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Introduction

In the field of healthcare, classification of medical images (MRI, CT scan, etc.) is
important to help clinicians to establish an early diagnosis of various pathologies and
thus set up, as soon as possible, an adapted treatment and/or rehabilitation. Deep neural
networks are commonly used for image classification [20]. However, these models are mainly
based on pixel-level information and do not explicitly exploit the high-level structural
information in the image.

Graph signal processing (GSP) is an area of research that deals with data on irregular
graphs. It has gained significant attention due to technological advancements that have
made it possible to collect complex system data [29]. Graphs are commonly considered
to represent the structural information in an image. There are various approaches to
interpreting images as graphs, and this study explores two different implementations. In
the first approach, each pixel in the image corresponds to a node in the graph, and the
edges capture the connectivity between neighboring pixels. In the medical application,
however, a different approach is employed. Here, each region of interest in the image is
represented by a node in the graph, and the edges capture the spatial relationships between
these regions. This implementation is prioritized due to its speed and simplicity.

The main objective of this study is to assess the degree of order or disorder within
images using the concept of entropy. To achieve this, the images are interpreted as graphs
and subjected to the proposed algorithm that captures their underlying structural patterns.
Additionally, We propose a medical application for which the notion of disorder seems to
play an important role. The objective of this application is to distinguish between healthy
and damaged brains using pediatric MRIs, as well as to detect cerebral palsy (a motor
impairment caused by stroke) in children with early brain lesions, based on the entropy
value.

Chapter 1 will cover the context of the study, emphasizing the medical application
addressed in this work. In Chapter 2, a detailed discussion of graph theory and its attribute
functions, which will be necessary for later stages of the study, will be presented. Entropy
and its application to time series will also be extensively covered in Chapter 2. Towards the
end of the chapter, a recent, one-of-a-kind approach to analyzing irregular graph signals,
called permutation entropy for graphs, will be introduced. In Chapter 3, we will discuss
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2 Introduction

the contributions of this study to the existing literature. Specifically, we will explore the
application of dispersion entropy to graph signals and its implementation in some widely
accepted experiments. In Chapter 4, we will delve into a practical application of dispersion
entropy in the context of pediatric brain MRIs for the detection of early brain lesions. This
chapter will primarily concentrate on the same application as presented in [7], but with the
utilization of the entropy approach, which offers a transparent and interpretable method
for image classification, in contrast to deep learning approaches.



Chapter 1

Context

In the field of image analysis, there are several established methods for quantifying
the regularity or irregularity of images. One commonly used approach is to employ two-
dimensional entropy methods, which have been proven effective in detecting patterns and
assessing the level of disorder in images [2, 30]. Building upon these existing techniques,
a recent study proposed a novel approach that interprets images as graphs and applies
permutation entropy to these graph representations. In this approach, each pixel in the
image is treated as a node in the graph, and the edges represent the spatial relationships
between neighboring pixels [12]. Motivated by the success of applying permutation entropy
to irregular graph signals, the objective of this study is to draw inspiration from this method
and explore the application of dispersion entropy to graphs. By doing so, we aim to develop
a novel approach for quantifying the disorder or irregularity in images using graph-based
representations. Another important objective of this study is to employ our method in a
medical context.

Figure 1.1: Structural relationships and graphs constructed from segmented face images
[8]

In the context of medical imaging, classification is very often necessary. For example,
classification can be used to separate healthy subjects from those with a specific pathology.
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4 Chapter 1. Context

This classification can be done using deep neural networks or deep learning [20]. However,
these approaches mainly rely on pixel-level information and therefore do not explicitly
consider the structural information present at a higher level. One way to overcome this
challenge and encode structural information is through the use of graphs. For instance,
graphs constructed using images of the human face can be seen in Figure 1.1. These graphs
are able to capture the structural relationship between different regions of the face.

With the intention of comprehending the influence of a cerebral lesion on the motor
functions of children, it seems interesting to study the basal ganglia which are a crucial
element in maintaining motor functions after an early brain lesion [1]. As depicted in
Figure 1.2, it is visually apparent that brain lesions have an impact on the configuration
of basal ganglia structures. Lesions can affect the overall morphology and appearance of
the brain structures [16]. Recent research utilizing Graph Neural Networks (GNNs) has
provided compelling evidence for a direct link between the macrostructural arrangement
of the basal ganglia and the occurrence of cerebral palsy [7].

Figure 1.2 shows the type of MR images used in this study. Different brain structures
are segmented and represented under different colors. A healthy child’s brain can be seen
on the left side, and on the right side, MR images of perinatal stroke-damaged brains of
children with different levels of structural disorders are shown.

Figure 1.2: MR images of brains, both healthy and those affected by perinatal stroke.
Brain lesions are visually emphasized through the use of a red circumscribing circle. List
of basal ganglia structures and their corresponding colors on segmented MRI: Left thalamus
- red, right thalamus - green, left caudate nucleus - blue, right caudate nucleus - yellow,
left putamen - cyan, right putamen - magenta, left pallidum - white, right pallidum - dark
blue

In order to accurately capture the relationships between structures and the overall
spatial organization of the basal ganglia, we made the decision to represent them in the
form of graphs, as previously proposed in [7]. This graph-based representation allows us
to model the interconnections and dependencies between different structures, providing
a comprehensive view of the organization of the basal ganglia. In this representation,
each brain structure derived from the MRI is represented as a node, while the connections
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between these structures are represented as edges. Furthermore, to enhance the analysis,
attribute functions can be added to both the edges and the nodes, providing additional
information and features for a better understanding of the graphs. In this context, we
employ dispersion entropy as a method to quantify and measure the irregularity of these
graphs. We privileged the use of dispersion entropy over other entropy measures, such
as permutation entropy or sample entropy, for several reasons. In particular, dispersion
entropy is preferable to sample entropy due to its improved speed as sample entropy, though
powerful, is not fast enough. Additionally, one notable advantage of dispersion entropy over
permutation entropy is its consideration of amplitude values. This consideration provides
additional information about the signal’s irregularity, making it a more comprehensive
measure for assessing disorder in graphs [27]. The use of dispersion entropy also offers
several advantages over deep learning approaches, including transparency, explainability,
and the absence of the need for prior training data.

The main goal of this study is to determine whether our entropy-based measure of
disorder can effectively differentiate between children who are healthy and those who have
a cerebral lesion. We aim to evaluate the relevance of this metric by comparing its perfor-
mance to the visual observations. Lesions are generally visible to the naked eye. Further-
more, we seek to investigate the effectiveness of our metric in detecting children who have
developed cerebral palsy among those who have brain lesions due to a perinatal stroke.
We will compare the classification results of our metric with those obtained through the
application of GNNs as presented in [7]. In the long term, our ultimate goal is to explore
the correlation between our disorder metric and the loss of motor skills in children or their
overall motor performance. By quantifying the degree of disorder in the basal ganglia and
other relevant brain structures, we aim to determine whether our metric can serve as a
potential indicator of motor impairments.





Chapter 2

State of the Art

2.1 Basic Graph Theory

In the context of this study, MR images are treated as graphs, which requires an
understanding of the basic graph theory. Graph theory is a field of discrete mathematics
that studies different configurations called graphs. These graphs consist of a set of nodes
called vertices. They also capture the notion of connection and are interconnected by
lines called edges [17]. The generalization of this expression is as follows, a graph G =

(V,E,X,L) is defined as a set of nodes V (or V(G)), and a set of edges E (or E(G)); as well
as a node attribute assignment function X : V → Rv, and an edge attribute assignment
function L : E → Re [?]. The number of vertices in V is called the order of G (denoted
by |V |), and the number of edges in E is called the size of G (denoted by |E|) [14].

Figure 2.1: An example of a simple graph [12]

Two vertices are said to be adjacent if they are joined by an edge. For example, in
Figure 2.1, vertices 3 and 4 are adjacent. The edge connecting vertices 3 and 4 is denoted
by e = (3, 4). This edge is incident with vertices 3 and 4. Consequently, vertices 3 and
4 are also said to be neighbors. In addition, the number of edges incident with a vertex v
is called the degree of v also characterized by deg v [14]. The set of all vertices adjacent
to vertex v is called the neighborhood of v and is denoted N(v) [14]. On the other hand,
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8 Chapter 2. State of the Art

if two vertices are not joined by an edge, they are nonadjacent or independent. Similarly,
two edges that do not share a common vertex are said to be independent [14].

In graph theory, a k-walk is a path in a graph that has k edges. Specifically, a k-walk
is a sequence of vertices in a graph where adjacent vertices in the sequence are connected
by an edge, and the sequence includes exactly k edges [17].

