, - Mp, (lpgbb9
mm] € [N € R N bb1 € NN €
. Qyy - Qg . )
3 PR : . . e . .
=\ . : : S - (355)
: e A A ; e
Qp] o ng
€ € My, ~ € e b s
My, B,/

Proof. Due to Theorem 3.1 one can represent all entries of a row (A);. with the same m;-
vector. Similarly one can represent all entries of a column (A).; with the same b;-vector.
Then the mj-vector are factored out on the left in the M,,-matrix and the b;-vector are
factored out on the right in the B,,/-matrix. O

Example 30. Consider the following matrix A € Sm‘b[[é]]zxz,

A | (mB2y' @Y 12B3)8" (v'81)* usfad® |
WP Hap18°
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Expressing all elements of the matrix in the core form leads to,

m3 £
62 (,Y1 52)*

Mm ™M M 0

61 ('}/1 52)* ,Y1 62(Y] 62)*

£
51 (’YI 52)*

b;

The gain matrix I'(A) of matrix A is,

e[ 4l

|-

Nl—

b,

e &2
m3le ¢
£ €

53

€

my
€
€

b,

Clearly, T(A) has rank 1, thus A is consistent. Moreover, I'(A) has a rank 1 factorization given

T T
by the vectors [3 8] and []/2 ]/2]. According to the entries of [3 8] all entries of the

first row of matrix A are expressed with the ms-vector and all entries of the second row with the

mg-vector. Respectively, according to the entries of []/2 1/2] all entries of the first column

of matrix A are expressed with the by-vector and all entries of the second column with the b;-
vector. This is achieved by extending the core-matrices of the entries (A)1 and (A)2,2, Prop. 30

and leads to,

62('}/] 52)*
e

e

A= e

mg

Note that in this form the entries are expressed with their greatest core-matrices. This matrix

61 (Y] 52)* Y] 52(Y] 52)*
m3 | §! (Y] 52)* Y1 52(Y1 52)* b,

61 (,YI 62)*
,Y1

1

v
v!

1
Y b,

[¢)

o

m3

mg

5% 82
52 82| b2
5% 82
[ 83 ,Yl 53 ]
53 ‘Y] 53
53 V] 53
53 1 53
Y b,
3 8
3 8
3 8
3 8
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can now be written as a product in the following form,

61 (Y] 52)* yl 52 (Y] 52)* 52 52
5! (Y1 52)* YI 52 (Y] 52)* 52 52
62(Y1 52)* 51 (Y] 52)* 52 52
e ,Y1 63 ,Y1 63
m3 & ¢ v R b, ¢
S
€ mg . » 5 Y15 e by
M3 5] e e & 8 B2 2
e e & 8
e e &8 8
i e e & 8 |
Q

Clearly in this form Q is a matrix with entries in M [y, 8].

Greatest Core-Matrix in the Matrix Case

As in the scalar case, where Q = EQE is the greatest core of the series s = m;;,Qby €
Emp[[8]], it can be shown that E,,QE,,- is the greatest core of the consistent matrix A =
M. QB,,: € gm|b[[6]]pxg'

Proposition 40. Let A = M, QB,,/ € & p[[8]]P*9 be the decomposition of A € Epy [P 9.
Then the greatest core matrix is given by

Q = E.QE,. (3.56)
Proof. Consider the inequality M,,XB,,» < M,,QB,, = A. The greatest solution for X is
My k(M QB,,)¢B,, = B4M,,QB,,/M,,: = E,,QE, = Q.

Furthermore, Q is indeed a core of A € Empll8]P*9, as My = MyE,, and B, = E,/B,,/,
therefore

M, QB,, = MyE,QE,, B, = M,QB,, = A.
O

Prop. 40 implies that E,Q = QB,,» = Q. Similarly to the core extension in Prop. 30 the
core (Al can be extended as follows.
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Proposition 41. A consistent matrix A = My QB,,’ € Emp[8]P*9 can be expressed with
multiple periods by extending the core matrix Q, i.e.,

mp, & .- € ~ ~ by, ¢ €
Q- Q }
€ 3
A= : )
£ A A £
Q‘p] . ng
€ € My, | S — € € bb9
i g 1 9 L i
My B,/
Mpm, € € . N bnp, € €
Q- Q
B 3 . €
& Al PN &
Q, - Q
8 PR 8 mnmp . 8 PR 8 bnbg
— — P - —
' Q v
M(nw) B (nw)

Proof. Yie {1,--- ,p}, Vje{l,---,g}, Q{J can be obtained by extending (Alij, see Prop. 30.
]

3.4.2. Calculation with Matrices

Sum and Product in the Matrix Case

Proposition 42. Let A, P € &, [0]]™*P be two consistent matrices, then the sum A @ P is
a consistent matrix if and only if T(A) = T'(P).

Proof. This follows from Prop. 16, all entries (A®P); ; must satisfy I'((A®P)i;) = T'((A)i) =
F((P)iy)- 0

Recall that due to Prop. 41, by extending the core-form if necessary, two consistent matri-
ces with equal gain can be expressed with their least common period.

Proposition 43 (Sum of Matrices). Let A = MWQBWI, P = MWQIBW/ € Empp [o]™P be
two consistent matrices satisfying Prop. 42, then the sum A @ P = MWQ”BWI, where Q" =
ﬁ &) ﬁ/ is again a greatest core.

Proof.

M, QB ® My, Q By = My, (EwQEy @ EwQ'Ey)By/
= M, Ew(Q@ Q,)Ew/ Bw’
[ ———

AN
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Clearly, the product of two consistent matrices is not necessarily consistent itself. In the
following proposition, the conditions are given under which the product of two consistent
matrices is again consistent.

Proposition 44. Let A € Eyp[[8]P*9 and P € £, [8]]9*! be two consistent matrices, then
the product A ® P is consistent if and only if Vk € {2,--- , g},

(F(A)) 1,k(r(P))k,1 = (N(A)) 11 (F(P))m . (3.57)

Proof. Recall (A ® P)ij = @71 ((A)ix @ (P)k;) (2.10), this sum is in Eyp[6] iff Vk €
{1> T 9}’

T((A)ik)T((P)k) = T((A)1)T((P5),

see Prop. 18. It is sufficient to check this property for i = j = 1, i.e, for the first row of
matrix I'(A) and first column of matrix I'(P), since both matrices have rank 1 and therefore
all rows/columns are linearly dependent. O

Corollary 5. Let A € Eyp[[8]P*9 and P € Eyp[[8]19%" be consistent matrices satisfying
Prop. 44. Then, T(A) = aca, and I'(P) = p_p,, where a. € QP> a, e Q"9 p, e Q9*!
and p, € Q"' (Remark 19). Then, Q. is linearly dependent to every row of T(A) and p,. is
linearly dependent to every column of T'(P). Therefore, (3.57) can be written as,

(ar)1(pch = (ar)k(Pe)x, Vke{l,---,g}. (3.58)
Then gain matrix I'(AP) is given by
M(AP) = ac((ar)i(pe)1) P (3.59)

Proof. Form (3.57) follows that,

(FAP))i; = (NA))1 (PP

= (ac)i(ar)i(pe)i(pr)
Hence I'(AP) = ac((ar)1(pe)1)pr- O
Proposition 45 (Product of Matrices). Let A = MWCAIBW/, P = MW/Q/BW// € Sm‘b[[é]]
be two consistent matrices satisfying Prop. 44, then the product AP = My, Q" By, where
Q” = QQI is again a greatest core.

Proof. Because of, B,,’M,,» = E,,» and QE, = Q,

AN A AN A/ AN/
MWQBW’MW’Q By = MWQEW’Q By = M QQ Bw”)

P/

Furthermore: Qﬁ/ - E,QE, E,QE,» =Q .
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Proposition 46. Let A € Eqp[8]™*™ be a consistent matrix, then the Kleene star A* is a
consistent matrix if and only if T(A) = aca,, where a. € Q™*' and a, € Q'™ such that
(ac)i = ((ar)) . Vie {I,---,n}.

Proof. The Kleene star of matrix A is computed by
A*=10APAAD---
According to Prop. 42 and Prop. 44 we need
1. I'(I) =T(A),
2. T(A) =T(AA).
To satisfy (1) the diagonal entries of I'(A) must be equal to 1, i.e, Vie {1,---n}, T(A);; =

(ac); x (ar); = 1. Clearly, this condition is satisfied if (a.); = ((ar);)~'. Moreover, (3.58)
and Prop. 44 is satisfied as well. Then for (2) recall Corollary 5, thus

NAA) = ac((a)i(ac)r)ar = aca, = I'(A),

since (a,)1(ac) = (ar)i((ar)) " = 1. O
Corollary 6. Let A € &y p[0]IP*9 be a consistent matrix satisfying Prop. 46, then T'(A) =
r'A™).

Proposition 47 (Kleene Star of a Matrix). Let A = M, QB,, € Em‘b[[é]]nxn be a consistent
matrix satisfying Prop. 46, then A* = My Q" By,
Proof. Note that, My,-matrix and the B,,-matrix having the same weight vector w, implies

that ﬁ is a square matrix. Then since, My, B,, = I, By,yM,, = E,, and Ewﬁ =Q

A* =1 @ MWQBW @ MWQBWMWQBW D .
= Mwa (’B MWQBW (‘B MWQZBW (‘B Tty

= MW(I@Q(—BQZ@)BW,
= M, Q"B,,.

Again not that (Al* < EWQ* E,,, hence ﬁ* is not the greatest core of A*.

Division in the Matrix Case

Proposition 48. Let A € £, [8]P*9 and P € £, [8]]P* be consistent matrices, then the
left division AXP is consistent iff 3c € Q, ¢ > 0 such that,

c(MA)) ;= ((P),,  Vke{l,--,ph
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3. Dioids (£,®,®) and (£[[5], ®, ®)

Proof. Let us recall that (AXP)i; = AR_; ((A)ii{(P)k;) (2.24), this infimum is in &y, [3]]
iff vk e {1,---,p},

F((A)i’(P)kj) = T((A),i5(P)15)-
Moreover, recall I'(s2%s1) = I'(s1)/T'(s2) (Prop. 20), thus Yk € {1,--- ,p},

M(A)ki%(Phj) = T((A)1:%(P)1y) = rr((((;)]:l)) - ;((éfz))Ul))

_ TPy
(F A))k,i

_
(
Finally, Yk € {1,--- ,p},

(F(P))s,

(F(P>)k,j - W(F(A))k,i =5 (F(A))k,v

where cij = (I'(P))1,;/(F'(A))1: € Q. Since the equation above must hold Yk € {1,---,p}
this condition can be expressed by,

(M(P)),; = ey (N(A)).-

Recall that I'(A)) and I'(P) have rank 1, therefore all columns of I'(A) (resp. I'(P)) are linearly
dependent. Hence, it is sufficient to consider

(F(P)),; = cn(F(A)). ;-
Or differently,

(F(P))k’] =Cn (F(A))kJ) Vk e {1>' e )p}'
O

Differently stated, the left division A §P is consistent if and only if every column of matrix
I'(A) is linearly dependent to every column of matrix I'(P). Note that since both matrices
have rank 1 it is sufficient to check linear dependence for the first column of matrix I'(A)

and I'(P).

Corollary 7. Let A € Enp[[8]P*9 and P € <‘,’m|b[[5]]]:’XI be consistent matrices satisfying
Prop. 48. Moreover, '(A) = aca, and I'(P) = p.p,, with a.,p. € Q°*', a, € Q"9 and
P, € QY. The gain matrix T(AXP) is given by

= (ac)1
F(AKP) = ac 0, P (3.60)

where ac = [((a;)1)™" ((ar)1)™" - ((ar)g)7']".

—~
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3.4. Matrices with entries in €y p[[0]]

Proposition 49. Let A € £y [8]P*9 and P € £, [[8]]™9 be consistent matrices, then the
right division A¢P is consistent iff, 3c € Q, ¢ > 0 such that

c(l“(A))Lk = (F(P))Lk, Vke{l,---,g}.
Proof. The proof is analogous to the proof of Prop. 48. O

Differently stated, the right division A¢P is consistent if and only if every row of matrix
I'(A) is linearly dependent to every row of matrix I'(P). Then again since I'(A) and I'(P)
have rank 1 it is sufficient to check linear dependence for the first row of matrices I'(A)) and
I'(P).

Corollary 8. Let A € Eyp[[8]P*9 and P € Ey[[8]'9 be consistent matrices, satisfying
Prop. 49. Moreover, T(A) = aca, and T'(P) = p.p,, with a,,p, € Q"*9, a, € Q°*! and
P. € Q1. The gain matrix T(A¢P) is given by

M(AfP) = ac( (3.61)

where p, = [(P)1)™" (P)2)™ -+ (V)]

Proposition 50 (Left Division of Matrices). Let A € Eyp[[0]P*9 and P € £y [8]P*" be
consistent matrices satisfying Prop. 48. The quotient P YA is computed based on their core-forms,
ie. A =M,QB,, P = M, QB in the following way

PYA = My, (Q'%Q)B,,.
Proof. The proof is analogous to Prop. 35. O

Proposition 51 (Right Division of Matrices). Let A € Epyp[8]P*9 and P € Epy, [8]149 be
consistent matrices, satisfying Prop. 49. The quotient PAA is computed based on their core-forms,
ie. A =M,QB,/, P = MW//Q/BWI in the following way

AP = My, (Q/Q")B,, .

Proof. The proof is analogous to Prop. 35. O
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Dioids (7,®,®) and (T[], ®, ®)

In this chapter, the dioids (7,®,®) and (T [[v]], ®, ®) are introduced. These dioids have
an application in the modeling and the control of Periodic Time-variant Event Graphs (PTEGs)
(resp. Timed Event Graphs (TEGs) under partial synchronization (PS)). The dioids (7, ®, ®)
and (T [v],®,®) are the counterpart to the dioids (£,®,®) and (E[[3]], D, ®) studied in
Chapter 3. In contrast to (E[[8]],®, ®), which consists of specific event-variant operators,
the dioid (7 [v]], ®, ®) consists of specific time-variant operators. Therefore, many results
are similar to the results obtained for the dioid (8], ®,®) in Chapter 3. Specifically, in
Section 4.2 the core-form for periodic elements in 7 [[y] is similar to the core-form for peri-
odic elements in &y, [8]], see Section 3.3. It is shown that for periodic elements in 7] all
relevant operations (), ®, %, #) in 7 [ Y]] can be reduced to operations between matrices with
entries in M [y, §]. The presented results in this chapter have partially been published in
[67, 68, 69].

4.1. Dioid (TY],®, ®)

The firing of a transition in a PTEG, respectively in a TEG under PS can be naturally
described by a dater functionx : Z — Zmax. For these functions, x(k) represents the time of
the (k + 1)t firing of the associated transition. Note that dater functions are isotone. In the
following the dioid (7 Y]], ®,®) is introduced as a set of operators on dater functions. We
denote by = the set of isotone mappings from Z into Zmax- This set = is a Zmax-semimodule
equipped with addition, defined to the pointwise addition in the dioid
(Zinax, D, ®), thus for x1,x2 € =

VkeZ, (x1®x2)(k):=x(k) ®x2(k) = max(x1(k), x2(k)), (4.1)
and a scalar multiplication defined by, for A € Zyqx and x1 € Z,

VkeZ, (A®@xi1)(k):=A+xi(k). (4.2)
The zero and top mapping on =, denoted by £ resp. T, are defined by

VkeZ, &(k):=¢ (Recallthatin Zyay, € = —0),
VkeZ, T(k):=T (RecallthatinZne, T = 0).
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4. Dioids (T,®,®) and (T[], ®, ®)

Clearly, (=, @, €) is a complete idempotent commutative monoid, see Definition 3. The order

relation on = coincides with the order in the dioid (Zmax, @, ®), i.e., the standard order on
Z. Thus, for x1,x2 € =,

X1 < X2 € X1 Dx2 = X2, (4.3)
< Xq (k) &) Xz(k) = Xz(k), vk € Z,
< max (X] (k), X2 (k)) = X2 (k), Yk e Z,
< x1(k) <x2(k), VkeZ.
The infimum (A operator) on the set = is defined by

VkeZ, (x1nx2)(k):=x(k)Ax2(k) = min(x; (k), x2(k)).

Definition 4o (Operator). An operator is a lower semi-continuous mapping f : = — = from
the set = into itself, such that f(§) = €. Including the property f(€) = € implies that f is an
endomorphism. The set of these operators is denoted by O.

Proposition 52 ([16]). The set of operators O, equipped with multiplication and addition as
follows,

f1,f2€ 0, YxeZ (fi @f2)(x) = f1(x) D f2(x), (4-4)
f1,f2e O, ¥x e = (ﬁ &® fz) (x) = f; (fz(X)), (4.5)
is a complete dioid.

Proof. The proof is equivalent to the proof of Prop. 8 in Section 3.1. O

Recall Prop. 5, therefore the zero and unit element of O are given by, Vx € =, €(x) := € and
€(x) := x. Again, to simplify notation the multiplication symbol ® is often omitted and we
write usually fx instead of f(x). Due to (2.1) the @ operation induces a partial order relation

on O, defined by

fixfhefidf =1,
< (fix) (k) @ (f2x) (k) = (fi1x)(k), Vx€Z, Vk € Z,

< min ( (1) (0), (f20) (k) = (fx) (k) VxeZ, Vke Z (4.6)

Subsequently, two operators f1, f; € O are equal iff Vx € =, Vk € Z: (f1x)(k) = (f2x)(k) .
Moreover, (O, ®, ®) is a complete dioid, thus the top mapping is given by, Vx € =,

£ for:x =&,
To) =1 (4.7)
T otherwise,
and the infimum is defined as, for f1,f; € O,

f1 Afy) = @{fg € O|f3@f1 <fi,f3pf < fz}.
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4.1. Dioid (Tv],®,®)

Proposition 53. The following operators are both endomorphic and lower semi-continuous and
thus in O.
TeZ, §":Vxe =, (§™)(k) = x(k) + T, (4.8)
W, D €N, Ayp 1 Vx € Z, (Agox)(k) = [x(k)/@]w,
where [a] is the least integer greater than or equal to a.

Proof. The mapping 67 is an endomorphism and it is lower semi-continuous. First, since T €
Z is an integer Yk € Z, (87(£)) (k) = T+ &(k) = T+ (—0) = —o0, thus (§7(€)) (k) = &(k).
Moreover, for all finite and infinite subsets X < =,

(5T( P x))(k) T ( P x) (k) = T+ max (x(k)) = max (T + x(k))

e e xeX xeX
- (@ s%) ),
xeX

which proves the lower semi-continuity of 6*. For the mapping Ay again w,® € N are
finite positive integers, therefore Vk € Z, (Ao (£))(k) = [E(k)/@]w = [(—0)/@]|w =
—o0 and (Aw|®(5)) (k) = (k). Moreover, for all finite and infinite subsets X < =,

(Bura (D)0 - [(@Xeﬂ)(k)}w _ {maxxex (X(k))ww’

xeX @ @

ey ([ﬂ@ = ma (i) 09)
(D Bujx) ().

XEX
O
Proposition 54. The operators 8" and Ay introduced in Prop. 53 satisfy the following rela-
tions
6"(6”[/ — 6T+T’, 6’( @® 6”[/ — 5max(T,T/)’ (4'10)
Ap|od® = 8 Ay- (4.11)

Proof. For the proof of 5767 = §™+7', since (4.5) and (4.8), then Vx € =, Vk € Z,
(875%'x) (k) = (87(87'x)) (k) = T+ (§"x)(k) = T+ "+ x(k) = (§F"'x) (k).
For the proof of " ® 67 = 5max(vT) since (4.4), (4.1) and (4.8), then Vx € =, Vk € Z,

(5" @® 8 )x) (k) = (8% ® 8" x) (k) = max ((5%x)(k), (8% x)(k))
= max (T + x(k), " + x(k)) = max(t,7") + x(k)
= (5™=(m™)x) (k).
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4. Dioids (T,®,®) and (T[], ®, ®)

For the proof of (4.11), recall (4.8) and (4.9), then ¥x € =, Vk € Z,

(Baofd®x) (k) = [M]w - [Xg) + 1]w - ["g)]w +w

w
~ (5“Aujex)(K).

Remark 20. (4.11) implies that for —b < T < 0, Ay,p8"Apjo = Aw|a, Since,

(B i) (k) = ng]bﬂw
| x(k) T
-1 1+ bw !
= _X(wk)]w, since —1 < % <0,
= (AujeX) ().

4.1.1. Dioid of Time Operators

Definition 41 (Dioid of Time Operators). The dioid of time operators, denoted by (T,®, ®),
is defined by sums and compositions over the set {€, €, ‘F, 0T, Aw|@} with w,® € N, T € Z,
equipped with addition and multiplication defined in (4.4) and (4.5), respectively.

Clearly (7,®,®) is a complete subdioid of (O, ®,®). Similarly to the dioid (£,®, ®),
introduced in Section 3.1.1, the dioid (7, ®, ®) is not commutative, ie. let vi,v, € T, then

in general viv; # vyv1. The order on T, naturally induced by @ is as follows. Let vi,v, € T
then Vx € =, Vk € Z,

Vi =V Vv Dvy =V,
< VX @D vox = VX,

< (vix) (k) @ (v2x) (k) = (vix)(k),
< max ((wx) (K), (v2x) (k)) — (vix) (k).

Recall that x : Z — Znmax is an isotone mapping, an operator v € 7 only manipulates the
value of the mapping x. Therefore, we can associate a function R, : Zomax — Zmax to 2
T-operator v € 7. This function R, is obtained by replacing x(k) by t in the expression
v(x)(k). For example ((Ag,|4f>1 @ 62A3|3)X) (k) = max([(x(k) + 1)/4]3,2 + [x(k)/3]3) and
therefore RA3‘451@52A3‘3(‘£) = max([(t + 1)/4]3,2 + [t/3]3). We denote by R the set of
functions generated by all operators in 7. Since T-operators are lower-semi continuous,
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4.1. Dioid (Tv],®,®)

then functions in R are lower-semi continuous and isotone. For a reason explained later
on in Section 6.1.3, we call functions in R release-time function. Clearly, the set R and the
set of T-operators 7 are isomorphic, therefore the order relation over the dioid (7,®,®)
corresponds to the order induced by the max operation on R. For vi,v; € T,

VI >=Vv) S Vv Pvy =V
< (vix)(k) ® (vax)(k) = (vix)(k) Vx € Z, Vk € Z,
< Ry, (t) = Ry, (t) Vt € Zmax,
< Ry, (t) = Ry, (t), Vt€ Zmax- (4.12)

The release-time function R, provides a graphical representation of a T-operator v € 7.
Moreover, the order relation on 7 has a graphical interpretation which is shown in the fol-
lowing example.

Example 31. Figure 4.1a illustrates the release-time function R52A4|45.1 associated to the T
operator 62A4|46*1 € T. The gray area shaped by R52A4‘45.1 corresponds to the domain of
release-time functions (resp. T-operators) less than or equal to R g2 5 4140 (resp. 62A4‘46_1 ). Con-
sider now the release-time function R51A4‘45-2 associated to the operator 8! A4|46_2. R51A4‘45-z
lies in the area shaped by R52A4|45,1 (Rs1a,52 is beneath Rz 5,51 ) and therefore 6]A4‘4672 <

62A4‘46_] . In contrast, consider the operators 6_3A4|4 and A4‘46_] with corresponding release-
time functions shown in Figure 4.1b. R573A4‘4 does not cover and is not covered by RA4‘4571 ,

therefore 6_3A4|4 :K A4|45_] and 6_3A4|4 i A4|45_].

R(t) yR(1)
12 12 e 0 o
10 e o 10
A A A A A
8 8 o0 0 0
6 e 0 0 0 6
A A A A A A A A
4 4 e o 0 o0
° 020 o *Rs2a4)407 2 Ry
A A A A A‘R‘V’IA‘H"‘Y2 A A A A AR573A4‘4
>t —e o ¢ ————————————— >t
4 -2 2 4 6 8 -2 2 4 6 8 10 12
Y L3 -2
A A A A A A A A
(a) R62A4‘46" >R6‘A4|45'2 (b) R5'3A4\4®A4\45"'

Figure 4.1. - (a) Ro2n,4,51 covers Rsia, 52 (b) Resa4, does not cover and is not covered by
Rayus-
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4. Dioids (T,®,®) and (T[], ®, ®)

Periodic T-operators

Definition 42. A T-operatorv € T is said to be w-periodic if 3w € N such that, Vx € =, Yk €
Z, v(w®x))(k) = w® (v(x))(k). The set of w-periodic T-operators is denoted by T.
Moreover, the set of periodic operators is defined by Tper = | pen Tw-

Definition 43. A release-time function R : Zimax — Zmax is called quasi w-periodic if Jw €
N such that Vt € Zmax, Rv(t + w) = w + Ry ().

Remark 21. Since the periodic property does only depend on the value x(k) (the time) we
can neglect the argument k for examining the periodic property of a T-operator. Therefore, a
T-operatorv € T is w-periodic if its corresponding release-time function R, is quasi w-periodic.

Example 32. The 8 operator, with T € Z is (1)-periodic since Rsx(t) = t + T one has
Rs(t+1) = (t+1)+71 =1+ Rsc(t). For example, see Figure 4.za for the graphical
representation of the &° operator. The 62A2|26_] operator is (2)-periodic, with a graphical
illustration given in Figure 4.2b. In contrast, the Ay)y operator, shown in Figure 4.2¢, is according
to Definition 42 not periodic since R, , (t) = [t/1]2 and therefore Vt € Zmax, Ra,, (t +1) =
2+ RAZH (t)

RO o
°

41 @

o2
o

t t

2 2 4 6

-2

(a) Rss (b) R52A2‘2571 () RAZU
Figure 4.2. - In (a) the function Rss is quasi (1)-periodic. In (b) the function Rs2 2,51 is quasi

(2)-periodic. (c) the function Ra,, is not quasi w-periodic.

Proposition 55 (Canonical form of an w-periodic T-operator). An w-periodic T-operator
V € Tper has a canonical form given by a finite sum (—BL] STiAw‘wéTi/. Moreover, the sum is
strictly ordered such thatVie {1,--- I -1}, y < Ti;1and1 —w <1/ <0.

Proof. We first show that an w-periodic T-operator v € 7,¢r can be represented as

w—1
v=P %A, 80 (4.13)
i=0
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4.1. Dioid (Tv],®,®)

For this, we consider the operator w = @?:0] wi with wy = SRV(_i)Awméi_“’H. The
release-time function associated to wj is

Ry, (1) = Ru(—) + [ 9 E D

w
Hence, R,, is given by

Rw(t) = max <R\,(O) + [www, Ru(=1) + [#]w, e
Ry(1 - w) + [ ]w)- 419

Clearly, R, is a quasi w-periodic function. To prove that v can be represented as (4.13) we
have to show that R, (t) = R, (t). Because R, and R, are both quasi w-periodic functions
it is sufficient to check Ry, (t) = R,(t) for t = {1 — w,---,0}. Let us remark that R, is
isotone and thus,

<RV —w<R(T—w) < <RO) SRV(T—w)+w < -+
We evaluate (4.14) for t = 0, this leads to

o 0[5 o
ma-w+[ o)
= max (Ry(0), Ry(=1), -+, Ru(1 — w))

1—w

Rw(0) = max (RV(O) + [

=Ry(0).
Similarly, one can show that for t € {1 — w, -+, =1}, Ry,(t) = R,(t). For this, recall (4.14)
t+1-w t+2-w
Ru(t) = max <m(0) n [71w,7?4,(—1) n [7]w

Ry(1 — w) + [%]w)

For1 <j< wand1— w <t< —1 observe that,

[t+j—w1w: —w, fort+j<0
w 0, fort+j = 0,
therefore,
Rw(t) = max (Ry(0) — w, -, Ry(t + 1) — w, Ry(t), - -
HRu(1 = w)),
= Ru(t),

andv = w = P&, wi = P 5P (DA 1,6 ®*1. The canonical representation is the
one obtained by removing redundant w; according to the order relation given in (4.12). [
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4. Dioids (T,®,®) and (T[], ®, ®)

Remark 22. Clearly, an w-periodic operator is also nw-periodic. Therefore, an w-periodic
operator v is represented in a nw-periodic form given by
nw—1 ) )
v = (_B 5RV(71)Anw|nw617nw+1-
i=0
Proposition 56. The w-periodic A\, operator can be represented in an expended nw-periodic
form by the sum

n—1
Aw\w = @ 57iwAnw|nw67(ni1ii)w-
i=0

Proof. See Section C.2.1 in the appendix. 0
Corollary 9. The 1-periodic identity operator e = Aq|1 can be represented in the specific form

w—1
e= P 5 Ay
i=0

Example 33. The 1-periodic identity operator e = Aq|y is represented in a 3-periodic form
given by e = A3‘36_2 @ 6_1A3|35_1 &) 6_2A3|3, see Figure 4.3.

R -2
*"Aaz38
<1 e
85— TaggsT

DR5*2A3|3

Figure 4.3. - Re(t) is equal to max(Ra, ;5-2(t), Rs-1a, 551 (1), Rs-2a,; (1))
Proposition 57. The set of periodic operators Tyer equipped with addition and multiplication

defined in (4.4) and (4.5) is a complete subdioid of (T ,®, ®).

