
Master Systèmes Dynamiques et Signaux

Mémoire

Development of Localization & Control
Algorithms

for an Autonomous ROV

Auteur :
M. Hugo Yverneau

Jury :
Pr. L. Hardouin

Pr. L. Jaulin

Version du
24 août 2023

Résumé
Le processus d’automatisation d’un Remotely Operated underwater Vehicle (ROV)

repose sur deux blocs logiciels : la localisation et le contrôle. D’une part, le bloc logiciel
de localisation est chargé de filtrer toutes les informations pour déterminer l’état du
robot, tandis que le bloc de commande est chargé d’utiliser l’état estimé du robot pour
contrôler ses actionneurs. Pour répondre à ces questions, ce rapport de Projet de Fin
d’Étude (PFE) sur le développement d’algorithmes de localisation et de contrôle pour
un ROV autonome se penche sur différents aspects du problème. Les questions de
localisation sont abordées avec la mise en œuvre d’un algorithme de fusion de données
de haut niveau utilisant un graphe de contraintes et avec le développement de bas niveau
d’un pilote de sonar. Les aspects de contrôle sont abordés en modifiant l’architecture
des contrôleurs du ROV.

Abstract
The automation process for a Remotely Operated underwater Vehicle (ROV) is based

on two software blocks: localization and control. On the one hand, the localisation
software block is responsible for filtering all the information to determine the state
of the robot, while the control block is responsible for using the estimated state of
the robot to control its actuators. To address these issues, this end-of-study project
report on the development of localisation and control algorithms for an autonomous
ROV delves into different aspects of the problem. Localization issues are addressed
with the implementation of a high-level data fusion algorithm using a constraint graph
and with the low-level development of a sonar driver. Control aspects are addressed by
changing the architecture of the ROV controllers.

Acknowledgements
I would like to thank Gautier Dreyfus for making this great work-study opportunity

possible; David Barral, Mathieu Mege and the whole team at Forssea in Sète for their
warm welcome, their availability and their good humour; my tutor Auguste Bourgois
for his guidance and his time. My thanks also go to Pierre Narvor for its great help
on the sonar comprehension and for Paris Forssea team for their occasional but no less
useful assistance.

I can’t finish without specific thanks to Mathieu Mege for his outspokenness, to
Victor Buchet for his crazy lunch plans and Felix Nilius for his teaching of electricity,
electronics and, of course, speleology.

Keywords
ROV, sonar, sensor fusion, constraint graph optimization, ROS, chained controllers

ii

Contents
Résumé . ii
Abstract . ii
Acknowledgements . ii
Keywords . ii

1 Introduction 1
PFE at ENSTA Bretagne . 1
Forssea Robotics . 1
Subssea Robotics . 2
PFE Unfolding . 2

2 Constraint Graph Optimization 4
2.1 Constraints, Variables and Graph . 4

2.1.1 Variables . 4
2.1.2 Constraints . 5
2.1.3 Graph . 6

2.2 Non-Linear Optimization . 7
2.2.1 Constraint Graph Optimization . 7
2.2.2 Non-Linear Least Squares Optimizer 7

2.3 Fuse . 8
2.3.1 Constraint Graph Implementation 8
2.3.2 ID Based Graph Architecture . 8
2.3.3 Sequence Diagram . 8

2.4 Implementation . 10
2.4.1 Notations . 10
2.4.2 Depth Constraint . 12
2.4.3 DVL Constraint . 12

2.5 Assets and Drawbacks . 13
2.5.1 Assets . 13
2.5.2 Drawbacks . 14
2.5.3 Justification of the Method . 14

3 Frontal Sonar 15
3.1 Forward-Looking Sonar . 15

3.1.1 Sonar Presentation . 15
3.1.2 Oculus . 16

3.2 ROS Driver . 16
3.2.1 Low Level Communication . 16
3.2.2 Robot Operating System (ROS) Package 18
3.2.3 Sequence Diagram . 20

3.3 Tests and Validations . 21
3.3.1 Low Level Integration Tests . 21
3.3.2 FAT . 23
3.3.3 SAT . 23

iii

4 Controllers Chain 24
4.1 ROS 2 Control . 24
4.2 Argos Control . 26
4.3 Control Framework Implementation . 27
4.4 Chainable Controllers Implementation . 28

5 Conclusion 30

A Annexes I
List of Figures . II
Glossary . III
References . VI
A.1 Sonar Run Mode FSM . VIII
A.2 Control Framework Overview . IX
A.3 Images of Forssea Materials . X
A.4 Evaluation . XIII

iv

1 Introduction

PFE at ENSTA Bretagne

Projet de Fin d’Étude (PFE) is the graduation project performed in a company or
laboratory during the last semester of ENSTA Bretagne engineering course. In my case,
this project has a strong research component, as part of the research master’s degree in
dynamic systems and signals at the University of Angers. This report and the associated
defense constitute the final assessments leading to the granting of both diplomas.

The format of the one-year alternance study allowed me to precede my full seven-
month period in the company with five months of part-time work on a Forssea-related
project. This first project was an acoustic Simultaneous Localization and Mapping
(SLAM). As this was no longer a priority for Forssea, I did not continue to work on this
project except indirectly within the sonar driver context. I will therefore not develop
this work further in this report.

Forssea Robotics

Forssea Robotics is a small French tech company with the ambition of providing
autonomous industrial subsea robotics solutions for the offshore industry. Founded
in 2016, Forssea now has around 25 employees, the company has a workshop in Sète
(Hérault) and research and development is based in both Sète and Paris. Forssea
mainly designs, develops and manufactures two products, NavCam1 and Argos2. The
NavCam is a subsea relative positioning camera with QR code. And Argos is an
Remotely Operated underwarter Vehicle (ROV) designed to provide piloting assistance
and autonomy features. Forssea’s customers are mainly offshore energy industrialists,
for example in the oil and wind power sectors companies (such as Perenco, DeepOcean or
EDF), but also organizations with more specific applications such as deep-sea scientific
research or mine clearance (such as Ifremer or Geomines).