An adjacency matrix A = aij can be created using the connections between vertices.
A is a square matrix whose size is determined by the number of vertices [31]. For example,
the size of the adjacency matrix of the graph in Figure 2.1 is 8×8 . If an edge doesn’t exist
between two given vertices, the corresponding value in the matrix is equal to zero. Also,
since this study concentrates on simple graphs, edges looping to the same vertex are not
considered, which means that aij = 0 if i = j. Assuming that the graph in Figure 2.1 is
an unweighted graph (no attributes on edges), the corresponding adjacency matrix can be
seen below. In this study, the graphs extracted from MR images have scalar attributes on
edges and on vertices which means that the values of aij can be replaced by the appropriate
attributes on the edges. When the aij are replaced with the scalar attributes (weights) on
edges wij, the adjacency matrix becomes the weighted adjacency matrix W.

A =



0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 1 1 0 0 0

0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0


Another important concept that will be utilized in this study is that of fully-connected

graphs. In these graphs, every node is connected to every other node, forming a complete
connectivity pattern [21]. This type of graph structure allows for comprehensive analysis
and exploration of relationships between all nodes in the graph.

2.2 Entropy

2.2.1 Introduction

The main types of dynamical analysis techniques are entropy, fractal dimensions, and
Lyapunov exponents [10]. Among these techniques, entropy-based methods have become
extremely popular due to their simplicity and robustness in the case of noise and fast
computations [3].
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Entropy is a relatively old concept that was first introduced as a scientific term related to
change and disorganization in thermodynamic systems by Rudolf Clausius in 1865. Entropy
was later established as the Second Law of thermodynamics [18]. Almost a century later,
entropy was defined as a measure for information theory by Shannon [28]. Entropy, by
definition, is the lack of order or predictability [9]. Over the years, the concept of entropy
has been refined and applied to different structures and systems.

In the case of time series, entropy is one of the most powerful tools to assess their
dynamic characteristics [27]. The purpose of entropy is to measure the degree of regularity
(or irregularity) of a system or time series using the probability distribution of its states [4].
Entropy has been successfully used in a wide range of areas such as biomedical engineering
[3], neuroscience, mechanical engineering [26], financial data analysis [24], etc.

Based on Shannon entropy and conditional entropy, various techniques rooted in infor-
mation theory have been proposed. Some of these techniques are important to mention,
such as approximate entropy [23], sample entropy [25], permutation entropy [4], and dis-
persion entropy [27].

Approximate entropy is used to quantify the amount of regularity and the unpredictabil-
ity of fluctuations in time series [11, 23]. Approximate entropy was proposed as a measure
for any finite-length signals. Vector matching is used in approximate entropy to compare
patterns in the time series and estimate the likelihood of these patterns being repeated.
This helps to quantify the amount of regularity or complexity in the time series [23].

Even though approximate entropy was a huge step forward in the right direction, it was
biased. In the approximate entropy algorithm, during the vector matching, self-matches
are intentionally kept to avoid the appearance of zeros when comparing the vectors. How-
ever, this situation results in a biased estimate and the assignment of higher similarity to
patterns [3]. Richman and Moorman introduced sample entropy to address the limitations
of approximate entropy. Sample Entropy serves the same purpose but with a different
algorithm for estimating the probability of the occurrence of vectors. Unlike approximate
entropy, sample entropy does not require the inclusion of self-matches. This was achieved
by changing the way conditional probabilities are estimated. In approximate entropy, the
conditional probability of each template vector is calculated and averaged, while in sample
entropy, the conditional probability is estimated from all template vectors, and the loga-
rithm is taken only after the calculation of the overall conditional probability. This change
reduces the chance of undefined entropy due to the appearance of zeros [25]. Unfortunately,
despite its usefulness in signal and image processing applications, sample entropy is not
always suitable for real-time applications, particularly those involving long signals, as it is
not fast enough [27].

In the context of this study, permutation entropy [4] and dispersion entropy [27] on
time series will be explained in detail. Permutation entropy is often preferred over sample
entropy due to its computational efficiency, robustness to outliers and noise, and flexibility
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in analyzing different types of data [33]. However, permutation entropy solely focuses on
the order of the values in a time series and does not take into account their amplitudes. To
address these limitations, an alternative measure known as dispersion entropy has recently
been introduced [27] which will be discussed in Section 2.2.3.

The recent application of permutation entropy on graphs will also be developed in Sec-
tion 2.3. Our initial objective was to draw inspiration from the application of permutation
entropy on graph signals, as proposed by [12], and adapt it to dispersion entropy for an-
alyzing graph signals. However, despite having developed our method independently, we
discovered that another research team working on the topic presented their findings on
the application of dispersion entropy to irregular graph signals on March 31, 2023, nearly
six months after we had begun working on our project [13]. Our approach to applying
dispersion entropy on graphs will be presented in Chapter 3, and its theoretical concept is
notably similar to the one proposed in the publication [13]. This similarity provides reas-
surance and validates the relevance of our methodology in the field. While the referenced
paper doesn’t extensively cover experimentation or propose specific applications, our study
stands out by conducting comprehensive experiments (Chapter 3) and introducing a novel
medical application (Chapter 4). Through this innovative application, we contribute to
the advancement of entropy-based measures applied to graphs, particularly in the context
of biomedical research.

2.2.2 Permutation Entropy on Time Series

The concept behind permutation entropy involves comparing neighboring values within
patterns in a finite time series. Permutation entropy is known for its simplicity and fast
computation time [4].

For a finite time series x = {x1, ..., xN}, here are the different steps of the algorithm:

1. Embedding vector is constructed. The embedding vector is represented as xm
i =

{xi, xi+1..., xi+(m−1)} where m is the embedding dimension and i = {1, 2, ..., N−(m−
1)} [27]. Permutation entropy can be calculated for different embedding dimensions
m.

2. The elements of these embedding vectors are assigned numerical values ranging from
1 to m and then sorted in ascending order. There are m! possible patterns π also
called permutations [4].

3. f(π) is the frequency of patterns (permutations), and the relative frequency p(π) is
calculated as follows [4]:

p(π) =
f(π)

N −m− 1
(2.1)
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4. Lastly, the permutation entropy for m ≥ 2 is calculated using the following formula:

H(m) = −
∑

p(π)ln p(π) (2.2)

Permutation entropy does not take into consideration the average amplitude value and
the variations in amplitude values [32]. Dispersion entropy is proposed to address these
limitations of permutation entropy [27].

2.2.3 Dispersion Entropy on Time Series

Dispersion entropy exhibits some similarities to permutation entropy, but it considers
the amplitude values of the time series once the samples are transformed into symbols
through the use of a mapping function [3]. Dispersion entropy aims to provide accurate
entropy estimates for signals while also being computationally efficient.

Considering the same finite time series x as mentioned in Section 2.2.2, different steps
of the dispersion entropy algorithm are as follows:

1. The samples of x are mapped to c discrete classes labeled from 1 to c. During this
process, a variety of linear and nonlinear mapping functions may be utilized. After
the mapping, the resulting values are then categorized into c bins, based on their
amplitude levels [27].

2. The embedding vectors are constructed in the same way as in permutation entropy
after the mapping operation using the chosen embedding dimension.

3. f(π) is the frequency of dispersion entropy patterns. In the case of dispersion entropy,
each embedding vector corresponds to a pattern. The relative frequency p(π) with
time delay d is calculated as follows [27]:

p(π) =
f(π)

N − d(m− 1)
(2.3)

4. Finally, the dispersion entropy is calculated using the formula below.

DE(x,m, c, d) =
−
∑cm

π=1 p(π)ln p(π)

ln(m!)
(2.4)

This analysis of permutation and dispersion entropy on time series was necessary to
understand their applications on graphs.
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2.3 Entropy for Graph

2.3.1 Introduction

As previously noted, the latest study on permutation entropy for graph signals repre-
sents an innovative and brand-new approach that applies to signals recorded over irregular
graphs. While earlier literature introduced the concept of graph entropy, the proposed
methods assessed the irregularity of the geometric structure and topology, rather than
that of the signals transmitted through the graph [12]. The purpose of this analysis is
to understand how permutation entropy was generalized to adapt to irregular graphs and
apply the same procedure to dispersion entropy.