Proof. Clearly, the unit, zero and top element e, ¢ and T belong to ’7;”. Moreover, due to
Definition 4 one has to show that the set of periodic operators Ty are closed for addition
and multiplication. Given two periodic operators vi,Vv; € Tper, due to Remark 22, vi and v,
are expressed with their least common period w in the following form

I , ] ,
Vi = P8 A0, V2 =P85 AG .
i=1 j=1
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4.1. Dioid (Tv],®,®)

Then the sum, vi ® v, = @L] 6T1Aw|w5Ti’ @ @]‘I=1 8t Aw|w6ti/ is clearly an w-periodic
operator. This also holds for infinite sums. The product vi ® v; is as well w-periodic, recall
that A6 Ay jw = Ay|w for —w < T < 0 (Remark 20), hence,

Vi @V = ((—IDléTiAwwéTf) ® (é]smwwst{),
i= j=

LA )01 85 A8,
1

.
Il

I
@H
.@_

1j

6T1+[(Ti+tj)/w]wAw|w6tj’.
1

o
Il

I
@H
’®_

1j

The distributivity of left and right multiplication over infinite sums are carried over from the
dioid (7,®, ®). O

Corollary 10. The set of w-periodic operators T, equipped with addition and multiplication
defined in (4.4) and (4.5) is a complete subdioid of (T, ®, ®) and (Tper, ®, ®).

Causal T-Operators

Definition 44. A T-operatorv € T is said to be causal if v = ¢ or if its corresponding release-
time function satisfies, Vt € Zmax,

Ry(t) > t. (4.15)

Clearly, the least causal operator in 7 (except ¢€) is the unit operator e with the release-time
function, R.(t) = t.

4.1.2. Dioid of Formal Power Series (T[[Y],®, ®)
The event-shift operator y" is defined as a mapping over = as follows,
nezZ Y"“:VxeZ, keZ (y™x)(k) =x(k—n). (4.16)

Clearly, the y" mapping is lower-semi continuous, since for all finite and infinite subsets
Xcz

(Y'(Dx) ), = (D) (k—m)

xeX xeX
= @ x(k—m), due to (4.1),
xeX
=P (Y"x)(k), due to (4.16).
xeX
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4. Dioids (T,®,®) and (T[], ®, ®)

Furthermore, (Y"€)(k) = &€(k — 1) and since Yk € Z, (k) = —o0, thenn € Z, Yk € Z,
(Y"€)(k) = E(k—m) = €(k) = —oo. Therefore, the event-shift operator is an endomorphism,
ie, Y" € O. Moreover, the event-shift operator commutes with all T-operators, i.e, ¥v €
T, vy" =y, since,

(Y"(vx))(k), since (4.5),
= (vx)(k—m), since (4.16),

(v(y"x))(k), again (4.16),

), again (4.5).

Definition 45. (Dioid (T[[Y],®,®)) We denote by (T[[Y],®,®) the quotient dioid in the
set of formal power series in one variable 'y with exponents in Z and coefficients in the non-
commutative complete dioid (T ,®, ®) induced by the equivalence relation Vs € T [[v]],

s=(y")*s =s(yh*. (4.17)

Hence we identify two series s1, s; with the same equivalence class if s;y* = syy*. It
is helpful to think of sy* as the representative of the equivalence class of s. Note that we
can interpret elements in 7 [y] as isotone functions s : Z — 7T, where s(1)) refers to the
coefficient of y". Hence, V1 € Z, s(n) < s(n + 1). The quotient structure (4.17) allows
assimilating the variable y to the event-shift operator vy € O, defined in (4.16). Recall the
definition for addition and multiplication on formal power series (2.13) and (2.14), respec-
tively. Therefore we obtain the following definition for addition and multiplication in the

dioid (Tv], ® ®).

Definition 46. Let s1,s; € T[], then addition and multiplication are defined by

s1@Ps2 = @ (31(T1) @Sz(ﬂ))yn>

nez
s1®@s: =P ( P (si(n) ®sz(n'))> Y.
nezZ \n+n’=n

As before, @ defines an order on T[], i.e, a,be T[[y]: a®b=b<a=<b.

Remark 23. Recall that (Tper,®,®) and (o, ®,®) are complete subdioids of (T,®,®),
then from Prop. 4 it follows that (Tper[[Y]], ®, ®) and (To[[Y], ®, ®) are complete subdioids of
(TIv], ®, ®). Moreover, (To[[Y], B, ®) is a complete subdioid of (Tper[ Y], B, ®).

Monomial, Polynomial and ultimately cyclic Series in 7 [[y]|

A monomial in 7 [[y] is defined by vy", where v € T. A polynomial is a finite sum of
monomials, ie., @L] viY"i. The ordering of two periodic monomials viy™",v,y"2 € T[v]
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4.1. Dioid (Tv],®,®)

can be checked as follows,

vi<v
viym < vy < 1 2 (4.18)

m = "n2.

Proposition 58. Let p € Tper[[Y], then p has a canonical form p = @;:1 vj’y“i, such that
Vj e {1,--- ]}, thew-periodic T—opemtorvj’ is in the canonical form of Prop. 55, and coefficients
and exponents are strictly ordered, i.e., forj € {1,---,] =1}, n <n/y andv] < vj ;.
Proof. Without loss of generality, we can assume that p = @L] viy", withni < 141, 1=
1,---1—1. As p € Tper[[Y], we identify all elements s with their maximal representation
sY*, we can also identify p and

* % ’ ’ Iy, i AVl ! i+l = ! (YN
as py* = p'y*. Hence, v{ < vi ;. If v{ = v{; we can write viy™ @ v{,y"+' = v{(y" @

/
yNit+1) = v/y", For that we can write p’ as @;21 vj’yni with v]/ < v].’+1 and ] < L. O

Definition 47. (Ultimately Cyclic Series in T[[y]| ): A series s € T [[Y] is said to be ultimately
cyclic if it can be written ass = p @ q(y"d")*, wheren, T € Ny and p, q are polynomials in

Ty

Note that a polynomial p = @{:o viY™ can be considered as a specific ultimately cyclic
series s = ¢ ®p(y°8°)* wheren = 0 and T = 0.

Similarly to £[[8]], an element s € T [[y] has a graphical representation in the Zmax X
Zmax % Z. Given a series s = (; viy' € T[[v]), this graphical representation is obtained by
depicting for every 1 the release-time function R, of the coefficient v; in the (input-time /
output-time)-plane of i.

Example 34. For the graphical representation of the polynomialp = (8' A4|46_1 @6_2A4|4)y069
(55A4|46_1 &) 62A4|4)’y2 &) (65A4‘4 @ 66A4‘46_] Y € Toerl[Y], respectively its representative
PY* see Figure 4.4. The slices in the (I/O-time)-plane for the event-shift valuesk = 0,1 are il-
lustrated in Figure 4.5a. These slices correspond to the release-time function R Aajad= 152044
of the coefficient 61A4|46*1 @® 6*2A4|4 fory® (resp.y') inp. The slices fork = 2,3 andk > 4
are shown in Figure 4.5b and Figure 4.5¢. To improve readability, the graphical representation
for elements s € T [['y]| has been truncated to non-negative values in Figure 4.4 and Figure 4.5.
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4. Dioids (T,®,®) and (T[v],®, ®)

Figure 4.4. - 3D representation of polynomial p = (51A4|45_1 @ 5_2A4|4)y° &) (55A4‘46_1 @
62A4|4)'Y2 &) (65A4|4 ® 66A4|46_1 )’Y4

14 R(v) 14 R(®) 14 R(®) e 00
e oo °
12 12 12
10 10 ° 10 LI )
o0 0 LI I ) °
8 8 8
6 ° 61 ® 6e
L Y Y
4 4 4
21 ® 2 2
[ ]
t t t
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
(@) ke {0,1} (b) k€ {2,3} c)k>=4

Figure 4.5. - Slices of the coefficients of p in the (I/O-time)-plane. (a) R51A4|4571@572A4‘4, (b)
R55A4‘45*‘®62A4|4 and (c) R55A4|4@56A4|454
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4.2. Core Decomposition of Elements in 7y [ Y]]

Similarly to Section 3.3, in this section, a specific decomposition of series in Tper[[v] is
proposed. It is shown that a periodic series s € Tper[[Y] can always be represented as s =
dwQp,, where Q is a square matrix in M [y, 8] of size w x w, d, is a row vector defined
as

dy = [Awﬂ 6_]Aw|1 s 6]_wAw“] )

and p,, is a column vector defined as

T
Pw = |:A1|w61_w A1|w6_] AHLU] .

The index w determines the dimension of the vectors. It is important to note that in this form
the core matrix Q is a matrix with entries in M{X [y, 8]. An advantage of this representation
is that all relevant operations on periodic series s € Tper[[Y]] can be reduced to operations
on square matrices with entries in M [y, 8]. In the following, this decomposition is first

demonstrated on a small example.
Example 35. Consider the following series in Tper[ Y],
s =Ny @8 Aypd " @ 82y (87

Because of Ay|o = DwpDuvjo (Remark 20), 8P Ay)o = Ay|o0® (4.11) andVv e T, vy = yv,
this series can be rewritten as

s=Mp e Ap@8 Ay (8 AT @Ay 88V A
—— ——
M, MZ S]

Clearly M1, M, and Sy are elements in M [y, 8]. We now can rewrite s in the core repre-
sentation,

1] e@sVAEAH| [Arps!
S:[AZH 1) ]Az‘]] | )

duetoe ® 5]1/2(511/2)* = (5]Y2)*:

_ e (8D ] [Aips!
S = [AZH ) 1A2“] | )

N 75] £ A”z
dZ ~ ~~ "
Q P2

which is in the required form.
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4. Dioids (T,®,®) and (T[], ®, ®)

Proposition 59. Let s = @), viy" € Tper[Y] be an w-periodic series, then s can be written as
s = dwQp,,, where Q € M [y, 5],

Proof. s being an w-periodic series implies that all coefficients v; of s are w-periodic T-
operators. Then due to Prop. 55 all coefficients can be expressed in canonical form v; =
!

@11;1 5 Aw‘wéTii with J; < wand —w < Ti/j < 0. Then s can be rewritten as

i

Ji ’ 3
= DD Auus ™
j=1

By using Ay = Ay141)0 (Remark 20), 0¥Ay,1 = Aw“f)] (4.11) and vy = yv, Vv e T,
the series s is written as

Ji ~ . ’
= @ (DI A6y, ),
i j=1

where —w < T, = Ty, — [Ti;/w]w < 0 and 45, = [1i;/w]. Observe that —w < %ij,'r{j <0
hence we can express s by

A]|w617w
Ji .
S:[Aw“ § A - zstAw“]@(@Qij) A s |
i =1 1w
A1|w

where the entry (Qi). M-t wtr! = 5% v and all other entries of Q;; are equals ¢. Finally s
j i
is in the required form s = d,Qp,,, where Q = @; (@1;1 Qi].). O

For the particular case of an ultimately cyclic series s € Tper[[Y]], the core-matrix Q is ob-
tained as follows. The ultimately cyclic series s = (—Di iy @ (—D)I vy Y5 (0YY)* € Tperl[Y]]
is written, such that all coefficients v; and vj’ are represented with their least common period
(Remark 22), ie.,

K
8UA w8 Y™ @ (D) 55 A ) 85y (87yY)*.
k=1

P~

S =

,_
Il
-

Recall that Ao = Ay pAp|o (Remark 20) therefore,

K
8" A1 D118 Y™ © ) 8% A1 Ay 8™ (8Y) .
k=1

P~

S =

,_.
Il
=
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4.2. Core Decomposition of Elements in Tper[[Y]]

Note that the 8 operator commutes with A, i.e, 6% Ay = Ay|wd® (4.11). Moreover,
we can always represent an ultimately cyclic series s € Tper[[Y] such that T is a multiple of
w, i.e., we can extend (y¥8")* such that, T = 1T = lem(T, w)

(,szs’r)* _ (e (‘B'Yvé:t @--- (_B,y(lf1)v6(lf1)’r)(,yh/6li)*
_ (e (_D,Yv(si @--- C_B,Y(l—l)\/é(l—l)’t)(ylv(sT)*.

Therefore, in the following we assume T/w € N, thus Ay, (8™y")* = (57 OyY)*A, |- This
leads to

L ¥ A I K z K z/
s = C_D 5tlAw\1 shiy™m A1|w6tl o) (_D 5EkAw|1 5Ekvnk(5T/wa)* A”wé‘zk)
1=1 M k=1 ;’
1 K

with —w < 1, ’E{, E,k, élé < 0. In this representation M are monomials and Sy are series in
MEX [y, 8]. Moreover, the entries of the p ,-vector appear on the right and the entries of

n
the d,-vector appear on the left of monomial M (resp. series Sy). For a given s we denote

the set of monomials by M = {Mj,--- M} and the set of series by § = {Sy,---, Sx}.
Furthermore, the subsets M ; (resp. 8 ) are defined as, Vi,j € {0,--- ,w — T}

L ¥ I
Mi»j = {Ml € M| 67iAw|1l\/llA]|w67j € @quwﬂMlAuwétl},
1=1

K ~ ~
Sij 1= {Sx € 8| 6_iAwHSkAHwé—j € @ 6£kAw|1SkA”w5£{<}.
k=1

The entry (Q)i11,0—j of the core matrix is then given by

(Q)it1,w-j= P Mad P S.

MEMiJ SESi)j
Remark 24. Note that, for series s = doQp,, € Tper[Y] be an ultimately cyclic series, the
entries of Q are ultimately cyclic series in MY [y, 8].
Properties of d, and p_,

In the following, we elaborate some properties of the d-vector and p -vector, which
are necessary for computations in the core-from. The scalar product d, ® p,, of these two
vectors is the identity e:

dw @ py, =8°A4)18110d @ B8 TP AL A
:60Aw\w61_w DD 5]_wAw|w50 =6 (4.19)
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4. Dioids (T,®,®) and (T[], ®, ®)

where the latter inequalities hold because of Ay, |1 A1) = Ay|w (Remark 20) and Corollary 9.
For an illustration see Example 33. The dyadic product p,, ® d, is a square matrix with
entries in M [y, 8] denoted by N. For i,j € {1,--- ,w}, the entry (p, ® dy)i; is given
by,

(N)iyi = (Pw ®dw)i>i = A1Iwé(F]H(]7w)Aw|1'

Then, because of A|,6™“ = 6*]A1|w and Aq,0 " Ay1 = Aqp = efor —w < —n <0,
see Remark 20,

N=p,®do=| = " | (4.20)

Proposition 6o. For the N matrix the following relations hold

N®N =N, (4.21)
N® Py = Puw> (4.22)
dy ® N =d. (4'23)

Proof.

N®N=p,®dy,®p,®dw =p,®e®dy =N,
N®pw:pw®dw®pw:pw®e:pw)
dw®N:dw®Pw®dw:e®dw:dw-

O]
Corollary 11. Observe thatI ® N = N and N ® N = N, hence
N=I®NENN®D---
= N*. (4.24)

Due to the scalar product dp,, = e (3.43) and N = N* (4.24), under some conditions the
left and right product of elements in 7[[y]] by d., and p,, are invertible, see the following
proposition.

Proposition 61. For A € T[y]]'"*% and G € T[y[]**, we have

dutA =p,®A, Gép, = G®dy. (4.25)
For O € T{[y]|**% we have
(ON)/dy = (ON) @y P (NO) = do ® (NO). (4.26)
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4.2. Core Decomposition of Elements in Tper[[Y]]

Proof. See Section C.2.2 in the appendix. O
Proposition 62. For D € T[y[**“, N§(ND) = ND and (DN)¢{N = DN.

Proof. Recall, that N = N* (4.24) and that a*§(a*x) = a*x (resp. (a*x)fa* = xa*), see
(A.9), which completes the proof. O

Greatest Core of a Series s € T, [ V]|

In general a series s € Tper[Y]] may have several core-representations. In the following it
is shown that a series s € Tper [ Y]] admits a unique greatest core, denoted Q. ie,s = dwﬁpw
and ﬁ > Q for all core matrices Q such that s = d,,Qp,,. Note that the greatest core is
referred to the order relation in the dioid (M [y, 8] ,®, ®).

n

Proposition 63. Lets = d,Qp, € Tper[[Y] be a decomposition of s € Tper[[Y]. The greatest
core matrix is given by

Q = Nu,QN. (4.27)

Proof. Consider the inequality dw)~(pw < dwQp, = s. Then, because of Prop. 61 the
greatest solution for X is

dw§dew,Qp P, = PudwQp,de = NuwQNy, = Q.
Furthermore, because of d, = dwN, and p,, = Ny p,, (Prop. 60),
dwﬁpw = duwNuQNyp, = duQp,, = s.
O
ReAmark 25. The greatest core matrix (A/l\ has the following properties. Since: N @ N = N,
NQ = NNQN = Q; QN = NQNN = Q.

Example 36. The greatest core of the series considered in Example 35 is given by

A e 57| |le (8'yA)*||e &7
= NON =
Q Q [e e ] [61 I3 e e

_ (61V2)* (51Y2)*
6]@6]Y2(6]Y2)* (6]’}/2)* ’
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4.2.1. Calculation with the Core Decomposition
Sum and Product of Periodic Series in T [ Y]

In this section, it is shown that operations on ultimately cyclic series in Tper[[Y]] can be
reduced to operations on matrices with entries in M [y, 8].
oy . . . . AN Py
To perform addition and multiplication of two series s1 = m,, Qq b/%,] y 82 = mg,Qby, €
Trer[v] in the core-form it is necessary to express the core matrices Q; € M [y, 5“1 **"

and Q, € M [y, 8]“2*“? with equal dimensions. This is possible by expressing both
series with their least common period w = lem(w1, wy), see the following proposition.

Proposition 64. An ultimately cyclic series s = dwﬁpw € Tper[[Y]l can be expressed with a

multiple period nw by extending the core matrix Q, i.e., s = dwﬁpw = mnwﬁlbnw, where
Q' € M [y, §]™ "™ and is given by

A8 QAL A8 MRS T AL e A8 M A,
Q/ _ AHnéz_naAnH Aﬂnéz_néé_]AnH T A1|n62_n66]_nAnH
A1|nﬁAn|1 A1|n(/56_1An|1 T A1|n(/--\16]_nAn|1
Proof. See Section C.2.3. O

Proposition 65. Lets = dowQp,,, s = d,Q'p,, be two ultimately cyclic series in Tper[[ Y],
the sum s ® s’ = d,Q"p,,, where Q" = Q @ Q’, is again an ultimately cyclic series in

Toerll¥]-
Proof.

s® s = dePw @de,Pw = dw(Q®Q/)pw = de”pw'

Clearly, the entries of the core matrices Q and Q’ are ultimately cyclic series in M [y, 3].
Because of Theorem 2.6, the sum of two ultimately cyclic series in M [y, 8] is again an
ultimately cyclic series. Therefore, Q" is composed of ultimately cyclic series in M [y, 5]
and thus s @ s’ = dQ"p,, is an ultimately cyclic series in Tper[Y]. O

Corollary 12. Lets = dwﬁpw, s’ = dwﬁ/pw € Tper[[Y] be two ultimately cyclic series,
with Q, Q' are greatest cores, the sum s ® s’ = dw(Al”pw € Tper[[Y] is an ultimately cyclic
series, where Q" = (Q@® Q') is again a greatest core.

Proof.
s@s’ = dwQp, ®dwQ'p, = dw(NAN®NQ'N)p,, = du N[Q@ Q)N p,,

—_—
6//
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Proposition 66. Lets = d,Qp,,, s’ = dwQ'p,, be two ultimately cyclic series in Tper[ Y],
the product s ® s’ = d,Q"p,,, where Q" = QNQ/, is again an ultimately cyclic series in
Toer[Y]-

Proof. Recall that p,,d,, = N (4.20), then
s®s’ =dwQp,dwQ'p, = duQNQ'p, = dwQ”p,,.

Moreover, the entries of the core matrices Q and Q’ are ultimately cyclic series in ML [y, 8]

Because of Theorem 2.6, the sum and product of ultimately cyclic series in MY [y, 8] are

again ultimately cyclic series in M& [y, 5]. Therefore, entries of Q" are ultimately cyclic

series in MY [y, 8] and the product s ® s’ = d,Q"p,, is an ultimately cyclic series in

Toer[Y]- O

Corollary 13. Lets = dwﬁpw, s’ = dwﬁlpw be two ultimately cyclic series, with Q, Q'
are greatest cores, the product s ® s’ = dw(Al”pw € ToerllY] is an ultimately cyclic series,
where (Al” = Q(Al/ is again a greatest core.

Proof. Because of NN = N (Prop. 60),

AA/

QQ’ = NaNNaQ'N = Q"
O
Proposition 67. Lets = d,Qp, € Tper[[ Y] be an ultimately cyclic series in Tper[[Y]]. Then,
s* = dw(QN)*p, (4.28)
is an ultimately cyclic series in Tper[[Y]-

Proof. Clearly, QNisacoreof s € Tper[Y]], sincee = dy,p,, andN = p  d thend,Qp e =
dwQp,dwp, = duQNp,,. The Kleene star of series s can be written as

s* =e®d,QNp, ®dwQNpdwQNp,, D - -

Recall that Q is a square matrix, e = dy,p,, (4.19), N = p,dy (4.20) and N = N* = NN
(4.24), therefore

s* = dwpw @ deNPw ® deNNQpr @
= do(I®QN® (QN)*® -+ )p,,
= dw(QN)*pw'

Again, due to Theorem 2.6 the Kleene star, sum, and product of ultimately cyclic series in
MEX [y, 8] are ultimately cyclic series in M{X [y, 8] and therefore, s* = d,(QN)*p,, is an

n n

ultimately cyclic series in Tper[[Y]- O
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Remark/7\.6. Lets = dw(Alpw € 7;63@/]] be an ultimately cyclic series, where Q is a greatest
core, i.e, Q = NQN. Then, s* = d,,Q p, € 7;,@[[1/]] is an ultimately cyclic series. However,
in general, Q" is not the greatest core of the series s*.

Q' =19Qed’ -
~TONANONQN--- .
Whereas,
NQ*N = NIN® NON @ NQ°N - --
-NoQod’ .
Moreover, NQ*N = (NQ"N)*, since NQ"N = I® NQ"N and NQ*"NNQ"N = NQ"N.

In general, multiplication does not distribute with respect to A in the dioid (7 Y], ®, ®).
However, as shown for the dioid (£[[8]],®, ®) in Lemma 2 and Lemma 3, distributivity holds
for left multiplication by the d,-vector and right multiplication by the b,-vector for specific
matrices with entries in 7 [[y]).

Lemma 4. Let Q1,Q; € T[[Y]|*%, then

dw(NQ1 N NQZ) = dwNQ1 N dwNQZa
(QiN A Q;N)p,, = QiNp,, A Q2Np,,,.

Proof. The proof is similar to the proof of Lemma 2. Recall thate = d,p, (4.19), N = pdo
(4.20) and N = NN Prop. 60. Moreover, recall that inequality c(a A b) < ca A cb holds
for a, b, c elements in a complete dioid, see (2.2). Now let us define q; = d,,NQ; and
q; = duyNQ;y, then

di A dy = e(dy A d2) = dopy,(dr A 42) < dw(py,qr A dad)).
Inserting q; = dyNQ; and q; = d,NQ; leads to,

dw(pwa A dwa) = dw(pwdwNQ1 A pwdwNQ2)5
= dw(NNQ] A NNQz),

— d(NQ; A NQy).
Finally,
dw(NQ] A NQz) < dwNQ] A dwNQz =(7 AN Q3.

Hence, equality holds throughout. The proof for (Q;N A Q;N)p,, = QiNp, A Q;Np,, is
similar. O

100



4.2. Core Decomposition of Elements in Tper[[Y]]

Proposition 68. Lets = d,Qp,,, s’ = dw(Al/p(U € TperlY] be two ultimately cyclic series,
thens A s’ = dwCAl”pw € Tper[[Y] is an ultimately cyclic series, where Q” = (Q A Q/) is
again a greatest core.

Proof. Again, this proof is similar to the proof of Prop. 34. Let us recall that @ = NQN, then
according to Lemma 4 we can write
sAs' =dwQpy, A deQ'p, = dwNQNp,, A du,NQNp,, = do(NQN A NQ'N)p,,
= dw(a A ﬁl)r’w'

It remains to be shown that Q" = (Q A Ql) is a greatest core. First, N = N*, therefore,
I®N =N, and ﬁ” < NCAl”N. Then, according to Lemma 4,

AN

NQ N = N(Q A 6/)N = pwdw(é\l A é\l/)pwdw = pw(dwé\lpw A dwﬁ/pw)dw'

Recall, c(a A b) < ca A cband (a A b)c < ac A bc (2.2), therefore

A

po(dwQp,, A dyQ'py)dw < pudwQp,de A pudeQ'p,de =QAQ =Q".

Hence, equality holds throughout. Moreover, note that due to Theorem 2.6 (/i” is a matrix

where entries are ultimately cyclic series in M&* [y, 8], hence s A 8" = dwﬁ”pLU is an

ultimately cyclic series in Tper[[V]]- O

Division of Series in %er[h/]]

Proposition 69. Lets = dwﬁpw, s’ = dwﬁlpw be two ultimately cyclic series in Tper[[Y]).-
Then,

ANy A

s'% = do(QMQ)pe, 58’ = du(QQ )Py,
are ultimately cyclic series in Tper [ Y]

Proof. First, we show that

ANy A

Q'3Q = N(Q'%Q)N. (4-29)
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For this,
(N (Q’&ﬁ)) N = (N& (N <ﬁ/§ﬁ>> N, because of Prop. 62
- (N&g (N ((Q’N) &ﬁ))) N, because of Q = QN
= (ns(n(ve(@))))N
since: (ab) x = b (a'x) (A.5)
- (ng (Q’&Q)) N, because of a¥ (a (a%x)) = akx (A.4)
- ((an) Q)N - (@a)N,
since: (ab) ¥x = bk (akx) (A.5)and Q = QN
#

= Xgﬁ) #N, because ((xfa)a)da = xf¢a (A.4)
—Q'% () = Q'xq,

dy &(dwﬁpw)) , because of (A.5),
pwdwﬁpw) , because of (4.25)
pr) , as pwdwﬁ — Q Remark 25,
A;ﬁdw) , from (4.26) and Remark 25,
(A%dw)) , because of (A.5),

(Qlkﬁ)%du) , because of (A.6),

=d(Q'%Q)p,, because of (4.26) and (4.29).
Due to Theorem 2.6, the quotient Q&Ql is a matrix composed of ultimately cyclic series in
ME [y, 8] and therefore the quotient s”§s = d, (Q'%Q)p,, is an ultimately cyclic series in

Tper[[Y]- The proof of sgs’ = dw(ﬁyfﬁ/)pw is analogous. O

Definition 48 (Causal Series in Tper [Y]]). A seriess = @iy viv' € Tper[Y], withvi < viiq,
is said to be causal, if s = € or foralli < 0, vy = ¢ and foralli = 0, v; < e. The subset of
causal periodic series of Tper[Y]] is denoted by T L[]

102



4.3. Matrices with entries in (Tper[ Y], D, ®)

Remark 27. The causal projection Pr* : Tper [ Y] — T,k [[v]l, is given by, fors = Mz viv' €
Toerll Y], withvi < viqq,

Pr(s) = Pf+<@vn/i) =P s+

ieZ ieZ

where,

5. (i) = vi, ifi>=0andv; > e, ie., Vi is a causal T-operator,
(i) =
€, otherwise.

4.3. Matrices with entries in (T,e:[[ Y], ®, ®)

Recall that the sum, product, Kleene star as well as left and right division of ultimately
cyclic series in Tper [y ]| are again ultimately cyclic series in Tper [y ]]. Therefore, the extension
of the basic operations (®,®, %, #) to matrices with entries in Tper[[y] is straightforward.
Additionally, the core representation of series in Tper[[ Y] is extended to the matrix case.
Therefore, consider a matrix A € %er [Y]™*™ where the entries are in the core-form, i.e.,

Pay Pay
dwl‘lQL] pw]‘] U dwth],mpw])m
A = : :
N N
dwnJ QTL,] PwnJ o dwn,m Qn,mpwmm
Due to Prop. 64 all entries of A can be represented with a common d,-vector and a common
p.,-vector, where w = lem(w;y 1, -, Wn,m). This leads to,
[ PN PN
dowQiip, -+ dowQi Py
A= : : )
A/ Py
_dCUQnJ Po den)me
dw € . € N ) Po € . €
. : Q,; - Qn ..
e . . i , e ..
= . . . : : . . . : (4'30)
: : e N N : : €
Qn,] e Qn,m
£ N € dw -~ £ . € p(,U
— ~ — Q — ~ —_
Dw P,

The size of Q is then wn x wmn. Note that in contrast to the decomposition of matrices with
entries s € & [8]], see Section 3.4.1, the decomposition of matrices with entries in Tper[[v]]
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4. Dioids (T,®,®) and (T[], ®, ®)

is simpler. Unlike to (3.55) in Prop. 39 the matrices D, and P,/ are block diagonal matrices
with same entries d, and p . Moreover, note that the core representation in (4.30) is clearly
not the most efficient one in terms of expressing A with a core Q € MEX [y, 8] of minimal
dimensions.

4.4. Subdioids of (Tper[Y], ®, ®)

Recall that (7o [[v],®, ®) is a complete subdioid of (Tper[[Y], ®, ®) (Remark 23). The
subdioid (71[v],®,®) of (Tper[[Y], D, ®), i.e. the set of 1-periodic series endowed with
addition and multiplication, is the dioid (MY [y, 8] , @, ®). Moreover, (M&* [y, 8] ,®, ®)

n n

is a subdioid of (7T [Y], ®, ®), e.g., a subdioid of (T3[[Y], D, ®), (Ta[ Y], D, ®) etc.

Example 37. Figure 4.6 illustrates the subdioid structure of (Tper[Y],®,®). It is shown
that (M [v, 8], ®, ®), (T3[[v], & ®) and (Tully]l, ®, ®) are subdioids of (Tper[ Y]], &, ®).
Moreover, (M [y, 8] ,®, ®) is a subdioid of (T3[[ v, ®, ®) and (Ta[v], ®, ®).

Toerl Y1

Figure 4.6. — Subdioid structure of (Tper[Y], ®, ®).

Due to the subdioid structure of (Tper[[ Y], ®, ®), one can define the canonical injection
Inj : M{X [y, 8] — Tper[[Y], X — Inj(x) = x. For a graphical illustration of this canonical
injection see the following example.