2.3.2 Permutation Entropy for Graph Signals

In the case of time series, the standard approach to calculating permutation entropy
involves analyzing the sequential or neighboring values of the series. This approach works
well for one dimension. However, when it comes to signals on graphs, the concept of
sequential values becomes less clear. Instead, the notion of neighboring vertices is used to
generalize permutation entropy for graph signals, which is called PEG. The primary benefit
and innovation of the method proposed by the authors is the extension of the concept of
non-linear entropy measurement, specifically permutation entropy, from one-dimensional
time series and two-dimensional images to data distributed on the vertices of irregular
graphs, marking the first time such an extension has been made [12].

Different steps of the algorithm for an unweighted, undirected simple graph can be seen
below [12].

1. Using the node attribute assignment function X : V → Rv defined in Section 2.1,
the graph signal X can be represented as an N -dimensional column vector. Using
the same indexing as the vertices, the graph signal vector will be defined as X =

[x1, ..., xN ] ∈ RN . Adjacency matrix counts the number of k -walks between two
vertices, i.e., the entry (Ak)ij is equal to the number of walks of length equal to k
having the vertex i as start and vertex j as the end.

Assuming that the symmetric adjacency matrix of the undirected graph is A, the
function degk is defined as:

degk(i) :=
∑
j∈V

(Ak)ij =
∑
j∈V

(Ak)ji (2.5)

2. Given a vertex i, Nk(i) is defined as the set of all vertices connected to the vertex i

with a walk on k edges.

Nk(i) := {j ∈ V |it exists a walk on k edges joining i and j} (2.6)
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3. The embedding vectors will be constructed for all i = {1, 2, ..., N} using:

ymi = (yki )
m−1
k=0 = (y0i , y

1
i , ..., y

m−1
i )

where yki =
1

degk(i)

∑
j∈Nk(i)

xj

=
1

degk(i)

∑
(AkX)i

(2.7)

4. Patterns and pattern frequencies are determined in this step. m! patterns are pos-
sible. The signal corresponding to class 1 has the lowest value, while the signal
associated with class m has the highest value, with all signals in between arranged
in ascending order.

5. The frequencies are calculated similarly as in the time series.

6. PEG is calculated using the same entropy function as before.

Let us consider Figure 2.1 for the purpose of applying permutation entropy to it. Let
X be the vector of graph signals. The values of the vector X were selected arbitrarily, as
has been done in [12].

X =



−1

−2.3

0

−3

1

5

1

−1.1


To simplify our example, we choose a hyperparameter value of m = 2. This choice

allows us to streamline the calculations and focus on the core aspects of the method without
introducing unnecessary complexity.

• degk(i) is calculated for i = {1, ..., 8}. Since m = 2, degk(i) = deg1(i) = deg(i). E.g.,
for the node with index number 1, deg(1) = 2. This means that node 1 is connected
to two other nodes in the graph.

• For each vertex i, N(i) is defined. With the chosen value of m, we focus on the
immediate neighbors of each node. We restrict our analysis to the nodes directly
connected to a particular node in the graph, disregarding nodes that are further
removed in terms of edge connections. E.g., N(1) = {2, 3}.
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• The embedding vectors are constructed using the Formula 2.7. If we look again at
the example for node 1, y1 =

(
−1, (−2.3+0)

2

)
= (−1,−1.15).

• The patterns are determined based on the order of values within the embedding
vectors. For instance, considering the embedding vector (−1,−1.15), the pattern is
denoted as {2, 1} because the first element of the vector has a higher value than the
second element. By examining the relative order of values in the embedding vectors,
we can assign specific patterns that capture the relationships between the elements.

• The frequency of each pattern is calculated. For the graph in Figure 2.1, f(π1) =

3, f(π2) = 5.

• Calculated permutation entropy value of graph in Figure 2.1 is 0.95.

PEG =
−5

8
ln(5

8
)− 3

8
ln(3

8
)

ln(2!)
= 0.95

In the case of a weighted undirected simple graph, it is sufficient to replace the adjacency
matrix A with the weighted adjacency matrix W as explained in Section 2.1. Additionally,
it is possible to work with directed graphs (G⃗) and calculate PEG. In the case of directed
graphs, we focus specifically on the neighbors that are pointed to by the node of interest.
This means that we consider only the outgoing edges from the node and examine the
patterns formed by the corresponding values. However, apart from this distinction, the
algorithm remains the same. In practical terms, our focus will primarily be on using
directed graphs, as detailed in Section 3.2. Although in reality, the graphs may not have
a predefined orientation, we opt for the use of directed graphs for several reasons. Firstly,
the directed adjacency matrix tends to have more zero entries compared to the undirected
version, resulting in faster computation of the algorithm. This efficiency advantage makes
directed graphs a preferred choice for practical implementation. Secondly, the orientation of
the graphs preserves more information about their underlying geometry. By incorporating
the directional relationships between nodes, we can obtain more accurate and informative
results in our analysis. Regardless, the choice of selecting a specific vertex as the origin of
the orientation, such as vertex 1 or any other vertex, yields nearly identical results. This
is due to the symmetry present in the graphs, which ensures that the overall outcomes are
robust regardless of the chosen origin. [12].

It is important to note that the current version of the algorithm has limitations in terms
of attributes. Specifically, it is designed to handle scalar values for both nodes and edges.
Only a single value can be attributed to each edge and node, and multiple attributes are
not currently supported.



Chapter 3

Contribution

Drawing inspiration from the application of permutation entropy to graph signals, our
study introduces an approach to applying one-dimensional dispersion entropy to graphs.
This method will be described in detail in the upcoming sections, including the algorithm
definition, experimental procedures, and a comprehensive comparison with PEG. Further-
more, in Chapter 4, we employ our approach to analyze fully-connected graphs derived
from brain images, with the aim of establishing a metric for the disorder related to the
structural organization of the basal ganglia.

3.1 Dispersion Entropy for Graph Signals

As mentioned before, dispersion entropy is rather similar to permutation entropy, but
it considers the amplitude values of sample signals [27]. Thus, it could be assumed that em-
ploying dispersion entropy on graph signals could yield better performance outcomes than
using permutation entropy for graphs. The validity of this assumption will be thoroughly
examined and tested in Section 3.2.

Dispersion Entropy for Unweighted Graphs

Unweighted graphs refer to graphs where there are no attributes assigned to the edges.
In the context of this study, edge attributes are not utilized, and their potential inclusion
is discussed in detail in Appendix A. Additionally, the algorithm currently only supports
scalar values, meaning that each node and edge can have a single numerical value associated
with it. Different steps of the proposed algorithm for an unweighted simple graph can be
seen below.

1. Normal cumulative distribution function (NCDF) is utilized to map X the vector of

15
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signals on nodes to a new vector Y. The mean (µ) and standard deviation (σ) values
are computed based on the entire vector X. Once the mean and standard deviation
are determined, the NCDF is applied to X, mapping it to the vector Y= {yi}Ni=1.

NCDF =
1

2

[
1 + erf

(xi − µ√
2σ

)]
(3.1)

2. The value of c must be selected at this point. To construct the embedding vector Z,
we use the following formula.

zi = round(yi ∗ c+ 0.5) (3.2)

3. To determine the patterns, we need to identify the neighboring relationships based
on the value of m. Using the embedding vector, dispersion patterns are established.

π = (z0i , (z
j
i )

m−1
k ) j ̸= 0 & k = 1, 2, ...,m− 1 (3.3)

where j are the column indexes for Ai ̸= 0. The set Π represents all the dispersion
patterns present in the graph. Initially, the number of patterns in Π is the same as
the number of elements in Z, and each pattern is initialized with an element from Z
The algorithm recursively explores the neighbors of the last element in each pattern
(π) for k < m− 1 and adds them to the pattern. As a result, starting from a single
initialized pattern, multiple patterns can be generated based on the neighbors of the
elements in the graph. This process allows for the exploration and identification of
different dispersion patterns within the graph structure.

4. The calculation of pattern frequencies f(π) and relative frequencies p(π) follows a
similar procedure as explained earlier in Section 2.3.2.

5. In the end, the calculation of dispersion entropy is carried out using the identical
formula as that of one-dimensional dispersion entropy.

DispEG =
−
∑

p(π)ln p(π)

ln(cm)
(3.4)

Example

The example presented in Figure 2.1 will be revisited to demonstrate the application
of dispersion entropy. The same vector X is also employed for the current example.
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• Mean (µ) and standard deviation (σ) are calculated on X.

X =



−1

−2.3

0

−3

1

5

1

−1.1


µ =

(−1) + (−2.3) + (0) + (−3) + (1) + (5) + (1) + (−1.1)

8
= −0.05

σ =

√
(1 + µ)2 + (2.3 + µ)2 + (µ)2 + (3 + µ)2 + 2(1− µ)2 + (5− µ)2 + (1.1 + µ)2

8− 1
= 2.33

• Using the previously calculated values of σ and µ, we apply the normal cumulative
distribution formula, as shown in Formula 3.1, to construct the vector Y. This formula
allows us to transform the values of the input vector X into their corresponding
probabilities in a normal distribution.

Y =



0.34

0.17

0.51

0.10

0.67

0.98

0.67

0.33


• Each element of the vector Y is mapped to a class using the Formula 3.2. We choose

the hyperparameter c = 3 for this example.

z1 = round(0.34× 3 + 0.5) = 2

z2 = round(0.17× 3 + 0.5) = 1

z3 = round(0.51× 3 + 0.5) = 2

z4 = round(0.10× 3 + 0.5) = 1

z5 = round(0.67× 3 + 0.5) = 3

z6 = round(0.98× 3 + 0.5) = 3

z7 = round(0.67× 3 + 0.5) = 3

z8 = round(0.33× 3 + 0.5) = 1
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The resulting vector Z can be seen below.

Z =



2

1

2

1

3

3

3

1



• We will work with the diagonal version of matrix A for the same reasons explained
in Section 2.3.2. We choose the hyperparameter m = 3. We are working with a
recursive algorithm.

Initialisation

π1 = {z1} = {2}
π2 = {z2} = {1}
π3 = {z3} = {2}
π4 = {z4} = {1}
π5 = {z5} = {3}
π6 = {z6} = {3}
π7 = {z7} = {3}
π8 = {z8} = {1}

Recursive Step

Condition: Look for neighbors until k = m− 1

1. For π1 = {z1}, k = 1; A1 = [0 1 1 0 0 0 0 0] ⇒ j = {2, 3}
⇒ π1 = {z1, z2}, π9 = {z1, z3}

k ̸= m− 1 ⇒ Repeat step
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2. For π1 = {z1, z2}, k = 2; A2 = [0 0 1 0 0 0 0 0] ⇒ j = {3}
⇒ π1 = {z1, z2, z3} = {2, 1, 2}
⇒ Pattern found

For π9 = {z1, z3}, k = 2; A3 = [0 0 0 1 1 0 0 0] ⇒ j = {4, 5}
⇒ π9 = {z1, z3, z4} = {2, 2, 1},
π10 = {z1, z3, z5} = {2, 2, 3}
⇒ Patterns found

k = m− 1 ⇒ Condition is satisfied

At the end of the first iteration, the algorithm identifies the following patterns. The
algorithm continues to iterate until only patterns of size m remain in Π.

Result: Π =
{
{z1, z2, z3}, {z1, z3, z4}, {z1, z3, z5}, {z2}, {z3}, {z4}, {z5}, {z6}, {z7}, {z8}

}
=

{
{2, 1, 2}, {2, 2, 1}, {2, 2, 2}, {1}, {2}, {1}, {3}, {3}, {3}, {1}

}
Once the condition for a pattern is satisfied, the algorithm moves on to the next
pattern in the initial sequence. This means that the algorithm checks each pattern
one by one in the order they are initialized.

Ad =



0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0


• Below are the frequencies of all the identified patterns in the given example:

f({2, 1, 2}) = 1, f({2, 2, 1}) = 1, f({2, 2, 3}) = 1, f({1, 2, 1}) = 1, f({1, 2, 3}) = 1,
f({2, 1, 3}) = 1, f({2, 3, 3}) = 1, f({1, 3, 3}) = 1, f({3, 3, 3}) = 1, f({3, 3, 1}) = 1

• DispEG =
−10× 1

10
ln( 1

10
)

ln(33)
= 0.70
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3.2 Experiments

A number of well-established experiments will be employed to evaluate the perfor-
mance and accuracy of the DispEG metric. To achieve this goal, various images will be
utilized to demonstrate the behavior and performance of the DispEG. In this study, images
will be interpreted as two-dimensional directed graphs as seen in Figure 3.1. Each node
corresponds to a pixel, connected only to its neighboring pixels with 8-connectivity.

Figure 3.1: Illustration of graph G⃗

3.2.1 Synthetic Datasets

MIX2D Process

Figure 3.2: Examples of images generated by the MIX process. The size of each image
is 100 × 100 pixels. As p approaches 1, the image is considered to be more irregular or
disorderly.
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Building upon the approaches employed in previous studies [2, 12, 30], we will
utilize the two-dimensional processing technique known as MIX2D to evaluate the capability
of the DispEG metric.

Let Xi,j = sin(2πi
12
) + sin(2πj

12
) and let Zi,j be a random variable where Zi,j = 0 with

probability 1 − p and Zi,j = 1 with probability p. In addition, consider Yi,j a matrix
of random values ranged in [−3, 3]. The MIX2D process is defined by MIX2D(p)i,j =

(1− Zi,j)Xi,j + Zi,jYi,j [2].

Figure 3.3: Mean values of DispEG (m = 4 and c = 5) and PEG (m = 4) computed from
20 realizations generated by MIX processing.

To investigate the impact of image size and p, we generate 20 distinct realizations of
MIX2D(p) for each p value ranging from 0.1 to 0.9, with image size ranging from 10 × 10
to 100 × 100. For every combination of image size and p value, we obtain a total of 20
distinct realizations. For each realization, we calculate its DispEG using c = 5 and the
embedding dimension of m = 4, and its PEG with the same m value.

The samples for various values of p are depicted in Figure 3.2. As the parameter p

approaches 1, the image gradually becomes more similar to random noise. In Figure 3.3,
it can be observed that PEG reaches its plateau earlier than DispEG, indicating that for
values of p greater than 0.5, PEG struggles to distinguish the relative disorderliness among
images. In contrast, DispEG continues to provide discerning entropy values, making it
a more suitable choice for this particular test. Additionally, as the noise increases, the
DispEG values converge to 1, which aligns with our expectations.

Additionally, we compared our findings to those reported in [12] regarding the influence
of image size. In the referenced study, the authors observed that the PEG value was affected
by the image size, as depicted in Figure 3.4. Their experiment was conducted with m = 6.
However, after employing the same m = 6 (and c = 5) for DispEG, we observed that
the image size had no significant impact on the entropy values. This finding suggests
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that regardless of the image size, DispEG consistently produces reliable and discriminating
entropy values, indicating its robustness in capturing the underlying complexity of the
data. Considering the significant computational expense of using m = 6, we decided to
explore the use of m = 4 for both DispEG and PEG instead.

Figure 3.4: Mean values of PEG (m = 6) computed from 20 realizations generated by MIX
processing. The graph is extracted from [12].

For m = 4, the impact of image size on entropy values is minimal, as demonstrated
in Figure 3.3. In the case of PEG, for m = 4, the size of the image appears to have little
effect. The impact of image size for DispEG for this particular m value remains negligible
suggesting that DispEG exhibits greater stability across different values of m compared to
PEG. PEG demonstrates more variability and sensitivity to the choice of m, potentially
leading to less consistent and accurate results. This observation suggests that DispEG may
be advantageous in applications where images of varying sizes need to be analyzed, as it
provides more consistent results than PEG.

Artificial Periodic and Synthesized Textures

This experiment demonstrates the variation in DispEG when a periodic texture is con-
verted into a synthesized texture by utilizing six periodic textures and their corresponding
synthesized textures [12, 22]. The dataset is public and can be retrieved from [15]. The
periodic and synthesized textures utilized in the study are 256x256 in size. These textures
can be seen in Figure 3.5

The resulting outcomes are presented in Table 3.1 for m = 4 and c = 6 for DispEG, and
m = 4 for PEG. As demonstrated, the synthesized textures exhibit higher entropy values
due to their comparatively lower level of orderliness compared to the periodic textures.
Therefore, our method effectively distinguishes between periodic and synthetic textures, as
demonstrated in the previous application of PEG on graphs [12], as well as two-dimensional
entropy measures [22, 30]. Nonetheless, it is noteworthy that in this experiment, PEG
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Figure 3.5: Periodic textures P1 - P6 and their corresponding synthetic textures S1 - S6

exhibits better performance compared to DispEG since the difference in the results between
periodic and synthetic textures is consistently higher for PEG than DispEG.