Example 38. Recall the seriess = v'8*@® (V38> ®v°8*) (v*62)* € M [y, 8] (Example 17)
with a graphical representation of s given in Figure 4.7a. Then, the graphical representation of
the canonical injection Inj(s) € Tper[[Y]| is shown in Figure 4.7b. The series s € M [y, 9]
(Figure 4.7a) corresponds to the (event-shift/output-time)-plane for the (input-time) value O of
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4.4. Subdioids of (Tper[[Y], ®, ®)

the 3D representation of the series Inj(s) € Tper[[Y] (Figure 4.7b). Moreover, the canonical
injection Inj(s) € Tper[[Y] is (1)-periodic, therefore the (event-shift/output-time)-plane for the
(input-time) value 1 corresponds to the series 5's € ME [y, 8] and for the (input-time) value
2 to the series 5%s € M [y, 8], etc.

n

14
13
12
11
Q 10
9 \ time-shift t .g Z g
e 7
8 =
7 (] a5
6 ° 3 ;
5 ] 2
4 o 1
3 ) 93
2 ® ep@gtj 6y 76’(,
1 . Ly &
event-shift k & 4 <
123456789 W
(a) Graphical representation of s € MY [y, 8]. (b) Graphical representation of Inj(s) € Tper[Y]-

Figure 4.7. — Illustration of the canonical injection Inj : M&X [y,8] — Tper[[Y] of the series s =
VI ® (15 @755 (r36)* € M [, ).

Lemma 5. Let vy™ € T, [[Y] be an w-periodic monomial. Then residual Inj*(vy™) and the
dual residual Inj’ (vy™) are given by

Inft (vy™) = &M (Ru(O-Dy (4.31)

Inf’ (vy™) = 8750 (Ru(D-0yn, (4.32)
Proof. By definition, the residuated mapping Injf(vy") is the greatest solution x of the fol-
lowing inequality

vy" = Inj(x) = Inj (€D, v"8%) = @), y™6%, (433)

where (®); Y":8% € M [y, §]. Clearly, the least n; such that the inequality (4.33) holds is
n and thus,

vy > @i(ynéci) =vy"0", see, (2.28). (4-34)

Since vy™ > y"0" < v > 87, it remains to find the greatest T such that (4.34) holds. By
considering the isomorphism between T-operators and release-time functions, see (4.12), this
is equivalent to Ry (t) = Rs(t), Vt € Zmax. By using Rs«(t) = T+, see (4.8), one obtains

Ry(t) =T+t 1< R,(t)—t, YteZma. (4.35)
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Since R, is a quasi w-periodic function it is sufficient to evaluate the function for Vt €
{0, -+, w — 1}. Therefore the greatest T such that (4.35) (resp. (4.34)) holds is

w—1

T =min (Ry(t) — t).

Similarly, for (4.32), Inj’ (vy™) is the least solution x of the inequality

vy" < Inj(x) = Inj ((—Bl 6Ciyni> = (‘Bﬂ/ 156, (4.36)
Then, the greatest 1; such that the inequality (4.36) holds is n and thus,
W< @, (Y55 = Y5, see, (2.29). (437)

Again, since vy" < y"8" < v < v, it remains to find the least T such that (4.37) holds.
Therefore Vt € Zinax

Ry(t) S Rse(t) & Ry(t) ST+t e 1= Ry(t) —t. (4.38)

By considering that R, is a quasi w-periodic function the least T such that (4.38) (resp. (4.37))
holds is

O

Proposition 70. Let s = @; viy™ € T, [[v] be an w-periodic series in the canonical repre-
sentation, see Prop. 58, extended to infinite sums, then

Injf(s) = Inj* (@i vwm> = @, gm0 (R (D= yn, (439)
I (5) = I (D) viy™) = @, 8= 0y, (4.40)

Proof. For (4.39): Consider s = P, viy™ in the canonical form, such that n; < n;4; and
Vi < vi41 and let R, be the release-time function associated to the operator v;. Recall that
Inj*(s) is the greatest solution x € M& [y, 8] of inequality Inj*(x) < s. This is given by
@; 8"y™ where T; is the greatest integer such that 8™ < vji. Repeating the first step of
Lemma 5, this is given by 1; = rnin,t":—O] (Ry,(t) — t). The proof of (4.40) is analogous. [

Example 39. Recall the polynomialp = (61A4‘46_]@6_2A4|4)‘}/0®(65A4|46_1@52A4|4)‘y2@
(65A4|4 @ 66A4|46_] YY" € Toerl[Y]] with a graphical representation given in Figure 4.8a. More-
over, recall the function R51A4‘45_1@5_2A4‘4 (resp. Rssp,,5-1@s20,, and R55A4‘4®56A4‘46—1)
shown in Figure 4.5a (resp. Figure 4.5b and Figure 4.5¢). The residua; of the canonical injection
is Inj*(p) = 6'y° @ 62y2 @ &°y*, which is shown in Figure 4.8b. In Figure 4.8 and Figure 4.9
the polynomial p is compared to Inj(Injt (p)), as required p > Inj(Injf(p)) (2.17).
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(a) sD representation of polynomial (b) 3D representation of Inj(Inj*(p)) = 5'y° @
p=(8"A4ad @S T A Y B(8°Aad T D Sy @ 80y
52 Aaja)Y? @ (8% Aaja @ 8% Aqjad™ ")y

Figure 4.8. — Comparison of the polynomial p = (51A4‘4571 ® 572A4\4)y0 &) (65A4|4671 &) 62A4|4)y4 ®
(8°Agjs @ 5°A4)a5")y® and Inj(Inj* (p)). For all k € Z the slices in the (input-time/output-
time)-plane of p cover the slices of Inj(Inj*(p)), see Figure 4.9.

14 R(t) 14 R(Y) 14 RV o o®
oDom o e
12 12 ® 12 ®
® ®
10 10 ] 10 ooR
oow oom o e
8 ® 8 ® 8 ®
® ® ®
6 1] 61 R 6m
o o® ®
4 ® 4 4
®
21 = e Rs1 2 e Rss 2 e Rse
i o Re1a,46- @0 28,4 0 Rs5a4145- @82 444 0 R85A44@868,45
§ 2 4 ¢ 8 ' § 2 4 & 8 " § 2 4 & 8 "
(@k=1{0,1} (b) k ={2,3} k=4

Figure 4.9. — Graphical illustration of Inj*(p) = y°8' @y25> @ y*5°.
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Zero slice Mapping Y, : To[[v]] = M [v, 8]

n

Recall that (M [y, 8] ,®, ®) is a subdioid of (7 [ Y]], B, ®), hence we define a specific
projection from 7, [v] into M [y, 8] as follows.

Definition 49. Let s = @; viy™ € Ty [l Y] be an w-periodic series, then

)= (Do) = D "

This projection W, has a graphical interpretation, for a given s € 7, [[Y] the series § =
Yo(s) € M [y, 0] corresponds to the slice in the (event/output-time)-plane of the 3D
representation of s € 7o [[y] at the input-time value 0, thus this projection is also called zero-
slice mapping. Note that in contrast to the zero-slice mapping Wiy : Emp[8] — M [v, 8]

defined in Section 3.2, the mapping W, is a projection because M [y, 8] is a subset of
Twllv]l and ¥, satisfies Wy, = Wy, o Wy, However, this is not the case for the set &y, [0]];
for instance, M [y, 8] is not a subset of &3;[[8]] and therefore the concatenation of the

mappings ¥3); o W3 is not defined (possible).

Example 40. Recall the polynomialp = (8' Ay~ @8 Agia) VOB (8% Agjad ' D8* Ay v* D

(55A4|4 ® 66A4|46_] whe Toer[Y]] with a graphical representation given in Figure 4.4. Then,
11/4(19) _ 61Y0 D 65,YZ e 66Y4-

The series W4(p) corresponds to the slice in the (event-shift/output-time)-plane for the input-time
value t = 0 in the 3D representation of p, see Figure 4.10a and Figure 4.10b.

4 time-shift t

— N W o

| event-shift k

1234567

(b) The (event-shift/output-time)-plane for the
(a) 3D representation of p imput-time value 0

Figure 4.10. — Illustration of the Projection W4 (p).
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The projection W, is by definition lower-semicontinuous, see Definition 49, therefore W,
is residuated.

Proposition 71. Let s = ;Y™™ € M [y,8]. The residual Wi (s) € Tollv] of s isa
series defined by

‘PEU (@1 Yniéﬂ) = C—Bi yniSTiAw\w = SAw\w- (4.42)

Proof. By definition of the residuated mapping, W&(@i Yid™) € Tu[v] is the greatest
solution of the following inequality

P, Y™™ = Yy (x) = Yo (@j Vj'Ynj>> (4-43)

where x = (—Bj viY"V € To[[v]. First we show that (4.42) satisfies (4.43) with equality.
ni S Ti < RsTia (0) n; <Ti
Yo (DY M) = @yms tee® — Pymst,
i i i

since Rgvia,,, (0) = Ti + [0/w]w = T, see (4.8) and (4.9). Taking into account that ¥, is
isotone, it remains to show that (P; y™"8™ A, is the greatest solution of

DY = Yolx) = Yo @vyY) = PyWs™ O, (4.44)
i j j

Clearly, to achieve equality we need n; = n; and R, (0) = Ti. Furthermore, we are looking
for the greatest vj € 7y, such that T; = R,;(0). Due to the canonical form Prop. 55 we
can write an w-periodic T-operator as Py, 6CiAw‘qu with —w < ¢/ < 0. This operator
corresponds to the release-time function

R(t) = miax (& + _CHﬂ w).

i=1 w

Now we examine R (t) for t = 0, thus

R(0) = m%x (Ci + Zﬂ w).

i=1

Recall that —w < ({ < 0, hence Ry, (t) = T; +[(0+1t)/w]w is the greatest quasi w-periodic
release-time function such that (4.44) holds, i.e, Ry (0) = Rsvin,,,, (0) = Ti+[0/w]w = Ti.
This function corresponds to the operator ™A |y, O

Proposition 72. Lets = @, y™8™ € M [y, §]. The dual residual ¥, (s) € To[Y] of s is
a series defined by

\FZ) (@iYméTi) _ @iyniéTiAw\wél_w _ SAw\wé]_w' (4'45)

109



4. Dioids (T,®,®) and (T[], ®, ®)

Proof. The proofis similar to the proof of Prop. 71, with the difference that instead of finding
the greatest solution we are now looking for the least solution, denoted by W/, (D, y™8™) e
Tow[[Y]), of the following inequality

@i YHOT < W, (x) = Yy (@) vﬂ’nj) . (4.46)

Again, we show that (4.45) satisfies (4.46) with equality.

v, (@yVisTiAw‘wzst) - D~
i

i

RéTiAw‘wET—w (0)6-[i _ @yviéTi,
i

since Rgwip,, 51— (0) =71+ [(1 — w)/w]w = T, see (4.8) and (4.9). Taking into account

that W, is isotone, it remains to show that (P; Y"1 0™ A 'Y is the least solution of
DyH8T = Yulx) = Yo @viy") = Dy, (4.47)
i j j

Clearly, to achieve equality we need n; = n; and R, (0) = Ti. Furthermore, we are looking
for the least vj € Ty [[v], such that Ty = R,,(0). Due to the canonical form Prop. 55 we
can write an w-periodic T-operator as ;" 6&1Aw|w6q with —w < ¢/ < 0. This operator
corresponds to the release-time function

R(t) = mit (¢ + F{J t} w).

i=
Now we examine R(t) for t = 0, thus
I
R(0) = max (CL + [ww w).

Let us recall that —w < ¢{ < 0, hence Ry, (t) = Ti + [((1 — w) + t)/w]w is the least
w-periodic release-time function such that (3.41) holds, ie., Ry, (0) = R%1 A o051 (0) =
Ti + [(1 — w)/w]w = ;. This function corresponds to the operator ™A ,d' ™. O
Example 41. Let us consider the polynomial p = (61A4|46*] ® 6*2A4|4)y° @ (65A4|46*1 ®

62A4‘4)Y2(—B(65A4‘4(—B66A4‘46_])y4 € Tper[[Y]] with a projection W4(p) = 30Dy i oy
The residual of the projection W4(p), is given by

Wi(Wa(p)) = 6"V @ 8V @ 8%y Agy.

See Figure 4.11 and Figure 4.12 for a comparison of p and‘i’?1 (W4(p)), as requiredp < \l’g (W4(p))
(2.17).
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>
1 <S5
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s =N
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(a) 3D representation of polynomial (b) 3D representation of W (W4(p)) = (8'y° @
P =(8"A4s8 @O A4 )Y B(5°Agsd T @ 5°v? @ 8%y")Aypa.
52 A41a) Y ® (8°Agja @ 8°A41a5 )Y

Figure 4.11. - Comparison of the polynomial p = (§'A4487" @ 5 ?A4a)Y° @ (°A41ad™' @ 8% Aua)y" @
(8°Aaja @ 8°A41487")y® and Inj(Inj* (p)). For all k € Z the slices in the (input-time/output-
time)-plane of ‘Pg (W4(p)) cover the slices of p, see Figure 4.12.

R(t) R(t) R(t)
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® B B B o
12 12 12
10 10 o 10t ® B B B
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6 o 61 O 6®
® B B R ®

4 4 4

2o eRslay, 2 o Rosny, 2 o Roony,

T DR5]A4|45_]®572A4\4 DR55A4|45_]®52A4|4 DR55A4|4@56A4\4571

t t t
6 2 4 6 8 0 2 4 6 8 0 2 4 6 8
@k = {0,1} bk = (2,3} ©k>4

Figure 4.12. — Graphical illustration of ‘1’2 (Wa(p)) = (8'v° @ 85v? @ 85v*) Aypa.






Dioid (ET,®,®)

In this chapter, the dioid (£7,®, ®) is introduced. This dioid is used for the modeling
and the control of Weighted Timed Event Graphs under partial synchronization. The dioid
(ET,®,®) consists of specific event-variant and time-variant operators, in other words,
it is a composition of the dioids (][], ®,®) and (T[v]],®,®) introduced in Chapter 3
and Chapter 4. Note that many results are similar to the results obtained for the dioid
(EN8],®,®) and (T[y],®,®). In particular, just as for periodic elements in E[[§] and
TTv], a core decomposition is introduced for periodic elements in £7. Again, it is shown
that all relevant operations (@, ®, ¥, #) on periodic elements in £7 can be reduced to oper-
ations on matrices with entries in M [y, 8].

5.1. Dioid €T

Let us first recall some results from Section 3.1. The set of antitone mappings ¥ : Z —

Zmin is a idempotent commutative monoid, denoted (X,®, £). An operator is defined as
a lower semi-continuous mapping from the set X into itself, see Definition 27. The set of
operators O is a complete dioid denoted (O, P, ®), see Prop. 8. On this dioid the order
introduced by @ is partial and given by, for f1, f; € O
fi>fHhefhi®f =",
< (fix)(t) @ (f2x) (1) = (f1x)(t), Vxe L, VteZ,

< min ((7xX) (1), (2%)(1) = (fr)(t) ¥xe I, vee Z
Then, two operators f1,f; € O are equal iff Vx € I, Vt € Z: (fix)(t) = (f2x)(t). In the

following proposition, some specific operators in O are recalled and the A, operator is
redefined.

Proposition 73. The following elementary operators are endomorphism and lower semi-con-
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tinuous mappings and therefore operators in O.

mbeN Vyp:VxeZ, teZ (Vip(x))(t)=mx [XS , (5.1)
w,®eN Ayp:VxeL teZ (Aw|@(x))(t) = x(@ X [%J + 1), (5.2)
veZ yY:VxeZL teZ (Y (x))(t)=v+x(t), (5.3)
TeZ §:VxeX, teZ (5°(x))(t) =x(t—n1). (5.4)

Proof. For the proof of (5.3) see the proof of Prop. 9. For the proof of (5.4) see (3.19) and
the following paragraph in Section 3.1.2. Note that the V), operator is nothing but the
composition pm By, with pm and By, defined in Prop. 9. The mapping V .|y, is a @-morphism,
since first Vt € Z, £(t) = o0 and m, b € N are finite positive integers, thus (Vo (€))(t) =
m x |€(t)/b] = £(t). Moreover, for all finite and infinite subsets X < X,

(T (D)) ) = m l(@xex x) (t)J s lminxex (X(O)J,

XeX b b
=g O[5 ]) = i (P ),
= (@ Tme0) 1),

which proves the lower semi-continuous property. Note that in contrast to Prop. 53 in Sec-
tion 4.1 here the Ao operator is defined on the set X instead of Z, i.e, the set of isotone
mappings from Z into Zmqy. In the current form, it manipulates the domain Z of a mapping
X : Z — Zmin Whereas for mappings X € =, X : Z — Zmax the Aw|@ operator manip-
ulates the codomain Z,qy of X, see Prop. 53. The Ay operator defined in (5.2) is lower
semi-continuous and endomorphic. First, we have to prove that, A5 (€) = &. Clearly,
since w, @ € N are finite positive integers then Vt € Z, w|(t — 1)/®| + 1 € Z. Then
Vt € Z, €(t) = oo and therefore Vt € Z, (Ao ())(t) = E(@|(t—1)/w]+1) = .
Second, for all finite and infinite subsets X < X and Vt € 7Z,

(Awm()@x))(t) = <7§2X) (@ X [%J + 1) due to (5.2),
= X(g—l%x(a) X [%J + 1) due to (3.4),
= g—;( wo (X ) (t) dueto (5.2).

O

Note that the identity operator e : (ex)(t) = x(t) can be written as Ay and V1, ie,

(Arpx) (1) = x(1 x [(t= 1)/ + 1) = x(t) and (Vy;x) (t) = 1 x [x(t)/1] = x(t).
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Remark 28. Note that in analogy with Section 4.1, these operators can be defined on the set =
in the following form,

mbeN Vypu:vxeZ, keZ (vm‘b(x))(k)zx(bx[ﬂ]q), (5.5)

m
0, ®EN Ayp:VxeZ, keZ (Appx)(k) = [Xg)]w, (5.6)
veZ vy :¥xeZ keZ (Y(x))(k)=x(k-v), (5.7)
TeZ 8 :VxeZ, keZ (§°(x))(k)=x(k)+T. (5.8)

Proposition 74. The elementary operators satisfy the following relations

Y@y =ymnt:v)] Yy =y, (5.9)
6T®6T' _ 6maX(T,T')’ 6T6T' _ 6T+T/, (5'10)
Aw|®6a) = 6CUAw|a) Vm\byb = Ymvm|b- (5.11)

Proof. For the proof of (5.9) see Prop. 10. For the proof of 57 @ §7 = M%) recall (3.4),
(3.1) and (5.4), then Vx € L, Vt € Z,

(T@8) (1) = (%) @ (57 %)) (1) = (5%)(1) & (5" %)(t)
= min (x(t — 1), x(t — ) = x(t — max(7, 7)) = (§™=")x)(t).

For the proof of 8787 = §7+7', recall (3.5) and (5.4), then Vx € Z, Vt € Z,
((878 %) (t) = ((87(6" %)) (1) = (8" %) (t — 1) = x(t — (T + 7)) = (577 x)(t).
For the proof of Aw‘méa’ = 0" Ay|a, recall (3.5), (5.2) and (5.4), then first Vx € L, Vt € Z,

t—1

(Bf@8®X) (1) = (Aw/a(3X)) () = (5%) (@[TJ + 1)
:x<a)l%J @+ 1).
Second,
w(o | o) =x(o (| 1) 1) = (e )
= (8YAyjox) (1)

For the proof of Vm|byb = Y™V, recall that Vi p = tmBo, Y im = tny' andy' By =
BuY® (3.13), therefore 1 ByY® = umY'Bv = Y™ umBb and Vi y® = Y™ V. O
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Remark 29. (5.11) implies that for 0 < n <1, Vi iY" Vi = Vi, since,

(VY " Vipx)(t) = W‘ﬂ%
x(t) n
B _MJ * i‘“”
= XSJnl, since 0 < % <1

Moreover, for —1 < T < 0, Ay 18" Ajjp = Ay Since

(Boi8 ) (V) = (g0 (i 1 +1),

- (Aumx)(ilt;]J Tt 1),

:X<®r[(t—1)/wj.—’c+1 —1‘ +1>,
=x<a)Ut_w1J —T‘ +1>, since 0 < _TT <1,

(ol 5 +)

= (BwjoX)(t)-

In general mappings (operators) in O do not commute, i.e., f1,f; € O and x € X in general
f1(f2(x)) # f2(f1(x)), however, the following proposition gives some properties regarding
the commutation of the elementary operators.

Proposition 75. The operators introduced in Prop. 73 commute according to the following rules,

61Y] = Y](S]a Aw|a>vm|b = Vm\bAw\an (5.12)
vm|b6] = 6]vm|b) Acu|aa'y1 = Y1Aw|®- (5.13)

Proof. For the proof of 8'y! = y'5!, recall (3.5), (5.3) and (5.4), then Vx € L, Vt € Z,

(YD) (1) = (' (vX)) (1) = (YX)(t = 1) =T+ x(t = 1) =1+ (') (1),
= ((v's")x) (1)

The proofs for the right equation of (5.12) and the equations of (5.13) are similar. ]
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Proposition 76. The V|, and the A operator are expressed in the following forms

n—1

vm|b = @Yimvnm|nbv(ni1ii)b> (5.14)
i=0
n—1

Aw\a) = @ 6_iwAntha)6_(n_]_i)a)' (5-15)
i=0

Proof. For the proof of (5.14) see Prop. 12 and the proof of (5.15) is similar to the proof of
Prop. 56 in Appendix Section C.2.1. 0

Example 42. The identity operator e = V11Aq)1 is represented withm = 2 in an extended
form

Vil = (Vv @7 ' Vap) (A8 @87 14;)),
= Vv 8 T @8 VoY @Y VoA d Tt @8 VA,

Definition 50 (Dioid £7). The dioid (ET,®, ®) is defined by sums and compositions over the
set {€, €, T, Vo, Y B, 87} withm, b, w, @ € N, v, T € Z and addition and multiplica-
tion defined in (3.4) and (3.5).

The dioid (£T,®,®) is a complete subdioid of (O, ®,®). Again the @ operation de-
fines a natural order on ET, therefore for a,b € €T, a® b = a < a > b. Note
that, in contrast to £[[8]] and T[[y]], an element s € ET does not have the structure of a

formal power series, see Definition 9. However, a basic element in (£T,®,®) is defined
as y“éTVmwAw‘@‘y“/éT/. A basic sum is defined as a finite sum of basic elements in 7T,
ie, Di_, VY8V i, b Ay [ Y8 and an infinite sum ;v 8% Vi, o, Ay o YO s
called a series.

n’ 5T’

Proposition 77. A basic element y" 6"V )y A0 Y € &7 has a canonical form such that

0<n’'<band—o® <1’ <0.
Proof. The canonical form is obtained by applying (5.11). O

The ordering of two canonical basic elements m; = yV18"V 1y, Ay|0 1y"{ 5T, my =
YY28"2V i, Awmzyvﬁ 572 € ET with equal indices m, w can be checked by

-

b; = by and @; = @, and

(YV] 5T > YVZ 572 and yv]’ 61{ > Yvé 6T£

My =My < § oryV1tMET > yV2872 and YY1 P18T1 > yV25T2
or YVI5TIT® > yV25™2 and yV18TT @1 > 25T

or ,Y\q TmETI—w ,sz 572 and ,Yv{—b1 6’1’1'-1-6)] > ,Yvéé't£> .
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Proposition 78. [Standard Form] All elements s € ET can be expressed by a finite or infinite
sum of basic elements, i.e, s = @; y"t 6T1Vm‘biAw‘a,iy“i/ 8%, such that all basic element have
the same m and w indices, are in the canonical form of (Prop. 77) and are not ordered.

Proof. See Section C.3.1. O

The standard form is used to check the ordering of two basic sums. Consider two sums
ny T V2. <T2. ny T
S$1 = @iywi&ﬁiva\bnAwﬂ@ny 16 i and sy = @jy Rl szlej A‘*’Z\GJZJ'y 98 in
the standard form (Prop. 78). Due to (5.14), (5.15) and by choosing w = lem(w;, w;) and
m = lem(my, my), s7 and s, can be rewritten as

!

n! ot
$1= @VV]kéT]kvm\mkAw\m]kY RN (5.16)
k

/ TI
Sy = @yvzl 6T21 vm|b21Aw‘a)21’yn216 2, (5.17)
l
Then the sum s; is greater than or equal to the sum s; if and only if, every basic element
in (5.17) is smaller than or equal to at least one basic element in (5.16). Clearly, two sums
s1,82 € ET areequal if s; < sy and s; < s7.

Definition 51. An elements € T is called (m, b, w)-periodic if its standard form is written
as@; y"i6TiVm|bAw‘wai’5Ti’,i.e., all basic elements in the sum have the same m, b, w indices.
Furthermore, the gain of s is then defined by T'(s) = m/b.

The set of periodic operators, denoted by ET e , is a subset of £T.

Definition 52 (Ultimately cyclic series in ETper). A series s € ETper is said to be ultimately
cyclic if it can be written as p @ q(y¥8")* where v,T € Ny and p, q are (m, b, w)-periodic
finite basic sums in ETper (p and q must have the same period).

5.2. Core Decomposition of Series in 7 p;

This section introduces the core-form of series in £7 per. This core-form is orthogonal to
the core-forms of series s € &y [[0]] and series s’ € Tper[[ Y]] introduced in Section 3.3 and
Section 4.2. Hence, the following results are orthogonal to the results obtained in Section 3.3
and Section 4.2. However, to improve the readability of this section again all propositions
with proofs in the introduced notation are provided. Note that most of the presented propo-
sitions and proof are similar to those given in Section 3.3 and Section 4.2. Recall that an
ultimately cyclic series s € &y p[[0]] can always be expressed as m;;, Qby, with Q a matrix in
M [y, 8] and

My = [vm|1 Y]vmﬂ T Ym_]vmﬂ] ) (5.18)

T
by := [Vube_] o Vipy! Vub] . (5.19)
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5.2. Core Decomposition of Series in ET per

Respectively, an ultimately cyclic series s € Tper[Y] can always be expressed as do,Qp,,
again with Q a matrix in M&¥ [y, §] and

dy = [Awﬂ 6_1Aw|1 e 5]_wAw“] )
T
Po = [A1|w61_w e AgdT! A1|w] :

Similarly to the core representation of s € &, [8]] and s’ € Tper[ Y]], in this section, a core
representation for series s € £7 per is introduced. It is shown that an ultimately cyclic series
s € ET per can always be written as a product my,  Qby o, where Q is a matrix in MY [y, 8]
and
.
by, = [A”wéwag A”wbg] , (5.20)

My @ = [Aw“mm e 6]_“’Aw“mm] . (5-21)

Based on this representation all operations on series s € £7 per can be reduced to operations
on matrices in MY [y, 8]. For an illustration of this core-form, see the following example.

Example 43. Consider a seriess = 62V3|2A2|2y] ) (}/363V3|2A2‘26_] )(y'8%)*. By using
(Y'8%)* = (e ®y'6%)(v26*)*, this series is rephrased as,
s =8"V32007'8 7 @ (Y82 V32050 7 @767 V30,07'67T) (v264)*.
Because of Ayp = Ag;1Aq2 and V33 = V31 V2 (Remark 29) one has,
_ <2 1¢—1 3¢3 —1
s = 8"V3nVipAnApy' 87 @ (Y8 Vi VipAyp Ay '@
V8 V31 Viphap Ay '8 (v28%)*.

Recall, Vzm/] = szzn, A2“61 = 62A2“ (5.11) and the commutation laws for elementary
operators (Prop. 75), therefore s can be rephrased as

s = V3nlap 8 VipAipy'87 @8 V1A v18% (v18%)* VipAipd '@
——
M, N
57 V3 A Y18 (V8% VipAypy s
—_——
S2

Observe that My, Sy and S are elements in MEX [y, 8], and that the entries of the m3 ;-vector

n

(resp. by »-vector) appear on the left (resp. right) of My, S1, Sy. The series s is now expressed in
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5. Dioid (ET,®,®)

the core representation m3 Qb > where,

5! € € €

€ € € ¢

Q- € € € ¢
N VIS3(Y182)* YIS (y'82)* € e

€ € € ¢

| € € € €|

A formal method to obtain the core representation for an arbitrary ultimately cyclic series
s € ET per is given in the following.

Core-Equation for a Series in £7 per

The decomposition of an ultimately cyclic series s € £7 per is carried out according to the
following equation

s = my o Xbyp . (5.22)

This equation is called core-equation. Then, Q € M&X [y, 5™

n is called a core of s €
ET per, if Q is a solution of (5.22), i.e, s = mp ,Qby . In general, there exists several
cores Q which solve (5.22). A solution Q for an arbitrary ultimately cyclic s € £7 per can be

obtained as follows. A series s = p @ q(v¥0")* € ET per can be expressed as

!
s = @YﬂiécivmﬂAwH 'Yniéci V1|bAHwyniéci@

I \| I / /

DY Vo1 At Y85 (Y85 VipAyjwy™ 84,

et —_—
5

where M is a monomial and S; is a series in M [y, 8]. Furthermore 0 < nj, Nj < m, 0 <
ni’,Nj’ < band —w < oy, G{,tj,tj/ < 0. In this form, the entries of the my, «-vector
appear on the left of monomials M; and series S;. Respectively, the entries of the by, -
vector appear on the right of monomials M; and series S;. Note that in general, the growing-
term (yY0")* of a series s € T per does not commute with the Vi, Aqyq, (resp. Vi1Agpn)
operator. To bring the growing-term (yY8")* of a series to the left-hand side of the V1, Ay,
operator v must be a multiple of b and T must be a multiple of w, see (5.11). However, any
series s € ET per can be rewritten such that the growing-term commutes with Vi, Ay, by
extending (yY8")* such that, | = lem(ly,1;) with lj = lem(v, b,)/v, 1, = lem(t, w)/T

(,YV6T)* _ (e @,YV6T @ (_D,y(l—l)v6(l—1)’c)(,Ylv61"r)*.
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5.2. Core Decomposition of Series in ET per

For an illustration see Example 43. We denote the set of monomials by M = {My,--- , My}
and the set of series by 8 = {Sy,---,Sj}. Furthermore, the subsets My g, (resp. Sy g.p )
are defined as

Vie {O» )m_]}) VQE {O» )b_]}> Vk)pe {O) )w_]}a
Mikgp = {Mi € M| Y8 V1 AupMiVipAyy98 P e

I
P YT V1 A Mi Vi pAg Y18,
e

Sigp = 1S5 € 8| V'8 * Vi Awp S VipAy Y98 P €

] ! !
DYV 1A S VipArjwy 185} (5.23)
j=1

The entry (Q)mict+1+1,b(w—p)—g Of the core matrix is then obtained by

(Q)mk+l+1,b(w—p)—g = @ M@ @ S. (5.24)

MeMux,g,p SE81k,g,p
Hence, a series s is represented by s = my,  Qby ,. The entries of the matrix Q are ulti-
mately cyclic series in the dioid (MY [y, 8], ®, ®).
Properties of m;, ,, and by, (.

Recall the definition of by, (,- and my, ,-vector,

T
by, = [A”wzﬂ—wbg co A”wb{] ,
My = [Aw“mm e 6]_“’Aw“mm] .
Now let us consider a m; (,-vector and a b; ,-vector with equal indices, i.e., this implies that

the my (,-vector and the b o -vector have the same length. Then since, mby, = e (3.43)
and (5.14) the scalar product,

miwhiw = Mibi(Ag A1 O @8 Ay A WdT YD -
@5 CAupAijw)
=mibi(Aywd YD DI TCAL W)
=5 (5.25)
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The dyadic product by (,m; (, is a particular matrix in MY [y, 8] of size iw x iw denoted

n

by €&. Recall that,

e v Y
E:bmmm: - :] )
Y
_e ’ ) e_

(3.44) in Section 3.3, Ay),d™“ = 6_]A”w and A”wéjAw“ = efor —w < j < 0 see Re-

mark 29, hence

_Aﬂwé]iwbi
e:bi,w(@rni,w: [Aw“mi 6]_“’Aw“mi],

Aqjwbi

Mo TCAGpbimy e Ay 8TTOSTTA  bimy
AwDoibimy oo Ay 8 TCAbimy

E &'E - &7'E

: . 0TE

E - - E |

Proposition 79. For € the following relations hold

EQE = €,
€, ®biy = by w,

m;, & ei,w = My .
Proof.

ei,w & QEi,cu = bi,wmi,wbi,wmi,w = bi,w ®e®myy = ei,wa
€, ®biy = biwmi by =bi, ®e = by,

m;, & ei,w = mi,wbiwmi,w =e@miy = my.

Corollary 14. Note that € = €, because of €€ = € and € =1 P €.
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5.2. Core Decomposition of Series in ET per

Due to m; ,bi, = e (5.25) and EE = €& (Prop. 79), under some conditions the left and
right product of matrices with entries in £7 by the m, (,-vector and the by, (,-vector are
invertible, see the following proposition.

Proposition 80. ForD € ET" ™ and P € £7°“*! one has,

Mpo 8D = by ® D, Pébp o = P@my . (5.30)
ForO € ET™™® and G € ET°“*™ one has

(0€)pmy , = OE R b w by,w R(€G) = my ,, ® (€G). (5.31)

Proof. By definition, the residuated mapping mm o §D is the greatest solution of the inequal-
ity

M ® X < D. (5.32)

Clearly since mpy b, = e, by oD satisfies (5.32) with equality. It remains to be shown
that by, D is the greatest solution of (5.32). Next, assume that exists X' > bm,wD solving
(5:32), i.e, M o, ® X' < D. Multiplication is order preserving hence multiplication by by, «
results in

bm,wmm,w @X/ =¢ @X/ < bm)wD

Furthermore, X’ < X’ as & = I @ &. Hence, X’ < bm,wD and therefore, X' = bm,wD.
This proofs that by, D is indeed the greatest solution of (5.32). Similarly, X = P ® my,
solves Xby, o, < P with equality. Assume that X’ = P@my, (, is a solution, i.e., X'®by, , < P.
Multiplication by my, (, gives

X' <X'€<PRmy.

Therefore X' = P® my , and P ® my, , is indeed the greatest solution.
To prove (O€)¢my o = OE ® by, w, because of by ymp, = € = €€ and Pmy, , =
P¢bm « (5.30) one has

(0€)fmu e = (O€bywmnw)imne = ((O€bnw)ibmw)fMm,w-
Since, (x¢a)fb = x¢(ba) (A.1) and mpy ,bm o = e (see 5.38),

((O€bm,w)tbmw)fmmw = (O€by w)f(Mmwbmw) = (O€bn,w)fe = O€by .
The proof of by o, }(EG) = my , ® (EG) is analogous. O

Proposition 81. Lets = my, Qby o € ET per, core equation s = myy, Xby, o, has a unique
greatest solution, denoted Q and given by

Q = ¢,,,Q¢ . (5.33)
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Proof. Consider the inequality mm,wf(bb‘LU < My, Qbyp , = s. Recall Prop. 8o, therefore
the greatest solution for X is

X < Mpe ximm,wbe,u)f{bb,w = bm,wmm,wab,wdb,w

= em,wer,w = Q

Furthermore, Q solves (5.22) with equality, recall that, my, o = My W &Em wy byw = Ep,wbb,w
(Prop. 79), therefore,

My Qby w = M W €mwQEb Wby w = My W Qby o = s.
O
Remark 30. Since, € ® & = & (Prop. 79) the greatest core Q satisfies the following relations,
¢Q = ¢eQqe = Qq,
Qe = eqee = Q.

Alternative Core-Form

An alternative core form is defined by replacing the m, -vector and by, (,-vector by
dwm = [Vm“ do - ym—1vm“dw] s (5-34)

E
Pwp = [Vube_]PTw VubPL] : (5.35)

Observes that, the difference between the vectors my, , and d, m (resp. by o, and pw’b) is
just the ordering of its entries. Thus, the alternative core equation for an ultimately cyclic
series s € ET per is

s = dwmXpy - (5.36)

A solution of (5.36) is denoted by U. Note again that U € M [y, 5™V X0 Recall the sets
My g,p and Sy g p for an ultimately cyclic series s € £T per (5.23). A solution of (5.36) for s
is then obtained by

VIE{O)"')m_]}>vQE{O)"'ab_]}>Vk3pe{0)"')w_]}a
Vwttktwo-g-p= H Mae @ S. (5.37)

MeMy x,g,p SES1K,g,p

This alternative core form is sometimes preferable over the core form my,  Qby, (, for cal-
culations with s € £ er. Consider a d, i-vector and the P i-vector with same indices, i.e.,
the d i-vector and the p,, ;-vector the have same size. The scalar product,

dwiPy;i = dwPy (LiBY ™ @Y WBY 2@
@y i) = e. (5.38)
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Recall that,
_e &1 ... 571_
N = pwdw = ’ )
5—1
thus the dyadic product,
_N YN ... y1N_
Pui®dwi=1| "~ | (5-39)
: . yIN
N - - N |

This matrix is denoted by 1. Then similar to Prop. 81 the greatest solution of (5.36) is DTU,
which is denoted by O.

Proposition 82. For matricesD € ET*™® P g 70X O e ETV™ gnd G € ETOVX™
one obtains the following results for left and right division by the dwm- and p, y,-vector.

dw»m \QD = Pw,m ® D, P%pw,b =P® Pw,b
(OM)¢dym = ON @ dy m, Pw,b §(MNG) = Pwp® (MNG).

Proof. The proof is analogous to the proof of Prop. 8o. O

Core Transformation

The transformation between the two core representations is achieved by reordering the
entries in the core matrix Q (respectively U). The relation between the two cores Q and
U is given by (5.24) and (5.37). Hence, let s = my, Qbyp w € ET per, then s is written as
dwmepw’b, where

Vlie {O) am*]}> VQE {O) ab*]}> Vkape {0) )w*]}a

(V) wlsks1,00—g)—p = (Qmit14+1,b(w—p)—g-
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By choosing

one can establish forie {1,--- ,mw}, je {1,--- ,bw},

(U)ij = (Q)m(mfl%Jw)ﬂHJ+1,b(w7wb+j+[ﬁjw)f[mj- (5.40)

w w w

Conversely, let s = dw,mUpw’b € ET per, then s is written as my, (,Qby (, where for i €
{]> amw}> ] € {1> 3bw}

[+ 1,w(b—wb+j+| L2 o) —| L0 |- (5.41)

Q)i = (U)w(i—l—[%Jm)ﬂi;L]
Example 44. Recall the series s = 62V3‘2A2|2y16*1 &) (y363V3‘2A2|26*1)(y]62)* of Exam-
ple 43. The alternative core-form of s is d; 3Up, ,, where

5! € € €
YISEE* & ysi(y'8d)* ¢

€ € € €

U= € € € €
€ € € €

€ € € €

| € € € e |

Let s = my, wQby o € ET per be an ultimately cyclic series. Clearly, since dw,mpw‘}J =e,
We can express S as

s = dw‘mpw,m mm)wab»w dw,bpw,b ‘
—_— —_—
e (S
Clearly, Pw)mmm,wab,wdw,b is a solution of the alternative core equation (5.36). Moreover,
it can be shown that
0 = pw,mmm,w Q bb,wdw,b)
—_ ~——

Tqu, Tou,
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is the greatest solution of (5.36), for details see Section C.3.2. Tqu, = Pw,mMm,w and
Tou, = by,wdw,» are matrices with entries in MY [y, 8], see Section C.3.2. Respectively,

PaN
Q= bb,wpw,b U dw,mmm,w .
—_— Y
Tug, Tuq,

Again, Tyq, and Tyq, are matrices with entries in M{ [y, 8], see Section C.3.2. The trans-
formation between the core-matrices Q and U is necessary to express an ultimately cyclic

series s € T per with a multiple period in the core form.

Proposition 83. A series s = mmwﬁbb’w € ET per can be expressed with a multiple period

A PAN Al
(m, b,nw) by extending the core matrix Q, i.e, s = mm ,Qbp o = Mmn,wQ byn o, where
Qe M Ty, 8] MO and is given by

A]\nélinAnH T A]\n‘S]inS]iwAnH
Q’ = : :
A QA e AR QYA
Proof. See Section C.3.2 O

Proposition 84. A series s = dw,mOpw)]3 € ET per can be expressed with a multiple period
(nm, nb, w) by extending the core matrix 0, ie., s = dw)mOpw’b = dnw,molpnw’b, where
U'e ME [y, S|V XY and is given by

n
Vi Y" 'OV 0 Vi vy 1Oy
0 = : :
VinOVap o Vi Oy vy,
Proof. The proof is analogous to the proof of Prop. 83, given in Section C.3.2. O
Therefore, a series s = mm,wﬁbb,w can be expressed as mmm,nzwﬁbmb,nzw with a

multiple period (nym,n;b, nyw).

5.2.1. Calculation with the Core Decomposition

This section illustrates how to perform the basic operations (®, ®, ¥, #) on series in E7 per,
based on the core decomposition.
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Sum and Product of Series in £7 .,

Due to Prop. 83 and Prop. 84, by extending the core-form if necessary, two ultimately
cyclic series s,s" € ET per with equal gain can be expressed with their least common period,

. A A . A A/
ie,s = my Qby o, s' = mpy, Q by . Then observe that matrices Q and Q have equal
dimensions.

Proposition 85 (Sum of Series). Lets = mm,wﬁbb,w, s' = mm,wﬁ/bb‘w € ET per, be two
ultimately cyclic series, then the sum s @ s’ = mm)wﬁﬂbb,w, where Q” Qo ﬁ', is again
an ultimately cyclic series in ET per.

Proof.

s® S/ = mm)wﬁbb’w () mm,wﬁlbb,w = mm,w(eae @ eﬁ/e)bb,w
Mm w e(ﬁ ® 6,)6 bb,w

'

A

Clearly, the entries of the core matrices Q, Q' are ultimately cyclic series in M{X [y, 8] and
because of Theorem 2.6 the sum of two ultimately cyclic series in M [y, 6] is again an
ultimately cychc series. Therefore Q" is composed of ultimately cyclic series in MY [y, 8]

and thus s ®s’ = de P, is an ultimately cyclic series in £7 per. O

Again, because of Prop. 83 and Prop. 84, two ultimately cyclic series 5,8’ € ET per can be
written such that s is (m, b w) -periodic and s’ is (b, b’ w) -periodic, i.e., s = mm,wﬁbb’w
and s’ = my ,Qby/, where Q € M [y, §|™ X and Q € ME [y, 6ﬂwab/w.

Proposition 86 (Product of Series). Let s = mm‘wab,w € ETper and s’ = mb‘wﬁbb/w €
ET per, be two ultimately cyclic series, then the product s ® s’ = mmyw(/i”bb/’w, where Q” =
QqQ’, is again an ultimately cyclic series in ET per.

Proof. Recall that by, (,;mp , = € (5.26) and Qe =Q (Remark 30), then
s®s’ = My, wﬁbb ,wiMp wﬁlbb’,w = mm»wﬁeﬁ/bb’,w

= My, wﬁﬁlbb’
Furthermore, because of €& = & (Prop. 79),
QQ' - eQeeQ'e = Q"
Recall that, the entries of the core matrices Q, Q' are ultimately cyclic series in M{X [y, 8]
and because of Theorem 2.6 the sum and product of ultimately cyclic series in Ma" [h/, 3]
are again ultimately cyclic series in M [y, 8]. Therefore entries of the matrix Q" are

ultimately cyclic series in MY [y, 8] and the product s ® s’ is an ultimately cyclic series in
ET per- O
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Proposition 87. Lets = mm,wﬁbm,w € ET per be an ultimately cyclic series, then

ANk
s* = mm,wQ bm,w- (5'42)

is again an ultimately cyclic series in ET per.

Proof. In this case, I'(s) = 1 means that Q is a square matrix. The Kleene star of a series in
the core representation can be written as,

s¥=ed® mm,wﬁbm,w ® mm,wﬁbm,wmm,wﬁbm,w D
Recall that, e = my, wbm,w (5.25), € = by, oM (5.26) and ¢Q = Q Remark 30,
PN A2
s* = mm,wbm,w @ mm,wam,w @® mm,wQ bm,w @

Mno(I0®QA®Q @ )bne

Ak
= mm,wQ bm,w

Again, due to Theorem 2.6 the Kleene star, sum, and product of ultimately cyclic series in
MEX [y, 8] are ultimately cyclic series in M [y, 8] and therefore, s* = My wQ by is
an ultimately cyclic series in £7 per. O

Note that Q" is not the greatest core of s* as Q" <eqQ'¢.In general, multiplication does
not distribute with respect to A in the dioid (£7,®,®). However, as shown for the dioid
(€8], ®,®) in Lemma 2 and Lemma 3, distributivity holds for left multiplication by the
my, o -vector and right multiplication by the by, (,-vector for specific matrices with entries

in&T.

Lemma 6. Let Qy, Q) be two matrices of appropriate dimension, then

mm,w(ech A eQZ) = mm,w6Q1 N mm,weQZ)
(Q1€ A Q€)by, = Q1€by , A QEDby .

Proof. The proof is similar to the proof of Lemma 2. Recall that e = my, ,bm  (4.19), € =
bim,wMm,w (4.20) and € = EE Prop. 60. Moreover, recall that inequality c(a Ab) < caacb
holds for a, b, ¢ elements in a complete dioid, see (2.2). Now let us define ¢; = my, (€Q
and ¢; = my;, , €Q,, then
a1 A dz2 = e(dq A ) = Mnebmo(qr A d2) < Muyw(bmwdr A Mmwd;).
Inserting ; = muy €Q; and ¢, = my,  €Q; lead to,
mm,w(bm,wq1 AN My w qz) = mm,w(bm,wmm,weQ1 N bm,wmm,wQQz%
= mm‘w(@€Q1 A @@Qz),
= mm,w(eQ] A 6(12)
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Finally,

mm,w(e(h N QSQZ) =< mm,w€Q1 A mm,wQEQZ ={q; A Q3.

Hence, equality holds throughout. The proof for (Q; & A Qu€)by, , = Q1 €by, (, A QuEby,
is similar. O

i PN N . )
Proposition 88. Let s = my, (,Qby o, s' = My Q by € ET per be two ultimately cyclic
series, thensas’ = mm,w(/i”bb,w € ET per is an ultimately cyclic series, where (Al” = ((A)A(All)
is again a greatest core.

Proof. Again, this proof is similar to the proof of Prop. 34. Let us recall that Q = €Q€&, then
according to Lemma 4 we can write
sAs' = mm,wﬁbb,w A mm,wﬁlbb,w
= mm,weﬁebb,w N mm,weﬁlebb,w = |'“m,w(€é\lc3 N eé\llqz)bb,w
= mm,w(ﬁ N Q/)bb,w-

It remains to be shown that CAl” = (ﬁ A Q/) is a greatest core. First, € = &%, therefore,
I®E =¢&, and Q” < @Q”@. Then, according to Lemma 4,

Al

¢Q"e = ¢(@Q Q)€ = bpumne(@nrQ

A A/
= bm,w(mm,wab,w N mm,wQ bb,w mp -

’
)bb,wmb,w

Recall, c(a A b) < ca A cband (a A b)c < ac A bc (2.2), therefore

A P
bm>w(mm,wab,w A mm,wQ bb,w)mb,w

Pay A/ A A/ AN
=< bm,wmm,wab,wmb,w A bm,wmm,wQ bb,wmb,w =QAQ =Q.

Hence, equality holds throughout. O

Division in £T pe;

Proposition 89. Lets = mm,wﬁbb,w, s’ = mm‘wﬁlbb/’w be ultimately periodic series in
ET per where s is (m, b, w)-periodic and s’ is (m, b’, w)-periodic then

S/X%S = mb’,w(6/§ﬁ)bb,w)

is an ultimately cyclic series in ET per.
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Proof. First, it is shown that
Q'5Q = €,,,(Q1Q)C 0.

For this,

(@b',w (ﬁ/*{@)) Ehw

Sy w*{(@b o (@ }?Q) )eb,w»
since: €%(€Q) =
¢

- (
(
(
(
= ((ﬁleb/,w> kiﬁ) Epw (A/§(Al> Epws
since: (ab) §
((Q % (Qpey w)) &y w) #€b,w,
since: (Q€&)¢¢ = Q&
= (((A/Wi) P&y, w) &y w) #€b,w5
since: (a¥x)¢b = ak(x¢b) (A.6)
(
since: ((xfa)a)fa = xfa (A.4)
- Q'y(Qrer0) = Q'xQ

since: (a¥x)¢b

Qe =Qe=qQ.

(5-43)

x = bk (akx) (A5) and Q = Q€&
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Second,

(mm,wﬁ/bb’,w) X (mm,wﬁbb w ,b ) mm w }?(mm wab w)) )

because of (A.5),
/b > bm wmm,wﬁbb,w> )

- (@
(@

because of (5.30),
( Q'by, ) (Qbyw),
-(@

as bm wmm, wQ Q Remark 30,

A

bb/,w) (Qfmy) ,
from (5.31) and Remark 30,
= by (Q"4(@my)),
because of (A.5),
o'y ((Q"4Q)fmy )
because of (A.6),

mb’,w(ﬁl\‘?ﬁ)bb,w7
because of (5.31) and (5.43).

Due to Theorem 2.6, the quotient Q&Q/ is a matrix composed of ultimately cyclic series

in MZX [y, 8] and therefore the s"%s = mp, (Q Q'xQ) by, is an ultimately cyclic series in
& Tper O

Proposition 9o. Lets = mm,wﬁbb)w, s’ = mpy wﬁlbbw be ultimately cyclic series in
ET per where s is (m, b, w)-periodic and s is ( ', b, w)-periodic then

sps’ = mm,w(ﬁlffﬁ)bm’,m
is an ultimately cyclic series in ET per.

Proof. The proof is analogous to the proof of Prop. 89. O

Matrices with entries in E7 per

In analogy with Section 3.4 the operations (®, ®, #, %, #) can be generalized to matrices
with entries in £7 per.
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Model of Discrete Event Systems

In this chapter, Timed Event Graphs (TEGs) and their weighted extension, Weighted Timed
Event Graphs (WTEGs) are studied. TEGs and WTEGs are a subclass of timed Petri nets,
which are commonly used to model timed Discrete Event Systems (DESs), where the dynamic
behavior is only governed by synchronization and saturation effects. Whereas the behavior
of TEGs is event-invariant, due to the weight on the arcs in WTEGs, WTEGs exhibit event-
variant behavior. In the first part of this chapter Petri nets, TEGs and WTEGs are recalled.
Next, time-variant TEGs are studied. Two time-variant extensions of TEGs are considered
in this chapter. First, TEGs are expanded with a specific form of synchronization, which is
referred to as partial synchronization (PS) [20] and is associated with transitions in TEGs.
Second, the time-variant behavior is modeled with a time-variant holding time of places
in TEGs. This leads to the introduction of Periodic Time-variant Event Graphs (PTEGs).
The second part of this chapter focuses on dioid models for TEGs, WTEGs, TEGs under PS,
and PTEGs. Clearly, the earliest functioning of TEGs can be described by linear equations
over some dioids, e.g., the (max,+)-algebra. Due to the event-variant (resp. time-variant)
behavior, this is not the case for WTEGs (resp. PTEGs). However, the input-output behavior
of WTEGs can be described by ultimately cyclic series in the dioid (£[[3]], ®, ®), respectively
for PTEGs and TEGs under periodic PS in the dioid (7per[[Y], ®,®)). In Section 6.2, the
modeling process of TEGs and WTEGs in the dioids (M [y, 8] ,®, ®) and (E[[3], ®, ®) is
presented. This section is mainly based on [16, 17, 65, 66]. Section 6.2.4 studies Timed Event
Graphs under Partial Synchronization, which were first introduced in [20]. In this section it
is shown how the earliest functioning of a TEG under periodic PS can be modeled in the dioid
(Tperlv]l, ®,®). In Section 6.2.6, partial synchronization is introduced for WTEGs. Again,
it is shown that under some constraints the earliest functioning of WTEGs under periodic
PS can be modeled in the dioid (£7,®, ®). Some ideas, results, and figures presented in this
chapter have appeared previously in [66, 65, 67, 68, 69].

6.1. Peti Nets and Timed Event Graphs

In the following, necessary facts on Petri nets TEGs and WTEGs are restated, for a com-
prehensive overview for Petri nets in general see, e.g., [54, 9] and in particular for TEGs
[1, 40], for WTEGsS respectively [16, 50, 63]. Note also that, equivalent graphical models for
WTEGs are known as SDF graphs. SDF graphs are used in the field of computer science, for
instance to model data flow applications in embedded systems. For a detailed description on
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SDF graphs see, e.g., [26, 44, 61].

Definition 53. A Petri net graph is a directed bipartite graph N' = (P, T, w), where:
— P ={p1,p2,---,Pn} is the finite set of places.
— T = {t1,t2,...,tm} is the finite set of transitions.
—w:(PxT)u (T x P) > Ny is the weight function.

A = {(pi, ) W(pi, t;) > 0} U {(tj, pi)|w(tj, pi) > 0} is the arc set, and W € Z™*™,
where (W)ij; = w(tj,pi) — w(pi, tj), is the incidence matrix of the Petri net graph N.
Furthermore,

— *pi == {tj € T|(tj, i) € A} is the set of upstream transitions of p;,

— p = {t; € T|(pi, tj) € A} is the set of downstream transitions of place p;.
Conversely,

— *tj := {pi € P|(pi, tj) € A} is the set of upstream places of transition t;,

— t7 == {pi € P|(tj, pi) € A} is the set of downstream places of transition t;.

A Petri net consists of a Petri net graph A and a vector of initial markings M € N, i.e. an
initial distribution of tokens over places in /. A transition t; can fire, iff Vp; € *tj, (M); >
w(pi, tj). If a transition t; fires, the marking is changing according to M’ = M + (W).;,
where M and M’ are the markings before and after the firing of t;. A potential firing
sequence can be encoded by a vector t € N (called Parikh vector), where (t); gives the
number of firings of t; in the sequence. E.g., for the Petri net shown in Figure 6.1, a firing
sequence t1tytyt3 is described by t = [1 2 1]7. If the encoded firing sequence can actually
occur when marking is M, the new marking is obtained as M’ = M + Wt. A Petri net
is said to be bounded if the marking in all places is bounded. Moreover, a Petri net is said to
be live if any transition can ultimately fire from any reachable marking [63]. The structural
properties of a Petri net can be analyzed by linear algebraic techniques. In particular, the
right and left null spaces of the incidence matrix W reveal invariants of the net structure.

Definition 54. A vector & is called T(ransition)-semiflow if & € N™1 and WE = 0, where 0
denotes the zero vector.

Note that a T-semiflows is a strictly positive integer vector. A T-semiflow, therefore, de-
scribes a firing sequence which involves all transitions in the Petri net and, if it can occur
at marking M, leaves the latter invariant, ie, M = M + WE. It can then of cause be
repeated indefinitely and is therefore also called repetitive vector.

Example 45. Consider the Petri net shown in Figure 6.1. The incidence matrix of the corre-
sponding Petri net graph is
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Then the vector & = [121]7 is a T-semiflow for the Petri net shown in Figure 6.1, since WE = 0
and all entries of & are strictly positive integers. The initial marking of the Petri net is My =
[0 0 1]. Clearly, the firing of &, ie. the firing of the sequence titytyts, results again in the
marking My = [0 0 1].

Figure 6.1. — Simple Petri net with a T-semiflow & = [121]T.

A timed Petri net with holding times is a triple (N, My, ¢), where (N, M) is a Petri
net and ¢ € Nj represents the holding times of the places, i.e., (§); is the time a token has
to remain in place p; before it contributes to the firing of a transition in p;. We can divide
the set of transitions of a Petri net into input, output and internal transitions. Input tran-
sitions are transitions without upstream places. Output transitions are transitions without
downstream places and internal transitions are transitions with both upstream and down-
stream places. A single-input and single-output (SISO) Petri net has exactly one input and
one output transition. If a Petri net has several input or output transitions it is referred to as
multiple-input and multiple-output (MIMO) Petri net.

6.1.1. Weighted Timed Event Graphs

Definition 55. A timed Petri net (N, My, &) is called Weighted Timed Event Graph, if every
place has exactly one upstream and one downstream transition i.e., Vp; € P 1 |[pf| = |*pi| = 1.

Definition 56. An (ordinary) Timed Event Graph is a WIEG, where all arcs have weight 1,
ie, V(pi, ty), (4, Pi) € A, w(pi, ty) = w(tj, p) = 1.

Definition 57 (Earliest Functioning Rule). A WTEG is operating under the earliest functioning
rule if all internal and output transitions fire as soon as they are enabled.

Let t; and t; be the unique upstream respectively downstream transition of place p;, i.e.,
{ti} =* Pi and {t{} = p:

Definition 58. t{ — p; — t; is said to be a basic directed path, denoted by Tt;. The gain of Tt
is

F(T[i) _ W(tb pi) )

w(pi, ty)
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Hence, the gain of a basic directed path is a positive rational number. It is interpreted as
follows: if the upstream transition t; fires w(py, t;) times, this deposits w(ti, pi) x w(py, t;)
tokens in place p;, and this, in true, contribute to w(t;, pi) firings of the downstream tran-
sition ts.

Definition 59. A directed path is a sequence 7w = T, - - Tt withij # iy, j,ke {1,---,q},
such that {j =iV e {1,---,q — 1}. Its gain is the product of the gain of its constituent
basic directed paths, i.e.,

It should be clear that every path in an ordinary TEG has gain 1.

Definition 60. A WTEG is called
— strongly connected, if Vt;j,t| € T there exists a directed path from t; to t;.
— consistent if there exists a T-semiflow.

In this thesis, only WTEGs are considered since a non-consistent WTEG is either not live
or not bounded [63].

Proposition 91. Let (N, My, &) ba a consistent WTEG with T-semiflow €. Then the diverted
directed path 0 = 7, - - - Tt has gain

Proof. According to the definition of T-semiflows, & is a positive integer vector such that
WE, = O) (61)

where W € Z™™ is the incidence matrix of the WTEG. Lines i;, j € {1,---,q} of (6.1)
read as follows:

W(tl])pl])(z')lj - W(pij)tij+] )(E')ijJr] = O) forj = ]) e ’q - 1
wity, piy)(&)y — wpy, t)(&);, =0, forj=q.

Equivalently,
(E')ii+1 W(ti]-)pij>
N T - = ['(, forj=1,---,q—1
(E’)lj W(pi)-)tij_H) ( 11)’ ) ) q
(&),  witi,,pi,) )

&), Whipty)

=q
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Therefore:

A WBTEQG, introduced in [16], is defined as follows.

Definition 61 (Weight-Balanced Timed Event Graph). Two paths @ = 71, - - - T;, and ' =

Thy - TGy are called parallel if they start and end in the same transition, ie., ifi; = i; and

ig = {(;. A WTEG is called Weight-Balanced Timed Event Graph (WBTEG), if all parallel paths
have identical gain.

Proposition 92. A consistent WIEG is a WBITEG.

Proof. Letmt = my, - - -7, and 0’ = Thy - Thy be parallel paths. Then according to Prop. 91
and Definition 61,

O

Remark 31. Note that in general, the opposite is not true, i.e. consistent WIEGs are a strict
subclass of WBTEG.