Periodic Texture P1 P2 P3 P4 P5 P6
DispEG 0.2322 0.4448 0.5711 0.8602 0.6865 0.6351
PEG 0.5682 0.3276 0.8226 0.7922 0.8170 0.8647

Synthesized Textures S1 S2 S3 S4 S5 S6
DispEG 0.2681 0.4825 0.5758 0.8758 0.6949 0.6394
PEG 0.6232 0.4833 0.8415 0.8295 0.8515 0.8746

Table 3.1: Numerical values of DispEG for periodic and synthesized textures

Texture Image with Additive Noise

We investigate the behavior of DispEG and PEG in the presence of white Gaussian
noise and salt and pepper noise using the popular image, Lenna, with a size of 256 × 256, as
previously employed in [2]. The image is normalized between 0 and 1, after which uniform
white Gaussian noise is added at different levels of equal mean and variance (µ = σ),
namely 0.01, 0.05, and 0.09. Additionally, salt and pepper noise is introduced to the
reference image at varying noise densities of 0.01, 0.05, and 0.09 as seen in Figure 3.6. In
the case of salt and pepper (S&P) noise with density d, the noise is applied to d multiplied
by the number of pixels of the image. Conversely, for Gaussian noise, the noise is added
to nearly every pixel in the image. The mean values of DispEG and PEG are calculated
based on 40 realizations for each level of Gaussian and S&P noise.

The resulting DispEG values obtained from Lenna with varying levels of Gaussian and
S&P noise are presented in Table 3.2. It is hypothesized that the introduction of noise to
the reference image leads to an increase in the disorderliness of the image, thus resulting
in an elevated entropy value.
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Figure 3.6: The original reference image and its variations with different levels of Gaussian
and S&P noise

Noise Level DispEG PEG

Reference Image 0.569379 0.891241
Gaussian σ = µ = 0.01 0.799072 0.951746
Gaussian σ = µ = 0.05 0.939511 0.950599
Gaussian σ = µ = 0.09 0.969889 0.949664

S&P d = 0.01 0.603331 0.930621
S&P d = 0.05 0.707640 0.988423
S&P d = 0.09 0.784462 0.994954

Table 3.2: Mean values of DispEG and PEG computed on 40 realizations with different
levels of white Gaussian noise and salt and pepper noise, along with the DispEG and PEG

value of the reference image

The results presented in Table 3.2 use the values of m = 3 for both DispEG and PEG

and c = 4 for DispEG. As expected, it is observed that the DispEG values increase with
increasing mean and variance of the Gaussian noise, and also with increasing noise density
of the S&P noise. PEG also demonstrates the ability to differentiate between different
levels of salt and pepper (S&P) noise, although the resulting values are less discriminative
compared to DispEG. However, while PEG is able to differentiate the reference image from
the one with Gaussian noise, it reaches a plateau when distinguishing between different
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levels of Gaussian noise. This behavior can be attributed to the fact that Gaussian noise
introduces subtle variations to each pixel, which may not be significant enough to alter
the entropy pattern. PEG primarily relies on the order of graph signals rather than their
amplitudes, which may explain its limited sensitivity to the small amplitude changes in-
duced by Gaussian noise. Consequently, DispEG demonstrates superior performance in
this experiment.

3.2.2 Real Datasets

Kylberg Texture Dataset

This study utilizes the publicly available Kylberg texture dataset [19] to conduct an
additional experiment. The objective is to showcase the ability of DispEG to effectively
differentiate between various textures and to compare its performance with that of PEG.
The same 10 groups of images representing surfaces and fabrics and their respective ro-
tations are utilized as in [2]. One sample image is selected from each group. In order to
address the issue of time complexity, the images are cropped to 256x256, these images are
shown in Figure 3.7.

Figure 3.7: One sample of each of the 10 selected groups from Kylberg textures

Table 3.3 displays the DispEG and PEG values obtained for the selected Kylberg texture
groups with varying values of m. The outcomes indicate that DispEG can be an effective
metric to differentiate between various patterns of surfaces and fabrics. Moreover, the
results obtained are consistent with those reported in [2]. It is worth mentioning that
various values of PEG are examined, as the results obtained for m = 2 were not sufficiently
discriminative, with values around 0.99 for each group. Interestingly, even for m = 4,
the resulting values are not as diverse as those obtained with DispEG for m = 2 and
c = 5. Table 3.3 presents the mean difference between consecutive values for various values
of m in the texture discrimination experiment. Remarkably, even with very low values
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of m, DispEG exhibits superior performance compared to PEG in distinguishing between
textures. The higher mean difference obtained from DispEG indicates a greater ability to
capture and discriminate subtle variations in the textures.

Entropy DispEG PEG PEG PEG

Texture
m 2 (c = 5) 2 3 4

Scarf 2 0.503241 0.995055 0.843676 0.748468
Floor 1 0.5788865 0.998222 0.838207 0.730197
Scarf 1 0.638092 0.995438 0.738693 0.613730
Rug 1 0.699633 0.999936 0.877514 0.772732
Rice 1 0.782496 0.999921 0.915035 0.843216

Screen 1 0.796938 0.999882 0.788361 0.683069
Ceiling 1 0.832265 1.000000 0.913900 0.834210
Blanket 1 0.863802 0.999548 0.902992 0.818004
Canvas 1 0.898769 0.999953 0.887087 0.800055
Floor 2 0.966610 0.999990 0.923152 0.864171

Mean difference of
consecutive values

0.051485 0.000549 0.020495 0.027827

Table 3.3: DispEG and PEG values of ten different groups of textured surfaces for different
values of m

Furthermore, it should be noted that increasing the value of m leads to a faster increase
in computational time compared to increasing c. Surprisingly, even with m = 4 for PEG,
we could not replicate the same entropy order as reported in [2]. With the exception of
m = 2, PEG incorrectly classifies Scarf 2 as more disorderly than Scarf 1 based on the
higher entropy value, contradicting visual observations. Consequently, this experiment
appears unsuitable for the application of PEG.

Brodatz Image Dataset

To evaluate the discriminative capability of DispEG for different texture patterns, an
additional experiment is conducted using the Brodatz grayscale texture dataset [5]. This
experiment also serves as a comparative analysis between the performance of DispEG and
PEG. The dataset is composed of 112 grayscale images representing a large variety of
natural textures. This dataset has been utilized in previous studies such as [2, 30], where
9 groups of images were extracted as shown in Figure 3.8. The images were subjected to
cropping with a size of 128x128, and subsequently, one image from each image group was
selected to be used in the experiment.
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Figure 3.8: One sample of each of the nine selected groups from Brodatz textures

The results for the Brodatz textures are displayed in Figure 3.9. Similar to the previous
work by [2], the effect of different m values is investigated. It is noteworthy that, in contrast
to the previous study [2], the DispEG values remain distinguishable and do not overlap for
even lower values of m.

Figure 3.9: DispEG values of Brodatz textures computed using various hyperparameters

On the other hand, for the values of PEG, a similar trend is observed as in the previ-
ous experiment. When m = 2, the order of values for PEG remains similar to the results
reported in [2]. Nevertheless, the entropy values remain highly condensed between 0.98
and 1.00, making it challenging to differentiate between the textures effectively. Addition-



28 Chapter 3. Contribution

ally, when m is increased to 3, the order becomes inconsistent with the previous findings
obtained with m = 2. Notably, D15, which is visually one of the most disorderly images,
yields the lowest entropy value for m = 3.

Entropy
m 2 3

DispEG 0.0653 0.0702
PEG 0.0015 0.0073

Table 3.4: Mean difference of consecutive values for DispEG and PEG with various m values

Furthermore, even for m = 3, entropy values stay within a limited range compared
to DispEG. To further illustrate this point, Table 3.4 provides the mean difference of
consecutive values obtained from both DispEG and PEG for the Brodatz texture dataset.
The relatively small mean difference values of PEG indicate a lack of significant variation
between consecutive entropy values, further contributing to the challenge of texture dis-
crimination. As a result, DispEG demonstrates superior performance in this experiment
compared to PEG.

3.2.3 Conclusion on Experimental Findings

After carefully evaluating the performance of DispEG and PEG in previous experi-
ments, we have observed that DispEG consistently exhibits similar or superior performance
compared to PEG. Taking this into account, we have made the decision to utilize DispEG

for our medical application, which is presented in Chapter 4. Through our medical appli-
cation, we seek to evaluate the efficiency of DispEG in distinguishing between healthy and
pathological brains, thus showcasing its potential as a valuable tool in the biomedical field.
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Application: Detection of Damage in
Pediatric Brains Affected by Perinatal
Stroke

An additional contribution of this project to the existing literature is the utilization of
DispEG in the field of medical imaging. The diagnosis and treatment of different pathologies
heavily rely on the classification of medical images. In this application, our approach
involves utilizing DispEG on graphs derived from pediatric brain MRIs. Our objective is
to initially classify pediatric MRIs as either healthy or damaged, followed by identifying
cases of cerebral palsy within the group classified as having damaged brains due to brain
lesions caused by a perinatal stroke. The aim is to enable early diagnosis of cerebral palsy.
We use the AVCnn dataset [6] comprising 68 subjects, of which 31 are considered healthy,
15 exhibit damage on the right hemisphere, and the remaining subjects present damage on
the left hemisphere. Among the subjects exhibiting damage, 13 individuals were diagnosed
as having cerebral palsy by a specialist.