Example 46. Figure 6.za shows a consistent WBTEG, where Figure 6.2b depicts a non-consistent
one. Note that the only difference is the weight of arc (t1,p2). In Figure 6.2a, w(t1,p2) = 4,
while in Figure 6.2b w(t1,p2) = 1. In case (a) this leads to an incidence matrix

(3 0 0 0 1]
4 0 0 -1 0
wolo =230 o
0 4 —1 0
00 0 0 0
0 =20 0 1|

W has rank 4 and the vector & = [2 3 2 8 6]" satisfies WE = 0 and is therefore a T-semiflow.
It can be easily checked that the firing of & = [2 3 2 8 6]" results again in the initial marking
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My =1[000031]". In case (b) the incidence matrix is

(3 0 0 0 1]
1.0 0 -1 0
w_l0 23 0 o
0 4 —1 0
00 0 0 0
0 =20 0 1|

and rank W = 5. Therefore no T-semiflow exists and the WBTEG is not consistent. The opera-
tion of this WBTEG leads to an irreversible accumulation of tokens in the system, i.e. after the
firing of any transition, the initial marking M cannot be reached anymore.

Ps_1

(a) A consistent WBTEG. (b) The WBTEG which is not consistent.

Figure 6.2. — Examples for consistent and non-consistent WBTEG.

Transformation of consistent WTEGs to TEGs

A consistent WTEG can be transformed into an "equivalent” TEG [53, 55]. Moreover, in
[61] a similar transformation for SDF graphs was introduced. This transformation is based
on the T-semiflow of a consistent WTEG. Each transition in the WTEG is duplicated by
its corresponding entry in the T-semiflow. This transformation is useful to do performance
evaluation for consistent WTEGs. For instance, in [55] it was shown that the throughput, i.e,
the maximal firing rate of transitions, of a consistent WTEG is the same than the throughput
of its transformed TEG. A drawback of the transformation is that the number of transitions
and places can significantly increase for the transformed TEG. More precisely, the number
of transitions in the transformed TEG is |&| and the number of places is at most 2|&|, where
|&| is the 1-norm of the T-semiflow of the original consistent WTEG. Moreover, note that
the |&| can grow exponentially independent of the net size of the WTEG, for more details
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see [55]. For an illustration of this transformation see the following example. The TEG was
obtained based on the algorithm published in [61].

Example 47. Consider the consistent WTEG shown in Figure 6.3. Its incidence matrix is

1 -2 0 0
3.0 -1 0

w_lo o o o
00 0 0
0 3 0 -1
0 0 1 -2

The vector & = [21 6 3] is a T-semiflow for the WTEG, since

1 -2 0 0 0

3 0 -1 © 2 0

WE — 0 0 0 © T _ |0
0 0 0 © 6 0

0o 3 0 -—-1(]3 0

|0 0 1 2] i

This WTEG can be transformed into the TEG shown in Figure 6.4. The transition t; in Fig-

Figure 6.3. — A simple consistent WTEG, example is taken from [16].

ure 6.3 is duplicated twice, since the first entry of & being 2. The transition t; corresponds to the
transitions t1, and ty, in the corresponding TEG (Figure 6.4). Respectively, transition t, corre-
sponds to transition t;,, transition t3 is duplicated 6 times and corresponds to the transitions
t3,,13,, 135, t3,, t35, t3, and transition t4 is duplicated 3 times and corresponds to transitions
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1 ta,

O
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Figure 6.4. — Transformed TEG corresponding to the consistent WTEG shown in Figure 6.3.
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w P3
-
ta «:gw
P p2 P1 : p2 P1 ; P2
[~O——0O— [~O—-—0O— [O—-—0O—|
t 1%) t3 t 1%) t3 t 1% t3
(a) standard TEG. (b) TEG with PS. (c) PS by signal S .

Figure 6.5. — (a) standard TEG. (b) PS of t2 by tq, triggered every w time units. (c) equivalent PS expressed by
a signal S.

t4,,t4,, ta,. Clearly, this transformation significantly increases the number of transitions in the
corresponding TEG.

6.1.2. Timed Event Graphs under Partial Synchronization

To express systems with time-variant behaviors, a new form of synchronization, called PS,
has been introduced for TEGs [20, 21, 22]. Unlike exact synchronization, where two transi-
tions ty, t; can only fire if both transitions are simultaneously enabled, PS of transition t; by
transition t; means that t; can fire only when transition t; fires, but t; does not influence
the firing of t;. TEGs under PS provide a suitable model for some time-variant discrete event
systems. In the following, a brief introduction is given.

Considering the TEG in Figure 6.5a, assuming the earliest functioning rule, incoming to-
kens in place p; are immediately transferred to place p; by the firing of transition t;, as
the holding time of place p; is zero. Note that zero holding times are, by convention, not
indicated in visual illustrations of TEGs. In contrast, Figure 6.5b illustrates a TEG with PS
of transition t; by transition t,. This means that t; can only fire if t, fires, but the firing
of t, does not depend on t;. In this example, place p3 (equipped with a holding time of
w) and transition tq, together with the corresponding arcs, constitute an autonomous TEG.
Under the earliest functioning rule, the firing of transition t, generates a periodic signal S,
with a period w € N. Therefore, the PS of t; by tq can also be described by a predefined
signal Su: Z — {0, 1}, enabling the firing of t, at times t where Sy, (t) = 1. The signal
Sw(t) =1ift e {jw, with j € Z} and 0 otherwise.

Definition 62. A Timed Event Graph under Partial Synchronization is a TEG where some
internal and output transitions are subject to partial synchronization.

Note that the assumption that only internal and output transitions are subject to PS is
not restrictive since it is always possible to add new input transitions and extend the set of
internal transitions by the former input transitions. In [21], ultimately periodic signals are
considered for PS of transitions. It was shown that the behavior of a TEG under PS can be
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described by recursive equations in a state space form. This thesis focuses on (immediately)
periodic signals for PS of transitions.

Definition 63. A periodic signal S : Z — {0, 1} is defined by a string {ng,n1,--- ,n1} € Ny
and a period w € N, such that

1 ifte {ny + wj, 1 + wj, -+, ny+ wj |j € Z},

S(t) =
0 otherwise,
where the string {no,ny,--- ,ng} is strictly ordered, i.e, Vi € {1,--- |1}, ni_1 < ny, and
ny < w.

Example 48. The signal

S](t)z 1 ifte{"'>_3>Ov])4>5»8»97"'}7

0 otherwise,

is a periodic signal with a period w = 4 and a string {0, 1}. Therefore,

1 ifte{0+4,1+4jl|jeZ},

0 otherwise.

In the following, only PS of transitions by periodic signals as given in Definition 63 are
considered. Such a PS is called periodic PS. Considering only periodic PS allows us to model
the earliest functioning of a Timed Event Graph under Partial Synchronization (TEGPS) in
the dioid (7 [[v],®, ®), see Chapter 4. In particular, we can show that the transfer behavior
of a TEG under periodic PS is described by a rational power series of an ultimately cyclic
form in this dioid. Note that focusing on periodic signals for a PS of a transition is not overly
restrictive as periodic schedules are common in many applications.

Example 49. Such periodic timing phenomena occur for instance in traffic networks. As an
example, let us consider a crossroad which is controlled by a traffic light. A vehicle can only cross
during the green phase. If it reaches the crossing during this phase, it can immediately proceed.
But if it reaches the cross in the red phase, it has to wait for the next green phase. The vehicle is
delayed by a time that depends on its time of arrival. Under the assumption that the behavior of
the traffic light is periodic, the crossroad can be modeled as a TEGPS where the timing behavior
of the traffic light is described by a periodic PS. For instance, the TEGPS given in Figure 6.6 with
the signal,

1 ifte{0+4,1+4jl|jeZ},
Sa(t) = fte{0+4 jljeZ}

0 otherwise,
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models such a time-variant behavior of a crossroad. According to the signal S, at time instances
{0, 1, 4, 5, ---} the traffic light is green and the vehicle can proceed without being delayed.
In contrast at time instances {2, 3, 6, 7, -- -} the traffic light is red and the vehicle is delayed
by one or two time unit.

&2
P1 : p2
OO
t t, t3

Figure 6.6. — Traffic light model with a PS.

6.1.3. Periodic Time-variant Event Graphs

An alternative way to model periodic time-variant behavior with TEGs is to consider time-
variant holding times in places. Then holding times of places depending on the firing times
of their upstream transitions. More precisely, the holding time 7{(t) is time-variant and
immediately periodic, i.e. H(t + w) = H(t). The current delay is then determined by the
firing time t of the corresponding upstream transition. Such a time-variant holding time is
described by a periodic function H : Z — Z, called holding-time function, which is defined
as follows.

Definition 64 (Holding-time function H). A holding-time function H : Z — Z is an w-
periodic function, i.e. Jw € Ny Vte Z : H(t) = H(t + w).

Hence, Vj € Z

-

i) if t=0+ wj,

m if t=1+ wj,

(Mw—1 if t=(w—1)+ wj,

where forie {0, -+, w — 1}, ; € Z are the holding times in each period.

The short form of a holding-time function is defined as a string (fiy My - - - M—1). The
period w is implicitly given by the number of elements in the string. For the modeling
process of TEGs in the (max,+)-algebra, it is necessary that tokens must enter and leave each
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place in the same order [1]. In other words, a place must respect FIFO behavior. This property
leads to the following constraint on holding-time functions

VteZ, H(t+ 1)+ 1= H(t). (6.4)

A holding-time function which respects (6.4) is called FIFO holding-time function. More-
over, a holding-time function is called causal if all holding times are nonnegative, i.e., Vi €
{0,---,w—T1}, 1 € Np.

Definition 65 (Periodic Time-variant Event Graph). A PTEG is a TEG where the holding times
of places are given by causal FIFO holding-time functions.

Example 50. Consider the PTEG in Figure 6.7a where the holding time of p1 is changing ac-
cording to, Vj € Z

-

0 if t=0+4,
0 ift=1+4j
Hi(t) = 0021y = {0 FE=T+%,
2 ift=2+4
1 ift=3+4

Y

This holding-time function satisfies (6.4) hence the holding time is such that tokens enter and
leave place p1 in the same order. In contrast, let us consider the TEG in Figure 6.7b, where
the holding time of place p; is changing according to H;(t) = (3 0 2 1). In this case, tokens
which enter the place py at time instant t = O enable the firing of transition t4 at time instant
0 + H2(0) = 3. Tokens which enter the place p; at time instant t = 1 immediately enable the
firing of t4, since H(1) = 0. The function H; violates the FIFO condition of py, and therefore
the TEG in Figure 6.7b is not in the class of PTEGs.

t P1 t2 t3 P2 t4

0021) (3021)
(a) (b)

Figure 6.7. - In (a) H1 = {0 0 2 1) satisfies the FIFO condition. In (b) H2 = (3 0 2 1) violates the
FIFO condition.

Definition 66 (Release-time function R). A release-time function R : Zomax — ZLmax IS an
isotone function defined as,

—0 if t=—o0,
R() =S H{t)+t if teZ,

o0 if t =00,
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where 1 is a FIFO holding-time function. A release-time function is called causal if R(t) >
t, Vt € Zimax.

As H(t+ 1) + 1 = H(t), it follows that
Rt+1)=Ht+1)+t+1=H(t) +t="R(L),

i.e. R is isotone. The release-time function can be seen as an alternative representation of the
time-variant behavior of a place in a PTEG. This function describes the time when a token in
a place is available to contribute to the firing of the downstream transition of the place. The
argument of this function is the time t when the token enters the place and its value is the
time when the token is available to leave the place. By defining n; = fi; + i, we can express
a release-time function as

-

ny + wj if t =0+ wj, withj € Zmax

+ wj if t =1+ wj, withj € Zmax
Rty =HE) +t=1{ D T @) W) € Fma 65)

(Nw-1+wj if t=(w—1)+ wj, withj € Znax.
Clearly, nonnegative holding-times ; (causal holding-time functions) lead to causality of R.

Example 51 (PTEG). Figure 6.8 shows a PTEG with holding-time functions of places p1,P2,P3
given by

Hy = {00215 Hy =15, Hy={1321).

The corresponding release-time functions are, ¥j € Zmax

0+4j ift=0+4,
14+4j ift=1+4j,
Ra(t) = v ]
4+4) ift=2+4j,
(4+4 if t=3+4,
Ra(t) =1+,
1+4j ift=0+4,
4+4 ift=1+4j,
Rs(t) = | joif j
44+4 ift=2+4,
444 ift=3+4.
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a321)

Figure 6.8. — PTEG with holding-time functions of places p1,p2,p3 expressed in the short form at
each place.

(a) Release-time functions (b) Holding-time functions

Figure 6.9. — Release-time function R, R3 and holding-time functions H1, H3 of places p1,p3.

In this example, place py has a constant holding time, whereas the holding times of places p1
and p3 are changing periodically with period 4. R, R3, respectively H1, H3, are illustrated in
Figure 6.9a, respectively, Figure 6.9b. The place p1 can be interpreted as the model of a traffic
light which is green for time instants {0, 1,4,5, - - - } and red for time instants {2,3,6,7,-- - }.
Therefore, if a car arrives at times 2,6, - - - it has to wait for 2 time instants, if it arrives at times
3,7, -, it has to wait for 1 time instant.

Remark 32. The behavior of a TEG under periodic PS operating under the earliest function-
ing rule can be modeled by an "equivalent" PTEG. For this, the time-variant delays caused by
periodic PSs of the transitions are shifted to the upstream places of the transitions. For instance
consider the simple TEG shown in Figure 6.10 with a periodic PS of transition t, by an arbitrary

periodic signal Sy, see Definition 63. To this signal a release-time function Rs : Zmax — Zmax

1S

i :
t P1 t2

Figure 6.10. — Simple TEGPS with a periodic PS of t;.
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is associated, defined by, Vj € Zmax

no+ wj if (nr—w)+ wj <t<ny+ wj,

n +wj  if no+wj <t<mn + wj,

Lm—kwj if ni_1 + wj <t <ny+ wj,

The value of Rs, can be interpreted as the next time when the signal S, enables the firing of
the corresponding transition. Clearly, an w-periodic signal S leads to a corresponding function
Rs which satisfies Vt € Zmax, Rs(t + w) = w + Rs(t). Then the time-variant delay caused
by the periodic PS is modeled by the holding-time function

Hpy (£) = Rs(t+7) — t

of the upstream place p1 of transition t;. As the place p1 may already have a constant holding
time T, this holding time must be considered by the transformation, i.e. the argument of Rs
must be shifted by T time units.

Example 52. The function Rs, (t) (Figure 6.11b) associated with the signal Sy (Figure 6.11a)
given in Example 48 is

-

—0 ift=—0
0+4j if —3+4j<t<0+4j, withj€ Zmax
T+4j if0+4j <t<1+4j, withj€ Zmax

0 ift = 0.

I
g
Iy

=
I
°
°
°

8
7
6
5 )
4 o o 0
3
S](t) 2
11 @
t t
—3-2-1 123456 7 8 —3-2-1 123456 7 8

(a) Si (b) Rs,

147



6. Model of Discrete Event Systems

Then, for T = 1 the release-time function of place py is given by, forj € Zmax.

.
1+4 if t=0+4,
444 ift=1+4,
4+4 ift=2+4j
(4+4 if t=3+4.

Ry, (1) = Rs, (£ +7) =

Finally, Hp, (t) = Ry, (t) —t = (132 1),

Remark 33. Conversely, the earliest functioning of a PTEG can be modeled by a TEG under
periodic PS. Therefore, release-time functions associated with places in the PTEG are converted
to periodic signals. Consider the following simple PTEG with a release-time function

o m t2
R(t

Figure 6.12. — Simple PTEG with release-time function R(t) of place pj.

ny + wj ift=0+wj, withj€ Zmax

<m+wj ift=1+wj, withj € Zmax

(Mw—1+wj ift=(w—1)+wj withj€ Znax-
First, this function is partitioned into a constant offset T and a remaining causal release-time

function,

-

ng + wj if t =0+ wj,

o |+ wj if t =1+ wj
R(t) = T+ R'(t) = min(ni — 1) +{ +wj i t=14+wj,
1= .
Ln(,U—1+wj iftz(w—w—i—wj.
where Vi € {0,---,w — 1},n{ = ny — T and T = min(ny — i). Then, the PTEG shown

in Figure 6.12 can be modeled by the TEG under periodic PS shown in Figure 6.13, where the
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periodic signals Sp, S1,---, Sw—1 are given by, Vj € Z

1 ifte{ R'(0)+ wj,
max(R'(0), 1) + wj,
So(t) = < RN
max(R'(0), w — 1) + wj}
0 otherwise.
1 ifte{ max(R'(1) — w,0) + wj,
R'(1) + wj,
max(R'(1),2) + wj,

Si(t) = <
max(R'(1),w — 1) + wj}
L 0 otherwise.
(1 ifte{ max(R'(w—1) - w,0) + wj,
max(R'(w —1) — w, 1) + wj,
Sw71(t) =

max(R'(w—1) — w, w — 2) + wj,

R'(w—1) + wj}

0 otherwise.

A similar problem is studies in [19][Chapter 4.5], there realizability for series in the dioid
(Fx [v], @, ®) is discussed. This dioid (Fg [v],®,®) is an alternative to the dioid
(Tperl[¥], ®, ®) to model TEG under PS.

Example 53. Consider the simple PTEG shown in Figure 6.14a with a holding time function

149



6. Model of Discrete Event Systems

.
O

E

Figure 6.13. — TEG under periodic PS associated with the PTEG of Figure 6.12.

{102 2) of place p1. The release-time function to{1 02 2) is

14+4j ift=0+4j, withj€ Zmax,
T+4j ift=1+4j, withjeZ
Ry, (t) = oy A
444 ift=2+4j, withj€ Zmax
(5+4) if t=3+4j, withj€ Zna-

For this example, T = 0, sinceny — 1 =1—1 =0, and therefore R, (t) = Ry, (t). Then the
periodic signals Sy, S1, Sz and Sz are

1 ifte{l +45,1+4j,2+4j,3+4j|jeZ},

So(t) =

0 otherwise.

1 ifte{0+4j,1+4§,2+4§,3+4j|jeZ},
Si(t) =

0 otherwise.

T ifte{0+4),1+4j,4+4j,4+4j|jeZ},
S(t) =

0 otherwise.

T ifte {1+45,1+4j,4+4,5+4j|j e Z},
S3(t) =

0 otherwise.
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These signals are simplified to

1 ifte{l1+4j,2+4j,3+4j|jeZ},

So(t) =
0 otherwise.
1 ifte{0+4j,1+4j,2+4j,3+4j|jecZ},
Si(t) =
0 otherwise.
1 ifte{0+4,1+4jl|jeZ},
Sy(t) = ifte{0+4 jljeZ}
0 otherwise.
1 ifte{l1+4),2+4jl|jeZ},
Ss(t) = ifte{l+4 jlieZ}

0 otherwise.

Note that the transition subjected to PS by the signals Sy, S1, 52, S3 are placed in parallel paths,
see Figure 6.13. Therefore, the path with the signal Sy is redundant and can be removed. Then,
the earliest functioning of the PTEG shown in Figure 6.14a is modeled by the TEG under periodic
PS shown in Figure 6.14b.

:So
O—f—0
S t
- 2
0o-f-0—3
t t; N
1 P1 83
!
(1022 @ | @
(a) Simple PTEG with holding-time function (b) TEG under periodic PS by the signals
(1022). So, S2,S3.

Figure 6.14. — In (a) PTEG and in (b) TEG under periodic PS, both models have the same input/output
behavior when operating under the earliest functioning rule.

Indeed Remark 33 shows that the earliest functioning of a PTEG can be modeled by a
TEG under periodic PS. However as indicated in Example 53, PTEGs can model certain
time-variant behavior in a more compact form. Finally, let us note that PTEGs can be seen
as the counterpart to Cyco-Weighted Timed Event Graphs (CWTEGs) [18]. CWTEGs are
an extension of WTEGs, where weighs on the arcs are changing periodically depending on
firing sequences of transitions attached to these arcs [18]. A similar extension is known for
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SDF Graphs, called Cyclo-Static Synchronous Data-Flow (CSDF) Graphs. This system class
was studied, e.g. in [2, 24, 57].

6.2. Dioid Model of Timed Event Graphs

6.2.1. Dater and Counter

In analogy with [1], in the following dater and counter functions are briefly introduced.
For a more exhaustive representation, the reader is invited to consult [1][Chap. 5]. An event
can be seen as an instantaneous action, such as the push of a button, the start of a production
process or the successive firings of a transition in a Petri net. For timed DESs the occurrences
of an event can be described by a sequence generated by an increasing counting mechanism
over time. For instance, the successive firings of a transition in a Petri net can be described
by a time sequence, e.g. (Ko, to) (ko + 1,t1) (Ko + 2, t2) - - -, where the firings are enumerated
starting from an arbitrary value ko € Z. Then the pair (ki, t;) is interpreted as: The firing
numbered by k; has taken place at time t;. For instance, the sequence (0, 2), (1,3), (2,3),
where Ko is chosen to 0, means the first firing of a transition, numbered by 0, has taken place
at time instant 2, the second and third firings numbered by 1 and 2 have taken place at time
instant 3. This kind of sequences can either be represented by a dater function k — d(k)
in the "event-domain" or equivalently as a counter function t — ¢(t) in the "time-domain".
The following section introduces dater and counter functions for the purpose of modeling
WTEGs (resp. PTEGs) in dioids.

Dater

A dater is defined as a mapping d : Z — Zmax, k — d(k), where the index k € Z numbers
the consecutive firings of a transition starting from an initial value kg = 0 and d(k) is the
time when the firing numbered by k has taken place. It is important to mention that by
convention the first firing of a transition is numbered by 0. Therefore, d(k) is the time when
the (k + 1)t firing of the transition has taken place. More precisely,

—o0 (resp.¢), ifk <0,
d(k) = § +o00 (resp. T), ifthe (k + 1) firing never took place,
€ Z, if the (k + 1)t firing occurred at time d (k).

Note that, the time is given by a discrete value d(k) € Zmqay rather than by a continuous
value in R. Furthermore, it should be clear that dater functions are naturally isotone. An
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impulse is represented as a specific dater function given by,

— (resp. €), fork <O,

(k) = (6.7)

0 (resp. e), for k = 0.

According to the representation of a dater function, this means an infinity of firings of the
corresponding transition at time t = 0.

Dater and Series in M [y, 5]

Proposition 93 ([1]). A dater function d : Z — Znmax can be expressed as a series sq €
MEX [y, 8], such that,

sq = ( P ykéd(k)) ® P ykzs*). (6.8)

{keZ|—oo<d(k)<+0o0} {keZ|d(k)=+o0}

Therefore, the series in M{Y [y, 8] corresponding to an impulse Z(k), see (6.7), is the unit

element e = y°8° in the dioid (M [, §],®,®). For a more detailed description of the
transformation, see e.g.[1, 13].

Counter

A counter is defined as a mapping ¢ : Z — Znin, t — c(t), where the time t € Z is given
by a discrete value and c(t) is the accumulated number of firings strictly before time t.

<0, if no firing occurred strictly before or at time t,
c(t) =14 +0 (resp. €), if an infinity of firings occurred strictly before time t,
e N, exact c(t) firings occurred strictly before time t.

For instance the following counter function,

0 fort<,
1 fort=2
c(t) = { o '
3 fort=3
4 fort >4,

\

is interpreted as: No firing before time 1. The first firing is at time t = 1, the second and
third firing at time t = 2. The fourth firing at time t = 3 and after time t = 4 there is no
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additional firing. In contrast to dater function, counter functions are antitone rather than
isotone. An impulse is represented as a specific counter function Z(t), defined as

0 . fort <0
(1) (resp. e) or , (6.9)
+o0 (resp.e) fort > 0.

Counter and Series in M2 [y, 8]

As for dater functions, counter functions can be represented as series in M{X [y, 8], see
[1, 13]. The counter functions ¢ canonically associated with a series s, € MY [h/, 5] is such
that

Sc = ( P yc(t)ét) @ ( P (y_])*ét). (6.10)

{teZ|—o<c(t)<+o0} {keZ|c(t)=—o0}

Then the series in M [y, 8] associated with the impulse Z(t), see (6.9), is again the unit
element e = v°58° in the dioid (MY [y, 8], @, ®).

Notation

Expressing counter and dater functions as series in M [y, 8] is convenient for calcula-
tions with transfer function models of TEGs in M [y, 6]] From now on a counter function
is denoted by a small letter with a tilde and the associated series in M [y, 8] by a small let-
ter, e.g., X denotes the counter function canonically associated with the seriesx € M [y, 8].
Respectively, a dater function is denoted by a small letter with a bar and the assoc1ated series
in M{X [y, 8] by a small letter, e.g., X denotes the dater function canonically associated with
the series x € M& [y, 8].

6.2.2. Dioid Model of ordinary Timed Event Graphs

In this section dioid models for TEGs are recalled. For a more detailed representation,
see e.g., [1, 40, 36]. For the purpose of modeling a TEG, a dater function X : Z — Zomax 1s
associated with each transition. X(k) gives the time (or date) when the transition fires the
(k + 1)%* time, recall that the first firing is numbered by 0, see Section 6.2.1.

Example 54. Consider the TEG of Figure 6.15. By assigning 1y (k) (resp. Tz (k)) to the input
transition ty (resp. t2), X1(K) (resp. X2(k)) to internal transition t3 (resp. t4) and (k) to the
output transition ts, the behavior of the TEG can be described by the following inequalities

1(k) > max()’(z(k — 2),111 (k) + ],ﬂz(k — ]) + 3),
(k) = 7_(2(]() = X1 (k) + 2.

bl

<

If the TEG operates under the earliest functioning rule, its behavior is described by equations
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Figure 6.15. — A simple TEG.

instead of inequalities,
x1(k) = max(x2(k — 2), (k) + T, ax(k — 1) + 3),
g(k) =xa(k) = 2 + %9 (k). (6.11)

Obviously, due to the max operation, these equations are nonlinear in conventional algebra. In
the (max,+)-algebra, the system (6.11) is expressed as

1(k) =x(k—2)® Tu(k) @3112(]( - 1),
(k) = x2(k) = 2% (k). (6.12)

X

<

It is easy to see that the equations in (6.12) are linear. Therefore, the system in (6.12) is also called
"max-plus linear system". With the event-shift operator y and time shift operator d, system
(6.12) can be expressed by x| = 1/2)22 @5y ev' 63112, g=Xx) = 82%;. O, equivalently, with
X = [%1 %2]" and . = [ W]", in matrix formx = Ax ® BQ; § = CX, where

2 1 153
e v {6 vy'o B
A_LZ s]) B_le € ]’ C_[s e].

Due to Theorem 2.1, the least solution for the output § is given by, § = Hu, with transfer
function matrix

H = CA*B — [53(Y252)* Ylés(yzéz)*] )

For some applications, it is more convenient to model the evolution of a TEG in the "time-
domain" rather than in the "event-domain". Then a counter function X : Z — Zmin is
associated with each transition of the TEG. Recall that the counter value X(t) describes the
accumulated number of firings strictly before time t. The earliest functioning of a TEG is
then described by a linear model in the (min,+)-algebra instead of the (max,+)-algebra, see
the following example.

Example 55. Consider the TEG of Figure 6.15, by assigning the counter function U1 (t) (resp.
U, (t)) to the input transition ty (resp. t2), X1 (t) (resp. X2(t)) to internal transition t3 (resp. t4)
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and y(t) to the output transition ts, the earliest functioning of the TEG can be described by

X1 (t) = min(iz(t) + 2,1y (t — ]),ﬁz(t — 3) + ]),
g(t) = x2(t) = % (t - 2). (6.13)

Then in the (min,+)-algebra, the system given in (6.13) is expressed as

X1(t) =2%0)@(t—1)@ T (t — 3),
y(t) = %a(t) = X (t — 2). (6.14)
Again by considering the time- and event-shift operators, the system can be rephrased in the

dioid (M [v,8],®,®). Letk = [X1 %X2]" and @t = [Uy Wy]", then the system (6.13) is
represented in matrix formX = AX @ Bli; y = CX, where

2 51 163
A=|5 V| B= Yol C:[s e].
0% ¢ £ £
Note that the M [y, 8] model of a TEG is the same in the counter and dater representation.
Therefore, the transfer function matrix for the counter representation is again,

H=CA*B = [53(y252)* y]65(y262)*] )

Output Computation and Impulse Response of Timed Event Graphs

In the following, it is shown how to compute the output of a SISO TEG based on its transfer
function h € M{X [y, 8]. Note that the following results can be easily extended to MIMO
TEGs. As a SISO TEG is a time-invariant and event-invariant system, its transfer function
h satisfies y'h = hy' and 6'h = h&'. Moreover, similarly to conventional systems theory,
the system response hZ to an impulse Z describes the complete transfer behavior of the
corresponding SISO TEG [1, 13]. Therefore, the transfer function h € M [y, 3] of the
system is the series in M [y, 8] corresponding to the impulse response hZ, see Prop. 93.
Then the output dater functlon 7 induced by an input dater function Tt is nothing but the
(max,+)-convolution of the impulse response and the input, i.e.,

y(k) = DMI)(k —n)um).

nez

By expressing this input and output dater functions as series y,u € M2 [y, 8] the output
y induced by the input u is obtained by

Yy = h®u)

or equivalent, the output dater function § is obtained by

y(k) = (hewI)(k).
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6.2.3. Dioid Model of Weighted Timed Event Graphs

In the last section, it was shown how the earliest functioning of an ordinary TEG can
be modeled linearly in the (max,+)-algebra as well as in the (min,+)-algebra. Moreover, the
transfer behavior of an ordinary TEG refers to an ultimately cyclic series in M [y, 8]. Un-
fortunately, the weights on the arcs of WTEG lead to event-variant behavior. Therefore, the
earliest functioning of a WTEG can in general not be modeled by linear equations in the
(max,+)-algebra nor in the (min,+)-algebra. However, in [16] it was shown that the input-
output behavior of WTEGs is described by series in E[[3]]. See Chapter 3 for the definition
of the dioid (£[[8]], ®, ®). In the following the modeling process of consistent WTEGs based
on operators in E[[8]] is recalled. Moreover, let us recall the core decomposition of periodic
elements in E[[8]], Section 3.3. Based on this decomposition the dynamic behavior of a con-
sistent WTEG can be decomposed into an event-variant and an event-invariant part. This
event-invariant part is described by a matrix with entries in M{X [y, 8]. As the event-variant
part is invertible, see Prop. 28, the tools for performance evaluation introduced for ordinary
TEGs in the dioid (M X [, 8], @, ®) can be applied to the more general class of consistent
WTEGs.