To apply DispEG on MRI and allow a comparison between entropy and neural networks
on graphs, we follow a methodology similar to that described in [7], where a graph is con-
structed by representing distinct basal ganglia structures as individual nodes. Segmented
brain images are utilized to calculate the volumes and elongations of individual structures,
as well as the distances that separate them. In the initial stage of the application, the focus
is primarily on the volumes, which are employed as attributes for the nodes. Subsequently,
elongation is considered as the attribute function for the nodes. The potential inclusion of
distances is further elaborated in Appendix A.

Considering the favorable outcomes achieved in Chapter 3, a similar methodology could
have been employed by directly applying DispEG on the image, where each voxel corre-
sponds to a node. However, we opted against this approach due to several factors. First,

29



30 Chapter 4. Application

MRIs can be computationally time-consuming to process, especially considering the three-
dimensional nature of the data (256x256x176 voxels). By constructing graphs based on
the spatial arrangement of the basal ganglia structures, we can reduce the computational
burden. Additionally, within individual brains, the structures of the basal ganglia are not
always on the same slice. If we were to analyze a large number of slices, we would fur-
ther increase computational complexity. Alternatively, manually selecting a specific slice
where the basal ganglia structures are visible introduces subjectivity and potential bias.
Constructing graphs where nodes represent different basal ganglia structures allows us
to capture the essential connectivity information while mitigating the computational and
interpretational challenges associated with the original MRI.

As shown before in Chapter 2.1, we define the graph G = (V,E,X,L). V is the set
of nodes where each node corresponds to a basal ganglia structure and E is the set of
edges. In the given context, the function X : V → R represents the assignment of node
attributes in the graph. Specifically, it assigns values to each node in the graph. In the
first part of this study, the values represent the normalized volume of the corresponding
brain structure in relation to the total brain volume. As our method doesn’t allow multiple
attributes on nodes (or edges), we later change the function X to elongation values of the
nodes, which are normalized with respect to the perimeter of the brain. On the other hand,
the function L : E → R assigns edge attributes in the graph. These attributes represent
the distances between the structures, indicating the spatial relationships between them.
The incorporation of an edge attribute function in the graph analysis is discussed in detail
in Appendix A. In this chapter, we employ an adjacency matrix A that utilizes 0 and 1 as
values. A value of 1 indicates the presence of a neighboring relationship, while 0 denotes
its absence.

In contrast to the approach taken in [7], fully-connected graphs are employed due to the
limited amount of information available in the graphs where only symmetrical structures are
connected, which makes it highly probable to obtain similar entropy values for both healthy
and damaged brains. Furthermore, when exclusively connecting supposedly symmetrical
structures, only two nodes are linked together, which restricts the possibility of increasing
the value of m. Nevertheless, it remains crucial to emphasize the asymmetry between
symmetrical structures, in order to discern between healthy and damaged brains accurately.

In the initial section of this chapter, we will employ randomly generated synthetic
graphs to simulate a structural organization akin to those observed in the basal ganglia.

4.1 Synthetic Graphs

Initially, we will attempt to perform binary classification of orderly graphs and those
exhibiting a higher degree of disorder. A graph that exhibits no discernible disorder can
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be observed in Figure 4.1, where structures with indexes i and i + 3 are assumed to be
symmetrical where i = {1, 2, 3}. Currently, no attributes are assigned to the edges in order
to explore their influence.

Figure 4.1: Synthetic graph simulating the anatomical structures of the brain

A total of 80 graphs are generated randomly, with the initial 40 graphs representing
orderly structures and the subsequent 40 graphs showcasing disorder. The primary chal-
lenge in this context lies in accentuating the asymmetry between symmetrical structures
and obtaining comparable amplitude values, which is not achievable through the use of
the Normalized Cumulative Distribution Function (NCDF) alone. As stated earlier in [27],
various normalization functions can be utilized for the mapping process. Consequently,
we conducted an extensive exploration of various normalization methods to identify the
most suitable one for this specific application. In conclusion, the chosen approach in-
volved calculating the ratio between two symmetrical structures (see Formula 4.1), which
effectively highlighted any existing asymmetry. By implementing this method, we aimed
to uncover and emphasize any discernible differences in symmetry within the structures
under investigation.

xnew
i =

xi

xi + xi+3

Where x is the signal value on node and i is the node index
(4.1)

As shown in Figure 4.2, the chosen normalization approach successfully highlighted
the asymmetry between the structures in a graph exhibiting a certain level of disorder.
Additionally, the obtained values are of comparable amplitude which satisfies one of our
initial constraints.

The aforementioned graphs undergo normalization using the previously described ap-
proach, and the DispEG method with m = c = 2 is subsequently applied to calculate their
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entropies. In this initial phase, we solely utilize the information available on the nodes
and make the assumption that there are no attributes associated with the edges. As a
result, we observe that graphs without any disorder exhibit an entropy value of 0, whereas
the entropy values of the remaining graphs varied depending on the degree of disorder
present. Finally, considering 0 entropy values as orderly and all higher values as disorderly,
we obtain a good classification rate of 100%. The confusion matrix of this classification is
presented in Table 4.1. We acknowledge that this approach is quite simplistic since, once
the graphs are normalized, the disorder becomes readily apparent to the naked eye which
explains the perfect good classification rate.

Figure 4.2: Synthetic graph with disorder and its normalized counterpart

Truth
Prediction Orderly Disorderly

Orderly 40 0
Disorderly 0 40

Table 4.1: Confusion matrix for the classification of synthetic graphs

In conclusion, the utilization of a synthetic dataset has provided us with a valuable
opportunity to thoroughly test our method and validate our normalization approach. The
performance achieved on the synthetic dataset has provided great results, giving us the
confidence to proceed to the next stage of our study, which focuses on the medical applica-
tion. Section 4.2 will involve the analysis of graphs obtained from pediatric MRIs, where
we aim to leverage DispEG to distinguish between healthy brains and those with brain
lesions.
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4.2 Medical Application on Children’s MRIs

As demonstrated in Chapter 4.1, our initial objective involves conducting a binary
classification of MRI scans obtained from pediatric subjects. Subsequently, our investiga-
tion aims to identify individuals who have developed cerebral palsy among those classified
as having brain damage.

We utilize the MRI scans of the aforementioned 68 subjects and extract graphs from
them. The segmented brain image, depicted in Figure 4.3, showcases distinct structures
within the basal ganglia. We use the same AVCnn dataset as well as the same segmentation
approach as previously employed in [7]. Each segmented area corresponds to a different
structure, serving as nodes within the graph, while the connections between these struc-
tures constitute the edges. The resulting graph, representing the interconnected structures
within the basal ganglia, is also depicted in Figure 4.3.

Figure 4.3: Segmented pediatric brain MRI and the corresponding graph

4.2.1 Detection of Perinatal Stroke-Induced Brain Damage

The normalization approach described in Chapter 4.1 is applied, allowing us to em-
phasize the structural asymmetry while ensuring that all values are scaled to a comparable
magnitude. In this particular phase of the study, our primary focus lies in differentiating
between healthy brains and those affected by a perinatal stroke.