For the purpose of modeling a consistent WTEG in the dioid (£[[8]], @, ®) a counter func-
tion X : Z — Zmin is associated with each transition. Recall that an operator in E[[8] is
defined as a mapping from the set of counter functions into itself, Section 3.1. Then for a
consistent WTEG operating under the earliest functioning rule, the firing relation between
transitions can be described by operators in &y, [[0]] (the subset of periodic operators in
E[[8])). Consider a basic path 71; : t; — pi — t;. The influence of transition t; on transition
t; is described by the following operator,

X = Bw(pi»ti’)éw)iy(MO)i“’W(ti»pi)fci’ (6.15)

where X; and X; refer to the counter functions of transition t; and t;, w(ti, pi) and w(pi, t;)
are weights of the arcs (t,p;) and (pi, t;), (P); is the holding time of place p; and (M);
is the initial marking of p;. As E-operators and the time-shift operator commute,

BW(Piat{)é(d))iy(Mo)iva(ti,pi) = Bw(pi,t{)Y(MO)iI»lw(typ.l)é(q))i.
For instance, consider the following basic path, the firing relation between t; and t; corre-

t 1 to
O
P1
Figure 6.16. — A basic path 717 : t1 — p1 — t2.

sponds to an operator representation X; = 3 2y1 u361§q.
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Remark 34. Observe that the gain of the path Ty : t1 — p1 — 1, coincides with the gain
of the operator Bry'u3d', ie, T'(my) = T(B2y'wzd') = 3/2. This holds for any path in a
consistent WTEG [16].

Based on the operator representation of a basic path (6.15), the firing relation between
internal, input and output transitions in a consistent WTEG can be described by:

% = AXx®Bu, ¢ =Cx%, (6.16)

where X (resp. 11, §) refers to the vector of counter functions of internal (resp. input, output)
transitions and A, B and C are matrices with entries in &y, p[[0]] of appropriate size. Clearly,
A*B is the least solution of the implicit equation in (6.16), Theorem 2.1. Therefore the trans-
fer function matrix of a consistent WTEG is obtained by H = CA*B. Moreover, this matrix
is a consistent matrix with entries in £, [8]], see the following propositions.

Proposition 94 ([16]). Fora g inputs andp outputs WBIEG, the entries of the transfer matrix
H = CA*B are ultimately cyclic series in Exp[0]].

Proposition 95. Let (N, My, ) be a consistent WTEG with g input and p output transitions,
then its transfer matrix H € Eyp[[8]]P*9 is consistent.

Proof. Since consistent WTEGs are a strict subclass of WBTEGs (Prop. 92) the transfer func-
tion matrix H is composed of ultimately cyclic series in &y, [0]], see Prop. 94. It remains
to show that H € &, [[0]]P*9 is consistent. Recall, Remark 34 the gain of a path is equiva-
lent to the gain of its operational representation. Moreover, N admits a T-semiflow &, with
subvectors &, = [&;, - - 5'19] associated with input transitions and &;, = [&, - - - Eop] as-
sociated with output transitions. Due to Prop. 91, the relation between gain and T-semiflow
must hold for all paths in N Therefore, the gain matrix I'(H) is of rank 1 and is given by

T 1 1
M) = [0, o & ] [ &),
EO] Ei]
& &ig
Eop  &op
&ig &ig

O]

Example 56. [This example is taken from [16]] Consider the consistent WTEG in Figure 6.3. By
assigning the counter function 111 to the input transition t1, the counter functionX = [X; %3]"
to the internal transition t; and t3 and the counter function U to the output transition ty, the
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firing relations are written down as,

152 2
fczlyé ;]lﬁ@[fm]a

e v 13
y= [Hs [321/151]72-

Solving the implicit equation leads to the following transfer function of the system.

h =w3B28% ® (Y sB2y' @ v rsB2)8° @ v s © (V'isBry' @ vousp2)d°
® (Y 3By @v°usB2)8 @ (v'8)* (vorsBay' @ vPisB2)d) (6.17)

This transfer function h describes the firing relation between input transition t1 and output
transition t4 and has a graphical representation given in Figure 6.18a. For example, in the case
where the consistent WTEG is describing a production line, this transfer function describes the
relation between incoming raw materials and finished parts. The left asymptotic growth rate
of this transfer series is (y'8')* therefore the maximal throughput of the system is 1 piece per
time unit. The gain of the transfer series is I'(h) = % and therefore in average 2 input pieces

generate 3 output pieces.

Example 57. The core representation of the transfer function (6.17) obtained in Example 56 is
given by

h = m3Qb;,
,y267(,y163)* 62 ®Y164 @,Y266 ®Y368(Y]63)*
= m;3 ,Yl 65(Y]63)* € b2-

63 ,Y267(,Y153)*

This core representation is realized in the consistent WTEG shown in Figure 6.17. Note that
the realization has two basic paths from the input transition t1 to the first layer of internal
transitions (t, t3). These two paths represent the by-vector and both paths have gain 1/2. Fur-
thermore, the realized WTEG has three basic paths between the last layer of internal transitions
(ts, to, t1p) and the output transition t11. These three paths represent the mz-vector and all
three paths have gain 3. Moreover, the core matrix Q is realized by the internal transitions and
all paths between them. Clearly, the entries of the core matrix are elements in M) [y, 8], there-
fore the internal transitions (ty, - - - ,t10) together with the paths between them constitute an
ordinary TEG. Moreover, observe that the event variant behavior of this WTEG is only modeled
by the realization of the b;- and m3-vector and that holding times are only attached to places
between internal transitions. Subsequently, the internal dynamics are modeled by an ordinary
TEG.
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tn

Figure 6.17. — Realization of the core-representation of the transfer function (6.17).
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6.2. Dioid Model of Timed Event Graphs

Output Computation and Impulse Response of Consistent Weighted Timed Event
Graphs

As shown in Section 6.2.2 the impulse response of an ordinary TEG describes its complete
transfer behavior. However, this is not the case for a consistent WTEG, because they are
event-variant systems. In general for a consistent WTEG with transfer functionh € &, [0]],
Y # hy'. In [17] it is shown that the impulse response of a consistent WTEG with a
transfer function h = @; Wid"t € £ u[8]] can be obtained by

Dwis I @vfwl JSHI(t) - DIt -4 85 (0).

This impulse response is a sum of time- and event-shifted impulses and gives us partial
information about the transfer behavior of the consistent WTEG. Indeed, it can be shown
that the complete transfer behavior can be constructed from a finite set of event-shifted
impulse responses, for a more exhaustive presentation see [17]. The following remark gives
a link between the impulse response of a consistent SISO WTEG and the zero slice mapping,
Yo : Emplld]l = MEX [v, 8], introduced in Section 3.2.

Remark 35. Given a transfer functionh € Eqy [8]], then Wy, (h) is the series in M{Y [y, 8]
associated with the impulse response (hZ), i.e

(hZ)(t) = (Yoo (W) (1).

As consistent WTEGs are event-variant, the output § induced by an arbitrary input 1 is
not simply the (min,+)-convolution of the impulse response hZ with the input 1. To compute
the response to an arbitrary input counter function 1, this counter function is represented
as a sum of time- and event-shifted impulses. The output of the system is then obtained by
the sum of these time- and event-shifted impulses responses. Differently stated, let i be a
counter function with a corresponding series u = @; y18' € M [y, 8] and h € £y [[8]]
be the transfer function of a consistent WTEG, then

§(t) = (hi) (1) = (h(@w&tg)) ®),
as h is lower semi-continuous,
— (®n(st7)) ).

A more convenient way to obtain the output of a consistent WTEG is to represent the input
counter function 1t and the output counter function {j as series u,y € M [y, 3].

Proposition 96. For a consistent SISO WTEG with an (m, b)-periodic transfer function h €
EmplI8] and an input we MG [y, 8], the outputy € MY [y, 8] is obtained by

y= ‘Pm|b (h ® Inj (u))
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Proof. First, let us recall the canonical injection from MY [y, 8] into £[[3]), see Section 3.2,
thus we can represent the input u € M{X [y, 0] as an element in &, [[8]]. Then,

§(t) = (h)(t) = (h(uZ))(t) = (h(Inj(w)I))(t)
= ((h®Inj(w))Z) (1).
Due to Remark 35, this is equivalent toy = W, (h ® Inj(u)). O

Clearly, Prop. 96 can be extended to a consistent MIMO WTEG with a transfer function
matrix H € &y, [0]P*9.

Example 58. The seriesyz € MY [y, 8] corresponding to the impulse response of the consis-

tent WIEG shown in Figure 6.2b with a transfer function (6.17) is given by

yz = Y32 (us B26% @ (Y’ u3B2y' @Y 13B2)8® ® ¥ usBas'®
(V'usB2y' @7v°u3B2)8” @ (Y usBay' ®v°1sp2)8°@
(v'oN)* (vorsBay' ®v8u362)57)>
_ 2@y @6 @' @176 @5 (v15))*
_ 22578

This series Yz corresponds to the slice at the (I-count) value O in the graphical representation of
the transfer function h, see Figure 6.18b.

Example 59. Consider the inputu = §' ®v'8*(v?6%)* € M [y, 8] for a consistent WTEG
with a transfer series h = (u3B2y' @ y2u3P2)d' (v'8')*. For this input, the response y €
M [y, 8] of the WTEG is given by
Yy = Y3 (h®Inj(u))

=Y, ((u3 B2y @ v u3B2)8' (v'8')*® <61 ®y' 64(y262)*>>

= W3 (((u3Bay' ® v 13B2)8” ® (V2 usBay' © Y usB2)8”) (v'5')*)

= (FoyE)(y's)*

_ 62 @Y]63 (‘BYZSS(’Y]SI)*-

6.2.4. Dioid Model of Timed Event Graphs under Partial Synchronization

Unlike ordinary TEGs, TEGs under PS are time-variant systems. Therefore, their earliest
functioning cannot be modeled as a (max,+)-linear nor a (min,+)-linear system. However, the
operators introduced in Chapter 4 are suitable to model the input-output behavior of TEGs
under periodic PS. More precisely, the time-variant behavior caused by a periodic PS of a
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6.2. Dioid Model of Timed Event Graphs

Figure 6.18. — (a) 3D representation of the transfer function (6.17) of the consistent WTEG given in Figure 6.3.
(b) the gray slice at (I-count) value 0 in the (O-count/t-shift)-plane corresponds to the impulse
response (hZ)(t) of the system.

transition can be modeled in the dioid (7,®, ®), see Chapter 4. To show this, recall that a
periodic signal S can be associated with a release-time function R : Zomax — Lmax, see
(6.6). To prove that a periodic PS of a transition (i.e. the PS is specified by a periodic signal
§) admits an operator representation in 7, it has to be shown that an operator v € 7T exists,

such that R, = Rs.

Proposition 97. A periodic partial synchronization of a transition by signal S in Definition 63
has an operator representation in T, given by

V=80 A8 M @ 8N AL 0 O D @ EM A8, (6.18)

Proof. Let us recall that a periodic signal S corresponds to a quasi-periodic function R, see
(6.6). Moreover, there is an isomorphism between the function R, and the T-operator v. It
remains to show that R, = Rs. The function R, is given by

Ry(t) = max (ng + [t ;m}w, n —w+ [t _wno]w,
, NI — W + [t—n#ww) (6.19)

To show equality, R, is evaluated for intervals defined in (6.6). E.g., for the interval (n; —
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w) + wj < t < np + wj, observe that

t — 11
[ n1—|:j) i=0,--1
w

hence

Ry(t) = max (no +jw,n; — w +jw, -,y — w + jw)
=ng + jw.

Second, for (ng + wj) <t < ny + wj, one has

[t—ni]_ j+1, fori=20
w j, fori=1,--- 1,
hence

Ry(t) = max (no + jw,ny +jw,ny — w + jw, - -
M - W+ jw)
=n; +jw.

By going through the remaining intervals defined in (6.6) it is established that,
Ry(t) = Rs(t), Vte Zmax-

O]

Example 60. Consider the TEG under periodic PS shown in Figure 6.19, where the signal S is
given in (6.2) in Example 48. The dater function X1 (k) (resp. X2(k)) is associated with transition
t1 (resp. t2). According to Prop. 98, the behavior of the periodic PS of transition t; is modeled
by the following operator:

v, = 800448 T @8Ny 480 = 5 Ay B Agad 7,

where the latter equality holds as 8° = e. This operator describes the firing relation between t;
andty, ie. Xy = (6*3A4|4 G—)A4|46*1)i1. Therefore, X;(k) = max(—3 + [x1(k)/4]4, [ (%1 (k) —
1)/4]14).

Remark 36. Due to the influence of the PS, this firing relation between t1 and t; is time-
variant. Note again that, X1 (k) indicates the (k + 1) firing of t;. Then for instance, if the
(k+ 1)t firing of ty is at time instant X1 (k) = 1, then the (k + 1) firing of t; is at %3 (k) = 1,
i.e., we have no delay. In contrast, if the (k + 1)t firing of t; is at time instant 1 (k) = 2, then
the (k + 1)t firing of t; is at X2(k) = 4, and the delay is 2.
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LS
t P1 t2
Figure 6.19. — Simple TEG with a periodic PS of t;.
&2

t P1 ;tz P3 t3 Pa ta

Figure 6.20. — Example of a TEG under periodic PS.

A TEG under periodic PS operating under the earliest functioning rule admits a represen-
tation in Tper[[v]], given by,

x=Ax®Bu, 1§ =Cx, (6.20)

where X (resp. 11, §j) refers to the vector of dater functions of internal (resp. input, output)
transitions. The matrices A € Tper[Y[™*™, B € Tper[[Y]™*9 and C € Tper[Y]P*™ describe
the influence of transitions on each other, encoded by operators in Tper[Y]]. Lett; — piy — t;
constitute a basic path. The influence of transition t; on transition t; is coded as an operator

th5(¢)iy(M°)i

where vi_ is the operator representation of the signal S; corresponding to the PS of t; (see
Example 60), (¢ ); is the holding time of place p; and (M)); is the initial marking of p;.

Example 61. Consider the TEGPS in Figure 6.20 with PS of transition t; by the signal
1 ifte{l+2jl|jeZ},

S(t) =
0 otherwise.

Asw = 2,1 = 0, ng = 1 according to Prop. 98 vs, = vy, = 61A2|26*1. For the path
t3 — p2 — 12, the influence of t3 on transition t, corresponds to an operator representa-
tion vtzéoyz = vtzyz = 51A2‘26*1y2. Moreover, by assigning a dater function u(k) (resp.
x1(k), %2(k),y(k)) to transition ti (resp. ty,t3,14), the earliest functioning of the TEGPS is
described byx = Ax @ B1i; § = CX, where

A l|E 810587 1y2 B 51 Ay C:[ 51]
5] c ) ¢ ) £ .

165



6. Model of Discrete Event Systems

6.2.5. Dioid Model of Periodic Time-variant Event Graphs

As for TEGs under periodic PS the earliest functioning of PTEGs can be modeled in the
dioid (T[], ®, ®).

Proposition 98. A release-time function R(t), as given in (6.5), can be expressed by a T
operatorv € T in the following form:
v =8"0A 4108 T BN TV A B STCAL WS @
L @EMTTTA L ET (6.21)
Proof. First recall that release-time functions are isotone, therefore in (6.5), ngy—1 — W <

Ny < < -+ < N1 < Ny + w. Moreover, recall that the release-time function
Réko‘wéo/ (t) of an operator 6‘7Aw‘w60, is defined by

t+0’1
w)

Rson, o0 (H) =0+ [ o
where t = X(k) is a date. Thus, R, associated with (6.21) is

[ oo [Gle

Ry (t) = max(ng + "

Ml — W + [t_((l)u)_z)1w) (6.22)

We can evaluate the expression (6.22) for all dates t. If we choose t = jw, Vj € Znax, We
can show that:

. jw—(w—1) jw
Ryv(w) = max(ng + [T]w,m —w+ [;1(»,
jw — (w —2
M1 — W+ []((l))]w)
=max(ng +jw,n; — W +jw, -+ ;N1 — W + jw)

=Ny +jw.

Similarly, we can show, that Vi = {1,--- | (w — 1)},

Ry(i+jw) = max <n0+ [H—jw _w(w_U}w,m —w + [itvjw]w,
M — @+ [i+jw —w(w—Z)ww>
et [iJrjww(w])]w
=1 +jw.
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Hence we have shown that,

-

ny + Wwj ift =0+ wj,

<m—HJuj ift=1+ wj,

Ne_1+wj ift=(w-1)+ wj.
O

Corollary 15. Since H(t) = R(t) —t, the T-operator associated with a holding-time function
MyMy - -+ My_1) can be obtained by

w—1
p= 6ﬁko‘w6]_w ) @ 6ﬁi+(i_w)Aw|w6]_i.

i=1

Note that the operator representation of a causal release-time function R, i.e. R(t) > t,
leads to a periodic and causal T-operator.

Example 62. Consider H1(t) = (0021) given in Example 51. This holding-time function
corresponds to an operator given by
v =8%0448 73 @ 5 Ay 8° @ 874487 B 8°A48 72,
=53 Ay48° @ 8Ny @ 80448 B 8°A45 7,
=83 A D Ay (8T DT D) = 5 Ay D Agd !,

because of (4.10): 57! @62 @ 53 = 5. Respectively, H3(t) = (1321) corresponds to the
operator Agjy @ 5]A4|46*3.

We can use T-operators and the event shift operator y to describe the transfer behavior
of PTEGs. The firing-relation between the two transitions t, t; in Figure 6.21 is represented

t Pi 5
Hi

Figure 6.21. — Simple PTEG with holding-time function.

by x; = vn/(MO)iii, where (M)); is the initial marking in place pi, v; is the T-operator
associated with the holding-time function #; of place p; and Xg, X; are the dater functions
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associated with tz, ti. Thus, the relation between input, output and internal transitions of a
general PTEG can be modeled by

x=Ax®Bu, 7=Cx,

where % (resp. U, §) refers to a vector of dater functions of the n internal (resp. m input, p
output) transitions of the PTEG. The relations between internal transitions can be modeled
by a system matrix A € Tper[Y]]"*™, the relation between input and internal transitions by
an input matrix B € Tpe[[Y]|"*™, and the relation between internal and output transitions
by an output matrix C € Tpe[Y]P*™.

Example 63. Consider the PTEG in Figure 6.8 of Example 51. The firing relation between its
transitions can be modeled by

x = | (B @ 8" Agu5 )2 | X ® 5304 @ Ay |,
y = [6‘] X,

where Agy @ 5]A4‘46_3 and 6_3A4|4 &) A4|46_1 are the T-operators corresponding to H3 =
(1321) and H; =<{0021), see Example 62.

Transfer Functions Matrices for TEGs under periodic PS and PTEGs

Theorem 6.1 (Transfer function matrix of PTEG). The input-output behavior of a g-input and
p-output PTEG can be described by a transfer function matrix H € Tper[Y]|P*9 of ultimately
cyclic series in Tper[[Y]. This transfer function matrix is obtained by H = CA*B.

Proof. The holding-time functions in PTEGs correspond to causal periodic T-operators, see
Prop. 98. As every monomial/polynomial in Ty, [ Y] is a specific ultimately cyclic series, the
entries of the A, B and C matrices are ultimately cyclic series in Tper[Y]. The sum (resp.
product, Kleene star) of ultimately cyclic series in Tper[[ Y] are again ultimately cyclic series
in Tper[[Y]), see Prop. 65 (resp. Prop. 66, Prop. 67). Thus, the transfer matrix CA*B is also
composed of ultimately cyclic series in Tper[[ Y] O

Corollary 16. For a g-input p-output TEG under periodic PS, see Definition 63, the transfer
function matrix is given by H = CA*B € Tper[Y[[P*9. Moreover, the entries of the transfer
function matrix H are ultimately cyclic series in Tpe[[v]-

Example 64. Let us recall the TEG under periodic PS given in Example 61, the transfer function
for this system is obtained by

%
I — CA*B — [E 51] [s 51A2|261y2] [51A2251]

5! €
= 81 (A%)218'Agpd 7,

£
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where (A*)y1 = (62A2‘26_]y2)*61, see (2.11). To express h as an ultimately cyclic series we
rewrite (A™),1 in the core-form and compute the Kleene star based on the core matrix Qe
MEX [y, 8] with the toolbox MinmaxGD [3z]. Recall Prop. 33, therefore

261 € 251 €
(A")21 = (d2 [YE ) py) 8" = d2(N Ys . N)"p,8'

_g,| O ViRt s
,Y261(.Y261)* e@‘}/46](‘}/26])*

Then, after multiplication,
h =83 (v28%)*Ay287 .

Example 65. Consider the PTEG in Figure 6.8 of Example 51. We can describe the firing relation
between input transition ti and output transition t3 by a transfer function in Tpe:[[Y], ie.
§ = ht, where

h = 5"[(8'Ayad > @ Aga)V?]* (52 Agja ® Ay )
— ('8 ((8"Agad ™ @5 2A40) @ (8" Ags © 82 Agad~ 1Y) .

Impulse Responses of TEGs under periodic PS and PTEGs

As shown in Section 6.2.2, the impulse response of a TEG system provides complete knowl-
edge of the input-output behavior [1]. In contrast, the impulse response of a PTEG (resp.
TEGPS) is not sufficient to describe its complete behavior, because it is a time-variant sys-
tem. The moment when the impulse is applied matters. One single impulse gives only partial
information. In order to obtain the complete knowledge, we need the system responses of
w consecutive time-shifted impulses, i.e. 8°Z, T € {0,--- ,w — 1}. Each single response
corresponds then to one slice in the 3D representation of the transfer function. The impulse
response for a SISO PTEG (resp. TEGPS) with a transfer function h = @; viy™ € Tper[[ Y]]
is obtained by

(hZ)(k) = (Pviy™I) (k) = (P OyMT) (k) = P (Z(k — 1) ® Ry, (0))-
i i i
Note that the impulse response is a sum of time- and event-shifted impulses. Moreover,

recall the zero slice mapping W, : Tper[Y]] = M [, 8], Section 4.4, therefore the series

n

Yy (h) € M [y, 8] corresponds to the impulse response (hZ) (k) of the system.
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Example 66 (Transfer function and impulse response). Consider the PTEG in Figure 6.8 of
Example 51 with a transfer function obtained in Example 65.

h =(Y464)* (61A4‘467] D 672A4|4 ) (61A4|4 D 62A4|4671>Y2>
- (5‘ Dy @ 5—2A4|4) Yo (6‘A4|4 @ 62A4|46“) v’
(65A4|48_] &) 52A4\4> Y@ (55A4|4 @ 56A4|45_]> Y@

This transfer function has a graphical representation, see Figure 6.22a. The response of an im-

18
17
16
15
—~ 14 —~ 14
E 13 13
® 12 ® 12
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Figure 6.22. — (a) transfer function h of Example 65. (b) the gray slice at input time 1 (resp. time 5) (event-shift/
output-time)-plane correspond to the response to an impulse at time 1: §'Z (resp. time 5: 5°Z)
of the system.

pulse at time 1, i.e. WO'Z, is (5% @ 8°v?)(Y*8*)*T. This response corresponds to the slice at
input-time 1 (event-shift/output-time)-plane in Figure 6.22b. Furthermore, the system response
to an impulse at time 5 is (8° @ 8%y?)(y*8*)*Z. Therefore, the 3D representation of a transfer
function inh € Tper[[Y] is interpreted as the juxtaposition of its time-shifted impulse responses.

Output computation

Again, as PTEGs (resp. TEGs under PS) are time-variant systems, the output to an arbitrary
input dater function cannot simply be obtained by the (max,+)-convolution of the impulse
response and the input. To compute the output of a PTEG (resp. TEG under periodic PS)
caused by input dater function 1, this input dater function 1 is expressed as a series U €
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M [y, 8]. Since, (M [v,8],®,®) is a subdioid of (Tper[[Y]], D, ®) and by using the

n
canonical injection Inj, the input can be represented as a series Inj(u) € Tper[[Y]]. The output

y € MY [y, 8] of the system is then computed as follows
y=VY, (h ® Inj(u)) ) (6.23)

Example 67. Recall the transfer function h = & (’}/262)”‘A2|25_1 of the TEGPS shown in
Figure 6.20. Moreover, consider the input dater function,

-

—o0  fork < 0;

0 fork =0;

(k) =12 fork=1,2;

3 fork =3,4,5,6;
(o0 fork>=7.

fot]

The seriesw € M [y, 8] to this dater function isu = Y80 @' 62 ®y383 @y’ 8*. The output
y € M [y, d] of the system is then
y = Yo (h®Inj(u))

_y, (63(1/252)*A2|26*] ® (1’ &Y' &35 ©v6%))

_ \yw (63A2|2671 (,Y262)* ® (’]/050 (—BY]52 ®Y363 @'}/76*))

= Voo ((8°892871 @ 87258~y @ 8°A9871v?) (v?6%)*

) 63A2‘26—1Y7(Y262)*6*)

= Vo (8892871 @ 875071y @8°A92871v)) (v?6%)* @ 824558y '5%)

_ (63 @ 65,Y1 D 66Y3)(Y252)* o 63Y76*

— (5@ 8y (v26))* @ 8%5%y

=F oy edvesyYesy e ) ey

P05y ©5 B @5ty
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Moreover, y is the series in M [y, 8] associated with the dater function,

-

—o  fork < 0;
3 fork=0;
_ 5 fork=1,2
g(k) = 1
7 fork = 3,4
9 fork =5,6;
w fork=>7.
4 time
9 ® ®
8
7 ® ®
6
51 ® ®
4
3 O o0o0oao
)l oo & output g (k)
; o input w(k)

m

"1 23456 7 8 9count

Figure 6.23. — System response § to the input 1.

6.2.6. Dioid Model of Weighted Timed Event Graphs under periodic Partial
Synchronization

In analogy to the modeling process of consistent WTEGs in the dioid (£[[8]],®, ®) and
Timed Event Graphs under Partial Synchronization (TEGsPS) in the dioid (Tper[Y], ®, ®),
the earliest functioning of consistent WTEGs under periodic PS can be modeled in the dioid
(ET,®,®). For this, a counter function is associated with each transition. Then the in-
fluence of transitions on each other are coded as operators in £7, see Chapter 5 for the

definition of the dioid (€T,®, ®).

PS and Counters

Section 6.2.4 describes how the time-variant behavior of a periodic PS is expressed in the
"event-domain" based on dater functions. In the following, a periodic PS is expressed in
the "time-domain" based on counter functions. For this the A, | is redefined as a mapping
from the set X into itself, see (5.2). Moreover, recall that X is the set of antitone mappings
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from Z into Zin. This redefinition of the Ay, operator allows to model the event- and
time-variant behavior of consistent WTEGs under periodic PS in the dioid (£7,®, ®).

Example 68. Consider the simple TEGPS, shown in Figure 6.24, with a periodic PS of transition
t) by,

S, — 1 ifte {0+ 3j}, (6.20)

0 otherwise.

Moreover, X1 and X, are counter functions associated to the transitions t; and t;. Table 6.1
LS
t1 P1 t2

Figure 6.24. — Simple TEGPS with a periodic PS of t;.

gives the response X, induced by the counter function X1 under the assumption that the TEGPS
is operating under the earliest functioning rule. Recall that the value X(t) of a counter function

-1 0 0
) 0 0
1 0 0
2 1 0
3 1 0
4 2 2
5 2 2
6 2 2
7 3 3
8

Table 6.1. — Response X, induced by the counter function X;.

gives the accumulated number of firings strictly before time t. Therefore, the counter function
X1 is interpreted as, no firing of transition t before timet = 1. Exactly one firing at timet = 1
and one additional firing at timet = 3 (resp. timet = 6). The counter functionX; is interpreted
as, no firing of transition t; before timet = 3. Two firings at time t = 3 and one additional
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firing at timet = 6. Observe that, a firing of a transition at time t is represented in the counter-
function ta time t + 1. Or differently, X(t — 1) gives the accumulated number of firings up to
(including) time t. Hence, the firing relation between transition t1 and t; is described by,

(1) = %1 ([%J 3+ 1).

To describe the time-variant behavior of a PS caused by an arbitrary periodic signal S, a
function Ks(t) : Z — Z is associated to this periodic signal S. This function is defined by,
YjeZ,

no +wj if np+ wj <t<n + wj,

n+w fny+w<t<n+wj
K:s(t): ' ) 1 ) )s (625)

ny+wj if ni+wj<t<(ne+ w) + wj.

Again, if the signal S is w-periodic then the corresponding function Kg(t) satisfies Vt €
Zy Ks(t+ w) = w+ Ks(t). The value of Ks(t) can be interpreted as the last time when the
signal S enabled the firing of the corresponding transition. Then the firing relation between
t1 and t; is described by

Xa(t) = %1 (Ks, (1) + 1), (6.26)
where Ks, is associated to the signal S».

Example 69. Recall Example 68 with the signal S; given in (6.24). The function Ks, (t) asso-
ciated with Sy is then, since w = 3 andny = 0,

Ks, (t) = 3j, if 3j) <t <3+ 3j,
t—1
=|——]| x3.
[ 3 | ~
Therefore, X,(t) = X1 (|(t —1)/3] x 3+ 1).