Initially, we employ the volume of each structure as the node attribute function, while
excluding the information available on the edges, which represent the distances between
structures. We then normalize these attribute values using the previously presented ap-
proach in Formula 4.1 before using Formula 3.2 to map each signal to a class between
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1 and c. We explore various configurations of m and c values to determine the optimal
scenario. In the brains of healthy subjects, there exists a certain degree of asymmetry,
resulting in non-zero entropy values for the graphs extracted from MRIs of healthy in-
dividuals. Therefore, we take as a threshold the value that effectively separates the two
populations. We then compare this classification with the ground truth and calculate the
rates of good classification, as presented in Table 4.2.

c
m 2 3 4 5 6 7

2 54.41% 55.88% 69.12% 61.76% 60.29% 58.82%
3 51.47% 51.47% 51.47% 51.47% 51.47% 51.47%
4 58.82% 60.29% 69.12% 61.76% 58.82% 58.82%
5 57.35% 57.35% 57.35% 57.35% 57.35% 57.35%
6 60.29% 61.76% 69.12% 61.76% 60.29% 58.82%
7 61.76% 61.76% 61.76% 61.76% 61.76% 61.76%
8 64.71% 66.18% 69.12% 61.76% 60.29%

Table 4.2: Good classification rate of graphs with volume as the node attribute function

c
m 2 3 4 5 6 7

2 53.73% 53.73% 59.70% 59.70% 59.70% 59.70%
3 47.76% 47.76% 47.76% 47.76% 47.76% 47.76%
4 47.76% 55.22% 61.19% 61.19% 61.19% 61.19%
5 49.25% 49.25% 49.25% 49.25% 49.25% 49.25%
6 47.76% 55.22% 61.19% 61.19% 61.19% 61.19%
7 49.25% 49.25% 49.25% 49.25% 49.25% 49.25%
8 56.72% 56.72% 61.19% 61.19% 61.19%

Table 4.3: Good classification rate of graphs with elongation as the node attribute func-
tion

Subsequently, we alter the node attribute to the elongation of each brain structure.
Since our method does not support multiple attributes on nodes, we conduct a separate
evaluation using elongations as the sole attribute for analysis. The elongations are cal-
culated by normalizing the major axis length of each brain structure by the perimeter of
the brain. However, one brain with left side damage, identified as LLP20 is excluded from
the analysis due to the absence of perimeter information in our dataset. As a result, we
proceed with a total of 67 subjects instead of the initial 68. Similarly to the binary classi-
fication using volume as the node attribute function, we still do not consider the attribute
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information on edges. We also rely on the previously described method to differentiate
between the two populations. The good classification rates for the elongation as the node
attribute function can be found in Table 4.3.

The cells that are colored in grey in Table 4.2 and Table 4.3 indicate configurations that
are computationally expensive making them unpractical for real-world applications. There-
fore, the grey color serves as a visual indicator to caution against selecting configurations
that may hinder implementation due to their computational requirements.

Figure 4.4: Scatter graph for DispEG values with volume and elongation as the node
attribute function

Considering that the best classification rate for volume and elongation is achieved when
both c and m are equal to 4, the analysis depicted in Figure 4.4 utilizes these specific val-
ues. In Figure 4.4 the visibility of population separation is hindered due to the presence
of extreme values, which correspond to brains exhibiting significantly high levels of disor-
der. Hence, we suggest presenting Figure 4.5 without these extreme values. Subsequently,
in Section 4.2.2, our focus will shift toward investigating the origin of these outliers. By
removing these outliers, the focus is shifted to the majority of data points, allowing for a
clearer visualization of the separation between populations. Despite a considerable amount
of overlapping values, the differentiation between populations is relatively discernible for
the volume as the node attribute, while it remains challenging to ascertain for the elon-
gation as the node attribute. On the other hand, the two pieces of information, volume
and elongation, are complementary, and their combination can provide additional discrim-
inatory power. The elongation as the node attribute function can help distinguish certain
individuals that might have been classified as healthy with volume as the node attribute
function. The utilization of elongation as the node attribute function offers the advantage
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Figure 4.5: Scatter graph for DispEG values with volume and elongation as the node
attribute function excluding outliers.

of further distinguishing individuals who may have been initially misclassified based on
the volume as the node attribute function alone. By considering both volume and elon-
gation, we observe a discernible degree of separability between the two populations, thus
indicating the potential for enhanced classification. Figure 4.5 provides valuable insights
into the distribution of data points and the clustering tendencies within each population,
contributing to the understanding of the relationship between the attribute function and
the classification of brain structures.

Although our results show promise, the binary classification of brain structures still
requires improvement, as the highest achieved classification accuracy remains below 70%.
To address this, our intuition is to incorporate the edge attribute function into the classi-
fication process. Although we propose a method in Appendix A, further work is needed
to thoroughly test and validate its effectiveness. Additionally, one of our primary objec-
tives was to detect children who may develop cerebral palsy in the future, and this will be
explored in the upcoming section.

4.2.2 Detection of Cerebral Palsy

The binary classification of pediatric MRIs is typically straightforward, as brain lesions
are often visually identifiable. This serves as a necessary initial step before delving into the
more complex task of detecting cerebral palsy. However, establishing an early diagnosis of
cerebral palsy based on MRIs remains challenging. Despite the need for improvement in



4.2. Medical Application on Children’s MRIs 37

our binary classification results, we recognized the importance of developing an approach
for cerebral palsy detection.

Our proposed approach involves exploring different configurations of the m and c values.
Through experimentation, we discovered that certain configurations can yield null entropy
values close for the majority of brains, with only outliers exhibiting higher values. By
fine-tuning these configurations, we are able to filter out small variations in values that
are closely clustered while retaining those that significantly deviate from the rest. This
approach helps us focus on the potential indicators of cerebral palsy.

After conducting extensive experimentation with various parameter values, we observed
that the combination of c = 7 and m = 2, when using volume as the node attribute func-
tion, yielded the best performance for detecting cerebral palsy. While elongation showed
a small degree of correlation with cerebral palsy, it was less effective in detecting cases
compared to volume as can be seen in Table 4.4 and Table 4.5. The results showed that
when using elongation as the node attribute function, the subjects who were identified as
having a cerebral lesion were already detected using volume as the node attribute func-
tion. In this particular scenario, incorporating elongation did not provide any additional
information or improve the classification outcome. Therefore, we prioritized volume as the
more informative attribute in this context.

Truth
Prediction Cerebral Palsy No Cerebral Palsy

Cerebral Palsy 9 4
No Cerebral Palsy 2 53

Table 4.4: Confusion matrix for the classification of children with and without cerebral
palsy using the measure of DispEG (m = 2 & c = 7) with volume as the node attribute
function

Truth
Prediction Cerebral Palsy No Cerebral Palsy

Cerebral Palsy 2 11
No Cerebral Palsy 0 55

Table 4.5: Confusion matrix for the classification of children with and without cerebral
palsy using the measure of DispEG (m = 2 & c = 7) with elongation as the node
attribute function

Using m = 2 and c = 7 with the volume as the node attribute function, we successfully
detected cerebral palsy in 9 out of 13 subjects who would eventually develop the condition.
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However, it’s important to note that there were also 2 false positive cases where cerebral
palsy was incorrectly detected. These findings, presented in Table 4.4 highlight the po-
tential of our approach in identifying individuals at risk of developing cerebral palsy. The
performance of our entropy-based approach in detecting cerebral palsy can be compared
to the results presented in the study that inspired our work [7]. Although our approach
yielded slightly lower performance, it is still comparable to the results reported in that
study. In [7], the authors reported 2 false positives and 2 false negatives, whereas, in
our study, we obtained 2 false positives and 4 false negatives. While there is room for
improvement in reducing false negatives, the overall performance of our approach remains
promising and demonstrates its potential in the detection of cerebral palsy.

Further refinement and evaluation are necessary to enhance the overall accuracy of
our detection method. Our initial intuition again suggests that incorporating an edge
attribute function can potentially improve the detection of all subjects who would develop
cerebral palsy. This hypothesis remains speculative and requires further investigation in
future studies. It is possible that the edge attribute function can provide valuable spatial
information to improve the accuracy of cerebral palsy detection. However, rigorous testing
and evaluation are required to validate this assumption and determine the true effectiveness
of integrating edge attributes in this context.



Conclusion

This study explored key concepts in the analysis of complex systems. The study
first provided an introduction to basic graph theory and several notions that are essen-
tial for the project. The concept of entropy is then discussed, particularly in relation to
one-dimensional time series. Moreover, detailed explanations of permutation and disper-
sion entropy are presented. The study also illustrated the groundbreaking application of
permutation entropy in graph signals [12], which is a recently proposed method that has
influenced the present study. The subsequent chapter introduces the application of disper-
sion entropy on graph signals. The following sections delve into the evaluation of DispEG

in comparison to PEG using established experiments from the existing literature. These
experiments substantiated our initial assumption regarding the enhanced performance of
DispEG over PEG due to its incorporation of signal amplitudes. In all the conducted ex-
periments, DispEG consistently demonstrated superior or nearly equivalent performance to
PEG. While our project was underway, a publication introduced an algorithm for applying
dispersion entropy to irregular graph signals [13]. However, their study included limited
experiments. In contrast, our study stands out due to its extensive experimentation and
comparison with PEG. In the final chapter, we shift our focus to the medical domain.
Considering the superior performance of DispEG compared to PEG, we have made the
decision to employ DispEG for our medical application, further distinguishing our work
from [13]. Our objective for this medical application was to evaluate the effectiveness of
DispEG in classifying pediatric brain images as either healthy or damaged based on the
structural organization of specific brain structures called the basal ganglia, and its potential
for detecting cerebral palsy.