To prove that a periodic PS of a transition admits an operator representation in the dioid
(ET,®,®) we must show that an operator v € £T exists such that, vk; (t) = %1 (Ks, (t)+1).
For this recall the definition of the A operator and the 8" operator in £7, see Prop. 73,

t—1
w,®eN Ayp:VxeL teZ (Aw|®(x))(t) = fc(a) X [TJ + 1),
TeZ §:VxeX, teZ (8%(X))(t) =x%(t—n1).

We have to show that the behavior of a periodic PS can be expressed by sum and composition
of the 6 and A, operators.
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Proposition 99. A periodic partial synchronization of a transition by signal S, see Defini-
tion 63, has an operator representation in ET, given by

Vs =80 418 M @M AL W8 TR D - D M CA 8, (6.27)

Proof. This proof is similar to the proof of Prop. 97. There a periodic PS is modeled by an
operator in 7.

(vsfc) (t) = ((f)“"AwM,ZS_“I DTV AY ST B D BnI_wAw|w6_“<I—‘>)72) (t)
Because of (3.4) and (3.1),

(VsX) () = (8™ Aywd ™) (1) @ (3™ AL Wd TOX) (1) B - -
c @ (SMTOAG S TTIDX) (1),

— min <(6“°Aw|w6_“172) (1), (5™ ®Agod OR) (1), -+
e (BMTOA 8T DR) (t)).

Recall (5.2) and (5.4), therefore
(vs%) (£) = min (%(w| w1, % (w|

ﬁ(w[%J P 1))

=72<min (w[%J +n1+],w[%J +ng+ 1,

t—mnr+w-—1
Sy W —J—I—Tl[_]—l—]))
L w

t—mnp—1 t—my—1
=§<<min<w[%J+n1+1,w[+J+nO+w+l,-~-

t—my+w-—1

—ng—1
e o

J—i-no-l-]),

t— —1
Y il S J~|—n1_1+w—|—1)).
L w

Recall (6.26), it remains to show that (vsX) (t) = X(Ks(t)+1). For this (vsX)(t)) is evaluated
for intervals defined in (6.25). E.g. for the interval ny + wj < t < ny + wj observe that,

[t_z;_]J:[t_t_w] because of |n/w| =[(n—w + 1)/w].

j fori=0
j—1 fori=1,---,I
hence,

(vs¥) (t) = x(min (wj + Ny + T, wj +no + 1, -+ ,wj + np_y + 1))
=Xx(no+wj+1).
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6. Model of Discrete Event Systems

Second, for n; + wj <t < ny + wj,

e e R
j fori=0,1

j—1 fori=2.--,1

and therefore,

(vsx)(t) = X(min (wj + ny + T, w(+ 1) +no + L,wj +ny +1,- -

X(n +wj+1).
By going through the remaining intervals it is shown that,
(vs%) (t) = X(Ks(t) + 1),

where Ks(t) is given by, Vj € Z

.
ny+ wj if np+ wj <t<ny + wj,

n+w fnyt+w<t<n+w
Ks(t) = 4 1 ) 1 ) 2 )y

[+ wj i np 4 wj <t < (o + w) + wj.

Modeling of consistent WTEGs under periodic PS in &7

y Wj +T11_]))

Let us consider a basic path t{ — p; — t; in a consistent WTEG with a periodic PS of
transition t; by a signal S;. The influence of transition t; on transition t; is described by the

following operator,

%5 = Vi Vip(pot) 8P YOV oy

where X; and X; refer to the counter functions of transition t; and t;, vy is the operator
representation of the signal S; corresponding to the PS of t;, w(ti, pi) and w(py, t;) are
weights of the arcs (ti, pi) and (pi, t;), (P); is the holding time of place p; and (My); is
the initial marking of p;. For instance, consider the basic path given in Figure 6.25, with a

PS of transition t; by the periodic signal

1 ifte{1+3j,2+3j},
Sa(t) = {1+3 i}

0 otherwise.
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6.2. Dioid Model of Timed Event Graphs

s
5 v

| O]

t P1 t2

Figure 6.25. — A simple WTEG with a periodic PS of transition t.

Asw = 3,1 =1,n9 = 1 and n; = 2 according to Prop. 99, vs, = v, = 61A3‘36*2 ®
6_]A3|36_]. Therefore,

%3 = vy, Vipdy’ Vipk
= (8 Ay3872 @67 Agpd ™) Vipd® Y’ Vi
= (8353 ® 8 A5 H) Vi Vv 'K
since, Y’ V31 = Vi1v', 8'A38° = 8"Az3 and 57 Az38" = 5743367
= (3 A3 ® 80330 ) (VP V3 @Y Vapy %
since, V1o Vi1 = (V367! @Y V3iv? @Y V36) (Vv @7’ Vi)
= V3v' @' V3,
= ("2 A33V3p @ 8V A3 V38 2 @ 8%y A3 V3! @ 87y Ay 3V3pd 2y ks
Observe that 5*v3A33V3, @ 87 A33V320 2 @ 8%y A3 Vapy! @ 87y'Az;3V38 2y is
the standard form, which was introduced in Prop. 78. Clearly based on this operator repre-
sentation for a basic path, the earliest functioning of a consistent WTEG under periodic PS
can be described by
X = AX @ B, y = Cx,
where X (resp. 1, ) refers to the vector of counter functions of internal (resp. input, output)

transitions and A, B and C are matrices with entries in £7 ¢ of appropriate size.

Theorem 6.2. For a consistent g-input p-output WTEG under periodic PSs, see Definition 63,
the transfer function matrix is given by H = CA*B € ET per?*9. Moreover, the entries of the
transfer function matrix H are ultimately cyclic series in ET per.

Proof. First, periodic PS of a transition by a periodic signal refers to a periodic £7 -operator,
see Prop. 99. Then, as every basic sum in £7 per is a specific ultimately cyclic series, the
entries of the A, B and C matrices are ultimately cyclic series in £7 per. The sum (resp.
product, Kleene star) of ultimately cyclic series in £7 per are again ultimately cyclic series
in T per, see Prop. 85 (resp. Prop. 86, Prop. 87). Hence, the entries of the transfer matrix
CA*B are ultimately cyclic series in E7 per. O
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6. Model of Discrete Event Systems

Example 70. Consider the consistent WIEG shown in Figure 6.26 with a PS of transition t; by

the signal

1 ifte{1+2},

0 otherwise.

S(t) =

Figure 6.26. — Example of a WTEG under periodic PS.

The earliest functioning of the system is modeled by
x = Ax® Bu; y = Cx,

where,

1 —1 3 1 —1
3 ) A2|25 V1|2y ) B — ) Az‘zé ) C— [E 5]] .
V2“51 £ 3

Solving the implicit equation (6.28) leads to the transfer function of the system,

"5 Ay~
3

Let us recall (2.11), hence (A*)1 = (v252V2|2A2|2y1 51 )*VZHS]. Then

e 8 AypdT Vypy?
VZ|15] 3
= (A*)ZJ 5! A2|25_1 .

h— CA*B = [5 51] [

(V8 Vapypy'67)* = e @202V pAg v '8!
R R A P A R e PV S A
Recall, Remark 29 hence,
(V'8 VapAgpy'87)* = e @y 62 Vphgpy '™
DYV VapAgpy'5
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6.2. Dioid Model of Timed Event Graphs

and thus (YZSZVZRAZ‘[Y] 51 )* =e @Yzéz(yzéz)*V2|2A2|2Y] 51, Finally,

h =24 (e @yzéz(yzéz)*VmAsz] 57! )Vzu 5! 6]A2|26_1
= 8V Agpd T @Y (YVAP) Vo Agpd
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Control

In this chapter, some control problems for Weighted Timed Event Graphs (WTEGs), Peri-
odic Time-variant Event Graphs (PTEGs) and Timed Event Graphs (TEGs) under periodic
partial synchronization (PS) are addressed. Over the last three decades, several control
strategies have been established for TEGs, among them are optimal feedforward control
[12, 51], state feedback, output feedback control [15, 25, 47, 34, 48], and observer-based con-
trol [33, 35, 36]. In [51], an optimal control strategy for TEGs has been studied. For this
control strategy, an output reference signal for a system is assumed to be a priori known,
and the controller aims to schedule the input events of the system as late as possible, but
under the restriction that output events do not occur later than specified by the reference
signal. In the context of manufacturing systems, this strategy is called "just-in-time" produc-
tion. In [25], an output feedback strategy for TEGs is introduced which leads to a strongly
connected closed-loop system. The controller inserts additional places to the system with a
sufficient amount of initial tokens such that a given throughput of the closed-loop system
can be guaranteed. In [15, 46], model reference control was introduced for TEGs. The pur-
pose of the controller is to modify the system dynamics such that the system matches as
close as possible the behavior of the reference model. The key difference to optimal con-
trol, where an optimal input is computed and then is chosen directly as the control action, is
that the (potentially unknown) input is first filtered and then applied to the system. In the
following, optimal control, as well as model reference control, are generalized to the case of
consistent WTEGs, PTEGs, and TEGs under periodic PS. Subsequently, it is shown that these
control problems can be reduced to the case of ordinary TEGs. Therefore, the existing tools
for control synthesis for ordinary TEGs can be directly applied to consistent WTEGs, PTEGs,
and TEGs under periodic PS. Some ideas, results, and figures presented in this chapter have
appeared previously in [66, 65, 68, 69].

7.1. Optimal Control

Optimal Control for WTEGs

For a consistent WTEG with a transfer function h € &,p[[8]], the optimal control problem
can be stated by the inequality

Z(t) > (hw)(t), (7.1)
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7. Control

where Z is a counter function describing the desired output schedule - a priori known signal
- and 1 is the unknown input - a counter function describing the input schedule - that we
want to optimize under the "just-in-time" criterion. Let us recall the calculation of a system
output in Prop. 96 and the relation between counter functions and M{X [y, 8] series. Hence,
(7.1) can be written as,

zx= lym|b(h ® Inj (u))> (7:2)

where z,u are series in M [y, 8] corresponding to the counter functions Z and 1. Note

that for h € Eqp[[8]] and uw € MY [y, 8], Inj(u) € & p[[8] and thus the product h ®
Inj(u) € Enp[[8]], see Prop. 18. In other words, the periodicity of h and h ® Inj(u) are the
same. Finding the optimal input in (7.2), according to the "just-in-time" criterion, amounts
to compute the following sum

P {u¥mp(h@Inj(u)) < z}.
u
Proposition 100. The greatest solution of z > ¥, ;, (h ®@ Inj(w)), (7.2), is given by
oyt = (2

Proof. Since h € Enp[[8] and ‘PE“'b(Z) € Emplld], ie., they have the same period, u =
h%{‘l’ti (z) € &ppll8] is (b, b)-periodic, see Prop. 20, which is the required form for a po-

m|b
tential non zero solution of Inj(u), see Prop. 22. O

Example 71. Let us consider the consistent WITEG of Example 56 with a transfer function
h e &p[[8] given by

h =w3B28% ® (Y sB2y' @ v rsB2)8° @ v usp2d* @ (Y'isBry' @ vousp2)d°
® (Y usB2y' ®v°u3B2)8° @ (v'81)* (vousB2y' @ vPusB2)d’).

Moreover, consider the following reference counter function,

0 fort <3,
Z(t) =13 ford <t <6,

3
445 for7+2j <t<8+2j withjeNy.

This counter function corresponds to the series z = SEe) y366(y162)* e M8 [y,8]. Then
WE,(2) = 13B2d° @ (v'8%)* (v’ 13B28°) and

Uopt = Inff (R¥W,(2) = e@ V'8! ©778" (v76°)".

182



7.1. Optimal Control

The response Y of the consistent WTEG to the optimal input Uopy is
Y =Y3p(h®@Inj(upt)) = 8 @ (Y5 @v°8") (v*5°)*.

This series corresponds to the counter function,

0 fort < 3,

. 3 ford <t <6,

5+3j fort=7+6j withje Ny,

(6+3j for8+6j<t<12+6jwithjeN.

Figure 7.1 illustrates the reference output Z and the system output U resulting from the optimal
input 1. Note that in (min,+) the order is reversed, one can see that, in Figure 7.1 it is indeed
true that Z > \j. For all t, the number of outputs §(t) is greater than the wanted outputs Z(t).
In other words, if we number the events, then the (k + 1)%* output § occurs before or at the time
instant of the (k + 1)%* wanted output z.

count ®
9 0O00R B
8 O ® ®
7 ® ®
6 0O00R R
5 | ® ®
4 ® ®
3 R R R
) o reference Z(t)
1 o output §(t)

time

12345 67 8 21011121314151617 18

Figure 7.1. - Comparison between the reference output z and the system response { to the optimal
input 1. As required, the condition z > y is satisfied.

Optimal Control for TEGs under periodic PS

Similarly to optimal control of consistent WTEGs, for a TEG under periodic PS (resp. a
PTEG) with a transfer function h € Ter[[Y]| the optimal control problem can be stated by
the inequality

z(k) > (ha)(k), (7:3)

where Z is a dater function describing the desired output schedule (a priori known signal)
and U is the unknown input schedule, which is supposed to be optimized under the "just-in-
time" criterion. Let us recall the calculation of a system output in (6.23) where the input and
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7. Control

output are represented as series in the dioid M{X [y, 6]. Then (7.3) is rephrased as

n
2z VYo(h®@nj(w), wzeMig[y,8], he Ty, (7.4)
where the series z, u € M{X [y, 8] correspond to the dater functions z and 1t.
Proposition 101. The greatest solution of z > ¥, (h ® Inj(u)), (7.4), is given by
Uopt = Injf (hYWE, (2)).
Proof. The proof is similar to the proof of Prop. 100. O

Example 72. Let us consider the TEG under periodic PS of Example 64 with a transfer function
h e Tper[[Y] given by

h =83 (v*8%)* Ay
Moreover, consider the following reference dater function,
- fork <0,

z2(k) = {3 fork =0,1,
6+2j fork=2+jwithje Np.

This dater function corresponds to the series z = 8 @ v?8°(y'6%)* € M [y,8]. Then
Wi(z) = 88 @ (v'8))* (v?8°Ay2) and

Uopt = Inj* (hKW5(2)) = &' @283 (v'8%)".
The response y of the TEG under periodic PS to the optimal input Ugpy is
y=%"he Inj(uor)t)) =&’ 653/255(1/]52)*-

This series corresponds to the dater function,

—oo  fork <0,
k) =13 fork = 0,1,
542 fork=2+j withje Np.

Figure 7.2 illustrates the reference output Z and the system output { resulting from the optimal
input Uopt, clearlyz > §.
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4 time ®
17 m]
16 ®
15 a
14 ®
13 O
12 ®
1 o
10 ®
9 o
8 ®
7 O
6 ®
5 O
4
3d ® o reference z(k)
) o output §(k)
1
count
123 4567 8 9101

Figure 7.2. — Comparison between the reference output z and the system response { to the optimal
input 1. As required, the condition Z > 7§ is satisfied.

7.2. Model Reference Control

In many applications, it is desirable to control the system such that a given reference model
is matched. The control problem is then to modify the system dynamics such that for any
input the output of the system matches as close as possible the output of the reference. In
the following, a feedforward and an output feedback approach are presented to solve the
problem of model reference control for consistent WTEGs (resp. PTEG, TEGsPS). For this, it
is considered that the input/output behavior of the consistent WTEG (resp. PTEG, TEGPS)
is described by a transfer function matrix H with entries in &y, [8] (resp. with entries in

7Taer[h’]])-
7.2.1. Feedforward

In Figure 7.3 an open-loop control structure is given. In this structure, a prefilter, described
by a matrix P € &y, [[0]]979, is placed at the input of the system H € &, [8]P*9. The
control input is chosen to Tt = PV, where v denotes the external inputs. The transfer matrix
of the overall system is then H ® P and the output §j is, therefore

j=(H®P)[@).

The reference model can be specified by a consistent transfer function matrix G € £, [8]P*9.
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G T Yy
— " > P+ H —

Figure 7.3. — Open-loop control structure with a prefilter P and plant model H.

The control problem is then to find a prefilter P for a plant model H such that the overall
system HP satisfies,

HP < G. (7-5)

Moreover, we are looking for the greatest possible prefilter P in order to guaranty the op-
timal behavior under the "just-in-time" criterion. As H and G are matrices with entries in
Emppl[8]] and &y u [[0] is a strict subset of the complete dioid (£[[8]], @, ®), residuation the-
ory is suitable to obtain the greatest solution for P in (7.5). Therefore, the optimal prefilter
is

Popt = HXG. (7.6)

To realize the prefilter by a consistent WTEG and to guarantee that the overall system is again
consistent, P must be designed such that P and HP are consistent matrices with entries in
Emp 8]l Hence, the matrices H and P must satisfy Prop. 44. This leads to the following
restrictions on the reference model G.

Proposition 102. Let H € & p[[8]]P*9 and G € Enyp[[8]]P*9 be to consistent matrices, then
the open loop transfer matrix HP o, with Pope = HXG, is a consistent matrix with entries in

Em‘b[[é]], if and only if, 3c € Q, ¢ > 0 such that,
CF(G)kJ = F(H)K], Vk € 1, P (7.7)

In other words, all columns of T'(G) must be linearly dependent to all columns of T'(H) (recall
that T(H) and T'(G) have rank 1).

Proof. This follows immediately from Prop. 48. O

Moreover, note that P,,¢ may not be causal, i.e. the matrix is not realizable by a consistent

WTEG. Hence the optimal causal (m, b)-periodic prefilter P;’pt is obtained by
+  _ pet
Popt - 1:,rm|b (H\QG)v

where Pr;'b
shown in Example 26 the obtained causal prefilter is in general only the greatest (m,b)-
periodic causal prefilter. In the particular case, where the optimal non-causal prefilter sat-
isfies Remark 15, the greatest (m, b)-periodic causal prefilter is the greatest causal prefilter
which satisfies Pr;lb(Popt) < Popt.

 Empllo]l — Snt'b[[é]] is the causal projection, see Remark 14. Note that as
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7.2. Model Reference Control

Example 73. Let us consider the consistent WTEG of Figure 6.2za with a transfer matrix H
given by
H = | (B2y! ©@7usB2)8" (v'8)* uspad’
)
g a8

with a gain matrix

r(H) = [i 4] .

The reference model is specified by the following matrix
G = [52(v352)*u3f54 62@362)*»3[32]
82 (y28%)* a1 6% (v*0%)*pafy

with a gain matrix

3
rG)=1% 2.
@- 1
Clearly, T'(G) has rank 1 and all columns of T(G) and T'(H) are linearly dependent, since

)

Thus, the specification G satisfies the structural property, given by (7.7), and therefore it is
an admissible reference model for the plant H. The optimal prefilter Py is given by

(Popt)11 =B2y' @ (V' 1By’ @ v 12B4)8" @ (v'6")* (v 12B48?),

(Popt)12 =e @ (v'8")*(v'1aB28"),

(Popt)21 =B2y'8 '@V Bo@V 12B4d' ® (Y 12 Bay' @Y’ 12Ba) 52D (V2?) (v 12 Bad?),
(Popt)2,2 =e @ (Y*8%)* (v*12B25%).

The optimal causal (m, b)-periodic prefilter P:pt is given by

I
[NTI9Y

N

Pl = Pr;‘b (H}G),

with
12 =e® (v'8)* (v maB28"),

(Popt)
(Popt)
(P21 =Y B2 @V 12Bad @ (Y:1Bay' @ 12B4)8” @ (v?8%)* (v*12Bad?),
(Pop)2 =e @ (Y?8))* (v 1a2d?).
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Note that in this case the greatest causal (2,4)-periodic (resp. (2,2)-periodic) prefilter, it is the
greatest causal prefilter, since all coefficients of the optimal non-causal prefilter P ot are smaller
than or equal to 1y R4, (resp. W2P2). A graphical representation of the overall system is given
in Figure 7.4.

Remark 37. (Optimal prefilter for PTEGs and TEGs under periodic PS) Clearly, the design
process for an optimal prefilter for a PTEG (resp. TEG under periodic PS) with a transfer function
matrix H € Tper[[Y]P*9 is analogous. For these systems, the reference model is specified by a
matrix G € Tper[Y][P*9. Note that in the case of PTEGs the reference model can be freely chosen
to any matrix G € Tper[Y[P*9. There is no additional condition as in the case of consistent
WTEG. Therefore, the optimal causal prefilter is obtained by,

P+

opt

= Pr* (HXG).

7.2.2. Feedback

Feedback control allows the system to react on unforeseen disturbances during runtime.
One approach is output feedback, which leads to the control structure shown in Figure 7.5.
The closed-loop transfer function matrix to this control structure is given by

H = H(FH)*P. (7.8)

As in the feedforward case, the reference model is as well specified by a consistent transfer
function matrix G € Enp[[8]]P*9. The control problem is then to find an output feedback
F and a prefilter P for a plant model H € &, [0]]P*9 such that the closed-loop system H
satisfies H < G. According to the definition of the Kleene star, the closed-loop system can
be written as H = HI@®FH® (FH)2 @ - - - )P this implies that the prefilter P must satisfy
the following inequality

HP ® HFHP ® H(FH)*P--- < G. (7.9)
Clearly, P must satisfy the first element of the sum, i.e.,
HP < G. (7.10)

The greatest solution of (7.10) is given by Pope = HYG, see (7.6), furthermore in [34] it is
shown that this Pt is also the greatest solution for P in (7.9). Therefore, the optimal prefilter
is equivalent to the optimal prefilter in the feedforward case. Again, in order to guaranty that
the overall system is consistent, the reference model G and the transfer function matrix H
of the plant must satisfy (7.7). It remains to find the greatest feedback F such that

H(FH)*Pop < G. (7.11)
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Figure 7.4. — Overall system with a prefilter.
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<

— v S p »@ﬂ>H >

F e

Figure 7.5. — Closed-Loop structure with plant model H, feedback F and prefilter P.

Proposition 103 ([34]). The greatest solution of the inequality H(FH)*Pop¢ < G is given by

FOPt = (POP’C?{POP’C)?{H'

Proof. By left division by H and right division by Py the inequality H(FH)*Pgpt < G can
be written as

(FH)* < (HXG)#Popt = PoptfPopt.
Since PoptfPopt = (PoptfPopt)™ we obtain
FH < PopifPopt.
Therefore, the greatest solution Foyp¢ for the feedback F in (7.11) (resp. (7.9)) is
FOPt = (POPtY{POPt)FéH-
O

Finally, we check whether F,p¢ and the closed-loop transfer matrix H(FoptH)*Popt are
consistent matrices with entries in &, [8])-

Proposition 104. The optimal feedback Fopt = (PoptfPopt)fH, with Popy = HXG and
the closed-loop system transfer matrix H(FoptH)*Popt are consistent matrices with entries in
Empp 8], if and only if the transfer function matrix H and the reference model G satisfy (7.7).

Proof. Recall that I'(G) = g.g, and I'(H) = hch, with g, h, € Q°*! and g,, h, € Q™.
Then because of (3.60),

o (gc)1
F(Popt) = T(HXG) = hcﬂgﬂ
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where h, = [((hr)1)_] ((hr)z)_] N ((hr)m)_l]T. Then I'(Popt) = PPy, Where p, = he
and p, = (gc)1/(hc)1 g, Because of (3.61),

(P )1 -
i

where P, = [((P)1) ™ ((Pe)2) ™ -+ (Pe)m) '] Clearly (p,)1/(p,)1 = 1 and therefore
( Opt/épopt = CpT and as

I'(Popt#Popt) = P

)
[ )7 ((po)2)”! ((pc)m)*‘]
[ )7t () H7 e (((h‘r)m)_])_]]

- [(hm () o ()
= hr
Then I'(PopfPopt) = h.h,. Therefore, the matrices PoptfPopt and H satisfy Prop. 49 and
Fopt is a consistent matrix with entries in & p[[8]]. Furthermore, I'(Fopt) = T'((Popt#Popt)#H) =
ﬁcflfr and thus F(Fopt)i,j = (F(H)j’i)_1.
Then recall (5), hence
IHFopt) = he(hy)i(he)ihy,
he( h

)1
c(Me)1((he)r)™ hr:hcﬁ«-

Second,

M(HFoptH) = he(hy)i(he)rhe
= hc((hc)1)71(hc)1hr
= hch, = I(H).

This implies that the sum H@® HF,,tH® - - - is again a consistent matrix and therefore the
closed-loop transfer matrix H(Fop¢H)*Popy is consistent as well. O

Again in order to guaranty that Fop is realizable by a consistent WTEG only the causal
part is considered:

Fjpt m\b (Fopt) = Prm|b ((Popt#Popt)#H).

Then again as indicated in Example 26 the obtained causal feedback is in general only the
greatest (m, b)-periodic causal feedback. However, if the entries of Fopt satisfy the condition
laid out in Remark 15, then the greatest (m, b)-periodic causal feedback Pr" \b( opt) is the

greatest causal feedback which satisfies Pr" |b(Fopt) < Fopt.
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Remark 38. (Neutral Feedback) A particular case of model reference control is to consider the
transfer function matrix H as the reference model, i.e., G = H. The optimal (m,b)-periodic
feedback FO]Dt = Pr;rl‘b (HXH#H) is the one which delays all firings of input transitions as much

as possible while preserving the transfer behavior of the system. It is said neutral for this reason.
This feedback minimizes internal stock without slowing down the system.

Example 74. Recall Example 73 with the reference model
P G NTEY 52(Y352)*M3f52]
- )
| 52 (v26%)*aBr 8*(v*8%)* maBy
the transfer function matrix,

H— [ (13B2y! ®v213B2)8! (v'81)* usﬁzézl_
Ha P Ha P18

and the optimal prefilter Pop with,

(Pop)1,1 =B2Y' ® (V' 12Bay' @ V2 12B4)8" @ (v'8")* (v 12 B4d?),

(Popt)12 =e @ (v'8')*(v' 12B20"),

(Popt)2,1 =B2v' 87 '@y B2V 1248 ® (Y2 12Bay' DY’ 112B4) 52D (v?8%) (v 112 B45%),
(Popt)2,2 =€ ® (Y?8%)* (Y 12B28%).

The optimal feedback Fopy of the closed-loop system is computed by
Fopt = (Popt?{Popt)%H>

which results in

(Fopt)1,1 = (¥'8")* (v 12B387"),

(Fopt)12 = Bad > @ (v'8")* (v naPsd ),

(Fopt)2, = V' 12B387° @ (v 12B3Y' @ v 12B3)8 2 @ (v264)* (v* 12 B3),
(Fopt)2,2 = Bad > @ (v*64)* (v 12Bsd ™).

Then optimal causal feedback F__ . of the closed-loop system is

opt

F Prm\b ((Popt#Popt)fH)
Y (v ) *maBs v (v'8')*naPs
Y (Y28 *maBs v8' (v78%)* s
Again, note that for this example the greatest (2, 3)-periodic (resp. (2, 8)-periodic) causal feed-

back F:pt is the greatest causal feedback. The closed-loop system with the prefilter and feedback
is shown in Figure 7.6.
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Figure 7.6. — Overall system with a prefilter and a feedback.

Prefilter
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7. Control

Example 75. Consider the PTEG given in Figure 6.8 with transfer function,
= 8'[(8'Agad > @ Aga)V*]* (5 Agja ® Agppd7").
For this system, the neutral "just-in-time" feedback is:

fopt = hihfh
= (VN (6 Agad ™" @ Agad %) @ (Agad ' DS Agud %))

After the causal projection,

fie = Pri(fop) = (Y'8")* (Agad '@ 8" Agud2)y?® (8" Agad ™' @ 8 Agpp 2 )1v%).

Recall the control lawu = f:pty @ v. To realize the feedback f:pt’ f;“pty is written as

p= f;_pty
= (y*s*)* [(A4\46—1 S8 Aad )Y @ (81 Mg~ @ 54A4|45_2)Y4] Y-

The former expression is the solution of the following implicit equation
p= [7464] P [(A4|46“ @' Agad )V @ (8' Ay~ ' @ 64A4‘46_2)y4] y.

From this expression the feedback fgpt can be implemented by a PIEG as follows: The feedback
has one transition, denoted by t., associated with the dater-function p. Because of operatory*&*
transition t. is attached with a self-loop, constituted by place p.1 with 4 initial tokens and a
constant holding time of 4 time units. The polynomial (A4‘46*1 @' A4|46*2)y2€|—)(6] A4|46*] &)
64A4‘46*2)y4 describes the influence of the plant output transition t3 onto the transitiont. of the
feedback. Observe that we have two monomials, therefore we obtain two parallel paths between
t3 and t., each with one place. First, (A4|42‘>*1 @6]A4|46*2)y2 is described by the place p.; and
the arcs (t3,pc2) and (pe2, tc). Because of the exponent of y* the place pca contains 2 initial
tokens. The holding-time function of p.2 is determined by the T-operator A4|46_] @® 6]A4|46_2
as follows:

Hpe, (8) = max (Ry, 501 (8, Retag62(0) —

o[ e[

=022

Respectively, (6]A4|45_] @ 64A4|46_2)y4 is described by the place p¢3 and the arcs (t3,Pc3)
and (pe3, te). Because of the exponent of Y* the place p3 contains 4 initial tokens. Moreover,
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7.2. Model Reference Control

the holding-time-function of p3 is

Hp,;(t) = max (RélAmé—l (1), R54A4‘46—2(t)) -t

e (1[5 e [ 2]0)
— (4335)

The controller is connected to the plant input transition t via the arcs (tc,pes) and (pea, tr).
Finally, transition t, is associated with the new input v and is connected to the plant input
transition ty via the arcs (ty, pyv) and (py, t1). Figure 7.7 illustrates the closed-loop system. The
feedback keeps the number of tokens in places p1,p2 as small as possible, while the throughput
of the system is preserved.

Feedback {4y

Figure 7.7. — Closed loop system.

Clearly, model reference control can be generalized to consistent WTEGs under periodic
PS. In this case the reference model is specified in the dioid (£7,®, ®) and must satisfy a
similar condition as given in Prop. 102.

Remark 39. Finally, note that an alternative interpretation for causality of transfer functions in
M [y, 8] was introduced in [7]. In short, this causal transfer functions h € M [y, 8] may
contain monomials y™8", for which the exponents of y are in Z, see Remark 7. Then to realize
such a transfer function by a TEG, negative tokens must be introduced. A similar alternative
interpretation can be given for transfer functionsh € £y [[8], thenh = @y, Wid', withwy >
Wit is a causal transfer function, if for alli < 0, w; = €. Hence, h may contain monomials,
for which the coefficient Wi > WmPBu, €8, Y mPvY 2. Again to give a realization of such a

transfer function negative tokens must be considered.
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Conclusion

Timed Event Graphs (TEGs) are a subclass of Discrete Event Systems (DESs) whose be-
haviors are solely described by synchronization phenomena. An advantage of TEGs is that
they have linear expressions in some tropical algebras called dioids [1, 40]. Therefore, TEGs
are considered popular tools for analyzing systems governed by synchronization, such as
complex manufacturing processes, transport networks, and computer systems. Over the last
decades, a comprehensive linear system theory for TEGs has been developed where basic
concepts of traditional system theory such as state space representation, spectral analysis
and transfer functions have been adapted to TEGs [1, 40]. However, many applications have
event-variant and time-variant behavior, which cannot be described by an ordinary TEG.
Therefore, TEGs have been extended by introducing integer weights on the arcs. This leads
to Weighted Timed Event Graphs (WTEGs) which are suitable to model event-variant phe-
nomena in DESs. Similarly, to express some time-variant behavior, TEGs were expanded
by a weaker form of synchronization called partial synchronization (PS). Clearly, WTEGs
and TEGs under PS can express a wider class of systems compared to ordinary TEGs, but
cannot be described as a linear system in dioids anymore. Nevertheless, transfer functions
were introduced for WTEGs and TEGs under PS in specific dioids. These dioids are based on
a specific set of operators. In this thesis, WTEGs and TEGs under PS are studied in a dioid
framework, in particular, the control of these systems in dioids is addressed.

The first contribution relates to the modeling of WTEGs in dioids. Based on the dioid
(€8], ®,®) a decomposition model is introduced for consistent WTEGs, in which the
event-variant part and the event-invariant part are separated. The event-invariant part is
modeled by a matrix with entries in MZX [y, 5. Moreover, it is shown that the event-variant
part is invertible, hence the problem of model reference control for consistent WTEGs can be
reduced to the case of ordinary TEGs. Furthermore, it is shown that all relevant operations
(B, ®, &, #) on periodic elements in the dioid (£[[8]],®, ®) can be reduced to operations on
matrices with entries in M* [y, 8]. In analogy to consistent WTEGs, consistent matrices
are defined in the dioid (E[[8], ®, ®). A matrix with entries in E[[8] is called consistent if
its entries are periodic and its gain matrix has rank 1. It is shown that a consistent WTEG
admits a consistent transfer function matrix with periodic entries in E[[8]]. Moreover, the
conditions under which product, sum, and quotient of consistent matrices are again consis-
tent matrices are elaborated. This is needed for control synthesis; e.g., when we compute
a controller in the dioid (£[[8],®,®), the computed matrix must be consistent in order to
obtain a controller realizable by a consistent WTEG.
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8. Conclusion

The second main contribution of this work is to show that the input/output behavior of Pe-
riodic Time-variant Event Graphs (PTEGs) (resp. TEGs under periodic PS) can be described
by ultimately cyclic series in a new dioid denoted (7per[Y], ®, ®). Just like WTEGs, a de-
composition model is introduced for PTEGs, where the transfer function is decomposed into
a time-variant part and a time-invariant part. The time-variant part is invertible and there-
fore many tools for performance analysis and controller synthesis, developed for ordinary
TEGs, can be directly applied to PTEGs. Moreover, in this work, the impulse response of a
PTEG (resp. TEGs under periodic PS) and the relation to its transfer function is discussed. It
is shown that the transfer function of the system can be interpreted as the juxtaposition of its
time-shifted impulse responses. In general, for computations in the dioid (Tper[[Y]], ®, ®), it
is shown that all relevant operations (®, ®, ¥, #) on elements in Tper[Y] can be reduced to
operations on matrices with entries in M [y, 8].

The third main contribution is motivated by modeling a class of event-variant and time-
variant DESs in the same dioid setting. The dioid (€7, ®, ®) was introduced which can be
seen as the combination of the dioids (E[[8], ®, ®) and (T [v], ®, ®). It was shown that the
transfer behavior of WTEGs under periodic PS can be described by ultimately cyclic series in
ET. Moreover, the decomposition model can be applied to consistent WTEG under periodic
PS as well. Thus, many tools developed for TEGs can be applied to analyze and to control
consistent WTEGs under periodic PS.

Finally, it is shown how this transfer function representation of WTEGs, PTEGs, and TEGs
under periodic PS can be used to solve some control problems for these systems. Optimal
control was studied in which a reference output is defined for the system and an optimal
input is computed, which schedules all input events as late as possible under the constraint
that the output events occur not later than defined by the reference. The second control
approach which was extended to WTEGs, PTEGs, and TEGs under periodic PS is model
reference control. Here the reference model is specified by a transfer function matrix in
the dioid (E[[3]],®, ®), respectively for PTEGs and TEGs under periodic PS in the dioid
(Tper[[Y]l, @, ®). The controller, based on this reference, modifies the system dynamics such
that the system matches the behavior of the reference model as close as possible. To achieve
this, an output feedback and a prefilter are computed and realized. For consistent WTEGs,
the specified reference model must satisfy some additional conditions regarding its gain. This
is needed to obtain an admissible prefilter and feedback which are realizable by consistent
WTEGs. Note that this is not the case for ordinary TEGs.

In the following, some suggestions for further work are given. Second order theory for
TEGs is useful to obtain tight bounds for the number of tokens in places and the sojourn times
of tokens in places when TEGs are operating under the earliest functioning rule [13]. For
this method the TEG is modeled in the dioid (M [y, 8], @, ®), then residuation theory is
applied to obtain these bounds [13]. It is of interest to study second-order theory for WTEGs
(resp. PTEGs) based on their dioid model in (£[[3]], ®, ®) (resp. (Tper[ Y], D, ®)).

For consistent WTEGs the transfer function can be interpreted as a juxtaposition of its
event-shifted impulse responses. Similarly, for TEGs under periodic PS, the transfer function
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can be interpreted as a juxtaposition of its time-shifted impulse responses. The relation of the
impulse responses and the transfer function of a WTEG under periodic PS can be addressed
in further works. For TEGs many control approaches beyond optimal control and model
reference control, studied in this thesis, were investigated. Among them are robust control
[45], control of TEG under additional time constraints [49, 8, 7], and observer-based control
(33, 35]. Based on the decomposition model, these control strategies can be generalized to
consistent WTEGs, PTEGs, and TEGs under periodic PS in further works.

199






Formula for Residuation

The following list provides some basic relations of left and right division, for the proofs
and a more detailed list and the reader is invited to consult [1][Chap. 4]. For a complete
dioid D with a,b,x,y € D,

a(akx) < x (x¢a)a < x, (A1)
ag(ax) > x (xa)fa > x, (A.2)
a(ag(ax)) = ax ((xa)fa)a = xa, (A.3)
ak(a(akx)) = akx (xfa)a)fa = xfa, (A.q)
(ab)kx = by(akx) xf(ba) = (xfa)é(b) (A5)
(akx)fb = ak (x¢b) ak(xfb) = (akx) b (A.6)
(a@b)kx = (akx) A (bkx) X (a®b) = (xfa) A (x¢b) (A7)
ak(x Ay) = akx A aky (x A y)da = xpa A yfa (A.8)
a*§(a*x) = a*x (a*x)fa* = xa* (A.9)
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Formula for Floor and Ceil Operations

The following list provides some basic relations of floor and ceil operations for proofs and
a more detailed list see [29]. For x € R,

Forxe R meZandneN,

x+m| VXHmJ’ [xﬁﬂ _ [[x]ﬂhm}.

n n

FormeZandn e N,

R R L ]
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Proofs

C.1. Proofs of Section 3.1
Lemma 7 ([16]). Letw € &, then:

P'm\(?w = Bmyh‘h]W) W%Bb = WYbil Bm. (Ca)

Proof. This proof is taken from [16]. To prove the left equation of (C.1), by definition of the
residuated mapping the greatest solution for x of the following inequality

W > lUmX (C.2)
is given by

Hmw = Pfu € Elumu < w},
= (—D{ue E|Fumu = Fuw}

Therefore, the (C/C)-function F, v, (k) must satisfy: Yk € Lominy Fuur, wik) = Fu(k),
which leads to

Fulk) x m = Fy(k) & Fu(k) = Fu(k)/m
Since Fy (k) is an integer we can write

[]-"w(k) +m—1J'

Fu(k) = Fu(k)/m < Fu(k) = [F(k)/m] < Fu(k) > -

m—1

Therefore, the operator 3, Y™ 'w, corresponding to the function | (F (k) + m—1)/m]|, is
the greatest x such that (C.2) holds. To prove the right equation of (C.1), again w¢f3y, denotes
the greatest solution of the inequality,

w > xPy. (C3)
The greatest x such that (C.3) holds is given by

wiBy = @ {u € &\ Fup, = ]:W},
= @ {ue VK€ Zmin, Fu(lk/b]) = Fu(k)},
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C. Proofs

with a (C/C) function F,4p, . Clearly, if we consider the interval 0 < k < b we have
Fu (0) = Fu (k) thus in general for n € Zmin the (C/C)-function F,, must satisfy, for
nb < k < (n+ 1)b, Fu(n) = F (k). Recall that F,, is isotone, therefore it is sufficient to
consider k = (n 4+ 1)b — 1, i.e, the greatest argument in the interval. Then,

Fu(m) = Fo((n+1)b—1). (C.9)
The smallest function such that (C.4) holds is therefore
Fvgpy (k) = Fu((k+ 1o —=1) = Fy(kb+ (b—1)) = Fy (fubybq (k) = Froupyd—1(K).
This corresponds to an operator representation wgfy, = wi,y® . O

Proposition 105 ([16]). Let s be a series in E[[8]], then

Yis =y s, spyt = sy, (C.5)
dTks =0 "s, sp0" =80T, (C.6)
Bb &S = HpS, S%um = SBm) (C7)
Hin'ts = Bmy™ s, $#By = sY° ' Hp- (C.8)

Proof. This proof is taken from [16]. For the proof of (C.5) and (C.6), the operators y* and
87 are invertible, since 876~ = y'y~' = e. Moreover, to prove (C.7) the right product by
L and the left product by 3y, are invertible, since 3., tm = e. For the proof of (C.8), recall
Lemma 7 i kW = B y™ 'w with w € £ and Prop. 6. Thus for a series s = @, wid" €
E[[8]] one has

ks = uméo‘«;(@wiéﬁ) = @ (umm/vi) 550 = @ Brmy™ W8T,

1

= Bmym_15-

The proof for s¢By, = sy°~' By, is analogous. O

C.1.1. Proof of Prop. 28

Proof. For the proof of the left product by my, (3.49), by definition of the residual mapping
my, §D is the greatest solution of the following inequality

m;, ® X < D, (C.9)
X110 Xin

mp, < [d1 "'dn] . (C.10)
Xm,1 -~ Xmn
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C.1. Proofs of Section 3.1

This matrix inequality can be transformed into a set of n inequalities,

HmX1,1 @YI UmX2,1 D - - C‘Bym71 HmXm,1 < di,
HmX12 @Y HmXx22 @ - O Y™ HinXm2 < da,

HmX1n @ 'Y1 HmX2n @ - @ Ym_1 HmXmn < dn.

Because of Prop. 105, for each inequality i € {1,--- ,n} we obtain

X1i < m{di = Bmy™ ' ds,
X2 < ¥ mkdi = Bmy™ 'y di = Bmy™ s,

Xm,i =< (Ymi]um) }?di = E’mdi-

Rewriting the inequalities into matrix form leads to

Brmy™!
X <m0 = | 2" | D Z b oD.
Bm
Moreover, b, D satisfies (C.9) with equality, since my, b, = e. For the inequality
X®@by, <P
We have,
Xby < P < X < P¢by,
X110 0 Xin P1 X110 o Xin P1
Cofbe=<| e o [ | by
Xmil - Xmn Pn Xm1 0 Xmmn Pn
We obtain for each i € {1,--- ,n} the following inequalities

xi1 < P (BoY"™") = Piky,
xip < P (Boy" ) = piy o,

Xin < PifBo = Py’ Ho-
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C. Proofs

This can be rewritten in matrix form
XﬁW%=Phbvmb~~v“m4=P®mb

Again, Pby, satisfies (C.1.1) with equality, since myby, = e. To prove (3.50), since byymy, =
E = EE and due to (3.49) Pm,;, = P¢b,,, we can write

(OE)¢my, = (OEbymy,)¢my, = ((OEby,)¢bm)fmm.
Since (x¢a)¢b = x¢(ba) (A.1) and my, b, = e (see 3.43),
((OEby)¢bym)fmm = (OEby)¢(mmby) = (OEby,)fe = OEby,.

The proof of by §(EN) = mp ® EN is analogous. O

C.1.2. Proof of Prop. 30

Proof. We can extend a core matrix Q of a series, i.e.,

s = myQby, = my,;, Ienmmebbmnb bny.-
g
Al

Q

Since, Brmy™ ! = BBy ™"y = By Brmy™ ! then

Bnynil Bm'ymi]
Bnynil Bm'ymiz

' Bnyni] b
n—1
Bny ' Bm Bny”_zbm
Bn Bmym_1 '
BrnBmy™ 2 Prbm

Ban

This leads to
[311‘3/n_1 E
BnVH_ZE

bymmy, =

PnE
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C.1. Proofs of Section 3.1

Respectively bymyy, is given by

bbman[Eun Epny' -+ Ev“*‘un]-

Finally, we obtain

—Bn‘yn_] E
A BnYH_ZE
Q = . Q [Eun ElJvnY] e Eynillln] )
BnE
By 'Qun By QY o By QY™ T in
_ Bnynizaun Bnynizﬁy] Mn - Bnynizayni] Hn
L ﬁnﬁlin BnQY] Hn te Bnﬁyn_1 Hn

The extended core is a matrix with entries in M [y, 8], since Bny¥pn = vV/nIn Further-
more, the extended core Q’ is a greatest core. For this, one has to show that ﬁ” = EQ/E =

A/

Q.

Al
Q = Ebyym;;QbymyyE,
= bnm Mumbnm My Qby, myy by myy,
—_—— —_——
e e

= bymm; Qbym,y, = 6/-

C.1.3. Proof of Prop. 38

Proof. (3.53) for the left product, by definition of the residual mapping M%D is the greatest
solution of the following inequality:

M X <D (C.11)
My, X1 -0 Mg Xg din -+ dyg
) ) <
M, Xp1 0 My Xpg dp1 -+ dpg
For every row i € {1,--- ,p} we obtain the following inequality
[mmixﬂ cee mmixip] < [du . dip]
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Due to (3.49) the greatest solution for this inequality is given by

[Xﬂ xip]ﬁ[bmidﬂ bmidip]

Therefore the greatest solution for the matrix inequality in (C.11) is

bn, ¢ €
X<MyiD=| © ° ° ° ID=B,D.
. ° . ° . e
| € . € an_p |
Note that B,, D satisfies (C.11) with equality since My By, = I. The proof of O¢B,, = OMW/

is analogous. To prove (3.54), since E,, = ByM,, = E,,ByM,, and due to (3.53) OM,
O¢B,, we can write

(NEw)#My = (NEy,ByMy )My, = ((NEBy, )¢By )M
Since (xfa)fb = x¢(ba) (A.1) and My By, =1,

((NEwByw)¢By,)iM,, =(NE Bw)#(MwBw)
(NEywBy)#1 = NE,B,,.

The proof of B, %(E,,»G) = M,,» ® E,,/G is analogous. O

C.2. Proofs of Section 4.1

C.2.1. Proof of Prop. 56

Proof. Letusrecall that the release-time function of the A, operatoris givenby Ra,,, (t)=
[t/w]w. Due to Remark 22 the (nw, nw)-periodic representation of this operator is

nw—
o —t/w]w t—nw+1
Aw\w = @ /el Anw|nw6 ’

n71 w—1
_ 6[(71w71)/w]wAnw|nw61w+)fnw+1) with t = iw +j,
i=0 j=0
n—1w-1
o —iw iw+j—nw+1
= b Anw|nw6 )
i=0 j=0

since Vj € {0,--- ,w — 1}, [(—iw —j)/w] = —1i.
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Due to the order relation in T see (4.12) we have

w—1

—iw iw+j—nw+1 —iw iw+w—T-nw+1 —iw —(n—-1-1)w
(‘D o Anw|nw6 ) =90 Anw\nw6 =90 Anw|nw6 ( ) )
j=0

and thus

n—1
Aw\w = @ 6_lwAnwhuu6_(n_1_1)(1)-
i=0

Lemma 8. Letv € T, then:
Aglotv = Agiwd' ™V, VA o = V8 P Ag - (C.12)

Proof. To prove (C.12), recall that by definition of the residuated mapping, Ay kv is the
greatest solution of the inequality v > A ox. This greatest solution is given by

Apjotv = P{ue TIAyou < v} = Pfue TIRAou(t) < Ry(t), Vte Zomax }-
Therefore, ¥t € Zmax
RAy o w(t) = max{Ryu(t)] [Ru(t)/@]w < Ry(t)}

Observe that,

where the equality above chain of equivalence follows from the basic properties of the "floor"
and "ceil" operations listed in Appendix B. Consequently

Ru(t) — 1 =
R, wlt) < [M—M]@, Vt € Zma
w | w
< why = A@‘wél’“’v.
The proof for ViAo = v61_a’A@|w is analogous. O



C. Proofs

Proposition 106. Let s be a series in T[[y]], then

Yks =v s, sty = sy, (C.13)
dT%s =8 "s, spd" = 67T, (C.14)
Awlo ks = Agjwd' s, $HAwo = 50" ®Age- (C.15)

Proof. For the proof of (C.13) and (C.14), the operators 8" and y" are invertible, since 876" =
Yy~ = e. Moreover, for the proof of (C.15), recall Lemma 8 Ay {v = A®|w61*“’v with
v € T and Prop. 6. Therefore, for a series s = @, viy™ € T [[y] one has

Aw\a)&‘s = Aw\a)y()&(@\’ﬂ/m) = @ <Aw|a)kivi)1/ni_o = @Aw\wél_wviyni)
i i i
= Aw‘wél_ws.
The proof for sfA o = 55]_®A@|w is analogous. O

C.2.2. Proof of Prop. 61

Proof. Note that this proof is similar to the proof of Prop. 28. For the proof of (4.25), by
definition of the residual mapping d, A is the greatest solution of the following inequality

dy X <A, (C.16)
X1,1 X1n
do < [cu an]
Xw,1 Xwm

This matrix inequality can be transformed into a set of n inequalities,

Agix11 @8 Agix21 @ @8 “Ayixm1 < ay,

Agix12@ 8  Agix22 @ - @8 “Ayixm2 < az,

ApiXin @8 Agixon @ @8 Ay Xmn < n.
Because of Prop. 106, for each inequality i € {1,--- ,n} we obtain

1—
X1,i < Aw\] >%(11 = A”wé ‘”ai,

-1 T-—wgl 2—
X2i < o Aw\] ‘gai = A”wé Cd'a = A”wé ‘“ai,

Xmi < (6]_“’Aw“)§ai = A1|wai.

212



C.z. Proofs of Section 4.1

Rewriting the inequalities into matrix form leads to

A”wfﬂ*w

A”w62—w

X < dy %A = A =p,QA.

A|w
Note that p A satisfies (C.16) with equality, since d,p,, = e. For the inequality
X®p, <G, (C.17)
where X is of size n x m and G is of size n x 1. Then,
Xp, < G < X < Gfp,,.
We obtain for each i € {1,--- ;n} the following inequalities

X1 < Gif(A1wd' ™) = gl

Xin < GifA1jw = Gid' Ay
This can be expressed in matrix form
X < G%pw =G [Awn 57]Aw\1 51—wAw“] =G®dy,.

Again Gd, satisfies (C.17) with equality, since d,,p,, = e. To prove (4.26), since p ,do =
N = NN and due to Gd, = G¢p,, (4.25) we can write

(ON)fde, = (ONp du)fdes = ((ONp,)fp,)fd-
Since, (xf¢a)fb = x¢(ba) (A.5) and dyp,, = € (4.19),

((ONpy)#py)fdw = (ONp, ) (dwpy,)
= (ONp,,)fe = ONp,,.

The proof of p, §(NO) = d, ® NO is analogous. O

C.2.3. Proof of Prop. 64

Proof. We can extend the core matrix Q of a series, i.e.,

S = depw = dno pnwdepwdnw Phw-
—_—

Al

Q
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C. Proofs

Since, Atjned ™ = AjjnAjpd M T® = Ay 8TMA 8! then

_ Aﬂné]_nA”wé]_w
A]\né]inA”wézf‘“
' A8
A]|n517nA]|w Tn S Pw
: Aind™ Py,
Phw = : .
A A 517(»
TIn2|w - A”npw
Aty
ZASTRVAVIIR |
This leads to
A] |TL6]_nN
Ajn 8 ™N
pnwdw = |T1 .
AN
Respectively, p ,dno is given by
pwdnw = [NAnH Néi]AnH L. Né]—nAn“] .
Finally, we obtain
*A”né]—nN
PN A1|n527nN . .
Q = ) Q [NAn“ No An\] R N nAnH] ,
AN
_A]|n51—“QAn|1 A8 QST AL e AR 8TTMRETTMA,
= A”nézinQAn“ A |n627n657]An|1 REAY |n627nﬁ5]7nAn|1
A \nQAnH AHnQ&i]An“ ces A |n661inAn“

The extended core is a matrix with entries in M [y, 8], since A8 Ay = §lT/nIn (Re-

mark 20). Furthermore, the extended core ﬁ/ is a greatest core. For this one has to show that
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C.3. Proofs of Chapter 5

Q” = anwdepwdan)
= Pnw dnw Prw dePw dnwpnw dnw,
—_—— —_——

e e
P

= indePwdnw =Q.

C.3. Proofs of Chapter 5

Lemma 9. All elementary operators introduced in Prop. 73 can be represented as basic elements

inET.

Proof. Recall that a basic element in £7 is expressed as y“STVm‘bAw@y“,&T/. Moreover,
the unit operator can be written as e = y° = §° = Vip =4p = yoéovam‘yoéo. Then
the elementary operators can be rephrased as follows,

Vinpo () (1) = (Y08 V mp A1 v°8° (%)) (1),
(w2 () (1) = (YO8 V1A 2y 8 (%) (1),
(VX)) = (¥8OVinApy°s° (%)) (1),
(87(0)) (t) = (V8" Vip A y°s°(x)) ().

O

Lemma 10. The product of two basic elements in ET is a finite sum of basic elements in ET .
Proof. Consider the following product of two basic elements in £7 .

YV s o1 By 2y Y 18T @Y 282V 1, 1, Ay [0, Y V262 (C.18)

We chose w = lem(@1, wy), 3 = w/®1, ¢4 = w/w; and m = lem(by, my), ¢ = m/by
and ¢; = m/m; then due to (5.14) and (5.15) this product can be written as

c1—1 . . c3—1 / /
YV] 6’[’1 ( @ ymu Vc]m] |m,y(C]—]—‘L)b]> ( @ 6_1w]AC3(,U] |w6—(C3—]—1)®] >,YV1 6T1®

i=0 1=0

Cz—] Cq4— 1

yV26T2< @ y]'mzvmlczbzy(cz 1-j bz)( @ 59w 2Aw‘c4®25 (C4—1—9)@2)y"ﬁ57§
j=0
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C. Proofs

Due to distributivity holds for the following operators, YV [y YA 400 = 0A4 o0V VipY
(Prop. 75), (C.18) is written as

C]-] . . , CZ_] . .
Y157 < @ Vi Veim ‘my(c1—1—1)b1 )yVﬁ‘Vz( @ yszvm|czbzy(cz—1—J)bz>®
i=0 =0
Cg—] C4—]
< @ 6_1w]Acswﬂwé_(cs_]_l)m)5T‘,+T2( @ 6_9(»2Aw|cm7225_(64_1_g)mz)YVégfé
1=0 g=0

Recall that Vm‘byb = Y"Vp (tesp. Ayd8®° = 8YAyp) (5.11) and for 0 < n < i,
Vi Y"Vip = Ve (tesp. —1 < T < 0, Ayi87Ajp = Ay|e) (Remark 29). Therefore the
expression above is rephrased as,

o
—_

|
4
o
N

1
imy+vi+|((c1 —=1-1)by +v] +va+jmz)/m|m c2—1—j)ba+v}
Y L€ ) ! jma)/m| vc1 Ll\czbzy( ) 2®

.
Il
o
Il

o

J'

6_) 5T lwi+[(=(cz=l=T)@1+1]+T2—gw3)/wlw wA 6—(C4—1—9)®2+T2

C3W1 |C4®2

g@”‘

Again, because distributivity holds for 8™yYV p = V'V ,0T and vY8™ Ao = 8"Ay 10 Y
(Prop. 75) the product (C.18) is written as

—_
_‘
o

C1—IlCr— 4]

Y1m1+v] [((e1=T=1)by+v]+Vv2+jmy)/m|m ®
1=0 g¢g=0
5T L H[(—(c3=1=D@1 +7] +T2—gws) /wlwg)

N
_‘

€3 —

Il
o

i=0 j

— _' A — —_ —
vmm]lczbzAcsw]lm@zY(cz 153)b2+vz §=(ca=1-g)@24m2

which is in the required form. O

C.3.1. Proof of Prop. 78

Proof. Because of Lemma 9 all elementary operators introduced in Prop. 73 can be repre-
sented by basic elements in £7. Moreover the product of two basic elements is a finite sum
of basic elements, see Lemma 10. Therefore, any element s € £7 can be written as a fi-
nite (resp. infinite) sum of basic elements, ie., s = @iyviéTidebiAw”@iy“{éTil. Recall
(5.14) and (5.15), then by choosing m = lem(m;) and w = lem(w;), s can be rephrased as

= @j YVigT Vm‘BiAw‘@jyﬁiléfi/, which is the required from. O
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C.3.2. Proof of Prop. 83

Proof. Since, mmy nwbpnw = € an ultimately cyclic series s € £7 per can be expressed as,

PaN
S = mm,wab,w

PaN
= Mmnw E’b,nwmm,wab,wmb,nuj bb,nw-
Y

A

Q

In the following it is shown that Q' if again a matrix in with entries in M [y, 8]. Since,
A ™™ = AqppAq o8 CMTDET® = Ay 8T7MAG 877, then

A8 A8 by
A1|n6]_nAHwbm A1 \n61_nbm,w
bm,nw = =
A]\nA1\w5]_wbm A1|nbm,w
A1|nA1|wbm |

Hence, for by ,mm « We obtain,

A8 e
bm,nw Mmn o = :

A €

Respectively by ;mp o is given by,

bp,wmpnw = [QEAHH @6]—11An|],y1—n].
Finally,
_A1|n6]_ne
a - o |afeay - et may]
A”n@
A]|n51inQAn|1 o A”nylfnﬁyann“
A”nQAn“ . A]\nﬁé]inAn‘]
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C. Proofs

The extended core is a matrix with entries in Mg} [y, 8], since A 0TAy) = lT/nin Re-

mark 29. The extended core ﬁ/ is a greatest core. Consider (Al” = @(/i,@, then

P/

Q = 6bm,nwrnrn,wclbb,wrnb,nwea
= bm,nw mm,nwbm,nw mm,wab,w mb,nw bb,nw Mpnwy
— —_

€ [
A/

= bm,nwmm,wab,wmb,nw =Q.

Transformation between the core matrices Q and U

Clearly, an ultimately cyclic series s = my, Qbyp o, = dwmepw’b € ET per can be
expressed in the alternative core representation (resp. core representation) as follows,

s = dw,m Pw)mmm,wab,wdw,b Pw,bs
.
0’
S =M w bm,wdw,mupw,bmb,w bb,w-

"
A

Q

Then the matrix

/
0 = Pw,mMm,w be,wdw,b
TQU1 TQuZ

is the greatest solutions of the alternative core equations = dwmXpy, (5.36). For this

consider the solution 0" = mO’m, then
"
0 Zmpw)nmmm,wqbb,wdw,nbm>
= Pwnm dw»nmpw,nm mm,wab,w dw,ﬂbpw,nb dw,nba
L —_—

€ €

= anwdw,meb,wdw,nb = 0/-

Respectively,
A/
Q = bm,wdw,m U Pw,bMb,w
—_— 2

Tug, Tuq,

is the greatest solutions of the core equation s = mm,wf(bb,w (5.22).
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The matrices Tqu,, Tqu,, Tug, and Tyq, are matrices with entries in M{) [y, 8] given

by,
v1|mym_]prwH"“m
TQU1 =
v1|mprov|1r“m
JASTIN Sl INTEVAWHE
TQUZ =
Atjwby by
A1 b Vi Awp
Tuq, = :
A1 obm V1A
Vi Y™ P Awimo
Tuq, = :
VibPwAw1mb

andfor0<a<wand0<c<1i

Viim Y™ 'pd' Ay imm
Vi |me5];wAwn mpy,
A by e Ay
Ay \wbb‘yb'_] HoAy)1
A8 b y™ V1 A
A”wbmym;lvm“Aw“

1

VipY? P8 Ay imy

VijpPpd' " Agimy

671 671 '}/67] . Yéi]
: : : : a
5! 51 o o yd!
ViiYpwd *Agpmi = | € € Y
. w—a
i e e Y Y ]
i-b b
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Ajwd by Vipde = [ Y Y YO
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