In this study, we extended the one-dimensional dispersion entropy to graph signals for
the purpose of identifying pathologies in medical images. While a generalized permutation
entropy for irregular graph signals had been previously suggested in the literature [12],
applying entropy to graphs extracted from medical images had not been attempted before.
Consequently, the novelty of this study lies in this unique approach. In Section 4.2, our
focus was primarily on the binary classification of pediatric brain images using volume and
elongation as the node attribute functions. While this task is relatively straightforward due
to the visibility of brain lesions, it served as an initial validation of entropy as a relevant
metric for this type of analysis. We observed that using volume as the node attribute
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function led to better performance in distinguishing between the two populations, while
elongation provided complementary information. However, the achieved good classification
rates are still relatively low and require further improvement. At the end of Chapter 4,
we also explored the possibility of using our approach to detect cerebral palsy in pediatric
brain structures. Although we made attempts in this direction, it is clear that this approach
also needs further refinement and enhancement to achieve accurate and reliable results.

The task of classification is commonly handled by deep learning algorithms. How-
ever, applying entropy to graph signals for classification purposes can address some of the
challenges associated with these algorithms. Firstly, our approach eliminates the need for
training data, which can be costly or challenging to acquire. Secondly, the mathemati-
cal principles underlying our approach are transparent, comprehensible, and explainable,
making it an anti-black box approach. In this study, we focused on the same medical
application as presented in [7]. Although our method did not achieve the same level of
performance as the GNN-based method in detecting subjects with cerebral palsy, it still
demonstrated respectable performance. It is also important to note that our method does
not currently incorporate the edge attribute function utilized in the GNN-based method.
While the GNN-based method may have achieved better results in this specific task, our
approach based on dispersion entropy offers its own advantages as mentioned above.

While the obtained results of our approach are promising, there is room for further
improvement in future work. One avenue for future research is to refine and generalize the
approach outlined in Appendix A to also consider the spatial information carried by edges.
Additionally, our current method is limited to handling scalar attributes on nodes and
edges. A desirable extension would be to enhance the method to support multiple attributes
simultaneously, resulting in attribute vectors. This would enable a more comprehensive
representation of the graph signals and potentially capture more complex relationships
and patterns within the data. Another perspective to consider is comparing the results
obtained in this study using DispEG applied to graphs extracted from MRIs with the direct
application of DispEG to multiple MRI slices. This comparison can be made in terms of
classification performance and computational time, providing insights into the advantages
and limitations of each approach. An additional perspective is to assess whether the
entropy value obtained from pediatric MRIs following a perinatal stroke could be correlated
with their motor functions defined as a motor score. This investigation aims to enhance
clinicians’ comprehension of the motor progression in children affected by perinatal stroke.



Appendix A

Dispersion Entropy on Weighted Graphs

Inspired by the study on permutation entropy on graphs [12], we explored the uti-
lization of weighted graphs, which involved employing an edge attribute function to assign
different attributes to edges. In the previous study [12], the authors introduced edge at-
tributes by combining the values of edges with the values of neighboring nodes. They
did this by multiplying the edge value with the attribute of the neighboring node before
following the same steps explained in Section 2.3.2.

In this study, we adopted a slightly different approach. We started from the principle
that for a graph that presents no disorder, as can be seen in Figure A.1, the attributes on
edges should have no effect. Therefore, we suggest replacing Formula 3.2 in the DispEG

algorithm with the following expression for the weighted graphs:

Z(i) = round(c ∗ Y (i) ∗ µ+ 0.5) (A.1)

where µ is the mean of edge signals that are incident to node i. It is important to
mention that the amplitude of each edge signal should be less than or equal to 1. To
ensure this, various normalization approaches can be used, such as NCDF, as shown in
Formula 3.1, depending on the specific application. The rest of the algorithm remains
unchanged for weighted graphs. It is evident that when the edge attribute function is
constant, µ would have no effect.

If we focus on node 1 in Figure A.1, the mean value of the edges incident to it is
equivalent to the mean value observed for every other node. At present, each node possesses
the same value of "a" as the mean value of the edges incident to them.

To assess the effects and potential weaknesses of this approach, we will systematically
increase the disorderliness of the edges. This will enable us to observe how the algorithm
responds to varying levels of disorder and identify any limitations or challenges that may
arise. If we examine Figure A.2, we observe that the edge attribute value of the edge
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between nodes 1 and 2 has been increased. The mean value (µ) of edges incident to node 2
and for node 1 will also increase in this scenario. We consider the edge attribute function
to be the distance between the nodes, as in our medical application.

Figure A.1: A graph consisting of three nodes, each with the same signal magnitude, and
three edges, all with the same signal magnitude of "a".

We can assume that the increase in the edge attribute value should result in an increase
in the value of DispEG. This assumption is validated by the experimental results presented
in Table A.1. The DispEG value of the first graph in Figure A.1 is indeed lower compared
to the graph in Figure A.2.

Figure A.2: A graph consisting of three nodes, each with the same signal magnitude, and
three edges, all with signal magnitudes of "a" and "b".

Continuing our exploration, we take a further step by modifying another edge value,
leading to a graph with increased disorderliness. In the case of Figure A.3, we decrease
the attribute value of the edge incident to nodes 2 and 0. By visual observation, we can
deduce that the graph in Figure A.3 is more disorderly than the one in Figure A.2. Based
on this observation, we can assume that the graph in Figure A.3 would exhibit a higher
DispEG value compared to the two earlier graphs. This assumption is also confirmed by
the results presented in Table A.1.
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Figure A.3: A graph consisting of three nodes, each with the same signal magnitude, and
three edges, all with signal magnitudes of "a", "b", and "c".

Case Value of e01 Value of e12 Value of e02 DispEG

The graph in Figure A.1 0.50 0.50 0.50 0.00
The graph in Figure A.2 0.50 0.90 0.50 0.29
The graph in Figure A.3 0.50 0.90 0.10 0.50

Table A.1: DispEG values of graphs with varying degrees of edge irregularity

Even though we obtain the expected behavior with this limited experimentation, a po-
tential weakness of this approach is that when there are conflicting increases and decreases
in edge attribute values, the averaging process can lead to a decrease in entropy. In certain
scenarios, particularly for node 2, the mean of edge attributes "b" and "c" may align in
magnitude with the attribute "a". This can lead to a decrease or no change in DispEG

instead of accurately reflecting the increased disorderliness. This weakness becomes more
pronounced, particularly in cases where the number of nodes is low and the increase or
decrease in edge values is isolated and distinct. Further research is required to explore
the utilization of dispersion entropy on weighted graphs in order to address the limitations
outlined above. It is important to acknowledge that averaging the signal amplitudes of
edges connected to a node may not be the optimal method. One possible suggestion is
to assess the deviation of the edges connected to the specific node from the mean value.
While attempting to implement this approach, we encountered certain challenges, such as
the need to restrict the value to remain below 1 prior to multiplication with the constant
variable c, ensuring its mapping to classes ranging from 1 to c. These challenges require
further investigation and refinement in future research.
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Abstract — In the field of healthcare, the accurate classification of medical images is of
paramount importance in differentiating between healthy and diseased individuals. While
deep neural networks have proven effective for image classification tasks, they often lack
explicit consideration of high-level structural information present in the images. Graph-
based representations offer a promising approach to capture and analyze the complex
structural relationships between different regions in medical images. Motivated by this, the
present study aims to detect pathologies by measuring the disorder of graphs extracted from
pediatric brain MRIs using an entropy-based method. Specifically, the study introduces the
application of dispersion entropy to graphs. Dispersion entropy on graphs (DispEG) is first
compared to the recent application of permutation entropy to graphs (PEG) in the context
of image analysis, evaluating its efficiency and potential advantages. Drawing inspiration
from the superior performance of DispEG in these experiments, this study further explores
its potential application in the specific medical context of pediatric brains affected by
perinatal stroke. DispEG is applied to graphs extracted from pediatric brain MRIs for the
classification of these brains and the detection of cerebral palsy induced by brain lesions.

Mots clés : Brain medical imaging, Structural information, Graph, Permutation entropy,
Dispersion entropy.
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