Figure 1.1: Argos

1Further information about NavCam can be found at https://forssea-robotics.fr/
smart-cameras

2Further information about Argos can be found at https://forssea-robotics.fr/smart-rov

1

https://forssea-robotics.fr/smart-cameras
https://forssea-robotics.fr/smart-cameras
https://forssea-robotics.fr/smart-rov

Subsea Robotics

Subsea robotics is a very specific field of robotics. Indeed, the underwater world is
a highly constraining environment. Alongside the mechanical constraints of pressure
resistance and watertightness, due to the strong dispersion of electromagnetic waves,
communication with robots and accurate positioning are major challenges at the heart
of today’s scientific research.

To solve the communication issue, submarine robotics has seen widespread use of
ROVs for several decades, without any significant evolution. However, umbilical cable
management is a major problem during ROV operations. In addition to hindering the
ROV’s movements, the umbilical cable represents a major risk of jamming and thus
blocking the ROV. This can result in damage to the ROV itself or to surrounding
equipment. While umbilical cable integrity is also vital for recovering the ROV at the
end of the operation.

As Global Navigation Satellite System (GNSS) satellite constellations are not reachable,
localization in subsea robotics is mostly based on inertial localization with Fiber Optic
Gyroscopes (FOG) Inertial Naviagation System (INS). INS are costly sensors that offer
high short-term accuracy but, like all dead reconing methods, suffer drift issues over
time. In the main applications, sensor fusio (e.g. FOG INS, Doppler Velocity Log
(DVL), pressure sensor and GNSS at the surface) is performed in the INS-integrated
software by highly efficient Kalman filter-based methods.

At present, ROVs are the unavoidable protagonists of underwater robotics. However,
we can see AUVs gaining in maturity and attempting to position themselves as the future
of the sector.

PFE Unfolding

This end-of-study project report focuses on the control and localization problems of
Forssea’s ROV: Argos. At the beginning of my project, the ROV was in a functional
state, so my mission was to participate in the design and implementation of new functionality.
My work was divided into three main areas, the implementation of a ROS driver for a
sonar so that it could be used to perform an acoustic SLAM, the optimisation of the
structure of the control blocks and the implementation of a localization system using a
constraint graph to filter the sensor data.

Sonar As a result of the work carried out on creating an acoustic SLAM, it became
apparent that the ROS 2 driver used was not fully functional. I therefore worked on
completing this driver, making sure that it met Forssea’s requirements. Tests were also
carried out to ensure that the sonar worked with its driver.

Chained Controllers In parallel with the sonar work, I worked on the Forssea control
framework to change the architecture of the control blocks. I optimised the framework
based on the ROS 2 Control chainable controller style. This means that each controller

2

can now be changed independently, which is of direct interest for the Research and
Development (R&D) phases but also increases the efficiency and reliability of the code.

Sensors Filter The last and most important part of my work was to use a constraint
graph to filter sensor data in order to determine the state of the ROV. Forssea doesn’t
currently do any filtering. I picked up Forssea’s work that had been put on hold because
of day-to-day priorities. It was decided to adapt a constraint graph framework to
Forssea’s needs. My first task was to debug the code that had been passed to me
to allow the data pipeline to run. I then implemented a simple 1D constraint generated
by the ROV’s pressure sensor. Next, a 3D constraint induced by the DVL. I was able to
rely on constraints on the evolution of physical systems that were already implemented
in our use case.

Lie Theory A small part of my work was also to obtain equations to get the covariance
matrix modified by an odometry correction. This work having been done at the end of
the writing of this report and not having succeeded, I mainly brought myself up to the
required level by learning Lie theory [9, 15].

3

2 Constraint Graph Optimization
To estimate the robot localization various algorithms exist in the state of the art:

Kalman filter based methode (as Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF)), particles filter or constraints graph approch (as set-membership method)
are the more common methods used. No method has outperformed the others, they all
have their assets and their drawbacks. For now, at Forssea, we rely on the INS’s Kalman
filter based fusion software, if the INS is mounted on the ROV, otherwise the data of
the embeded sensors are used without any fusion. The aim of performing a fusion is to
integrate every sensor without being tied by the INS capability (for example intergrate
home made sensor as NavCam) and provide more numerous and more accurate data on
our FOG INS agnostic ROVs.

All the following explanations of the constraint graph are within the frame of the
Forssea use case. This means that this report will not cover the generic constraints
graph case, thus it will not describe some other specific constraints graph use case
(in particular for set-membership networks which is a very different approch but still
categorized under constraints graph method).

I’m now going to explain in more detail how constraint graph optimisation works and
then we’ll look in more detail at the Fuse framework that was used to implement it.

2.1 Constraints, Variables and Graph

2.1.1 Variables

A variable correspond to a wanted quantity at a given time, as the component of the
state vector of robot, included its position. Variables are the vertices of the graph. The
optimization algorithm works on these variables to adjust their values. Variables are the
output of the fusion algorithm. The the variable is composed of a header (with IDs and
time stamp) and the values (or the value in the case of 1D variables).

fuse_variables::Fixed1DVariable:
uuid: 0ab0345e-c696-5b0e-920f-f23f06c6182b
stamp: 159900000000
device_id: 209fef7c-6c31-53a7-bc16-c5e131b0c160
size: 1
data:
- x: -2.86535

Figure 2.1: Example of a Water Surface Variable Representation in Fuse.

In Figure 2.1, Fixed1DVariable is the type of the variable. The device_id is the ID
of the concerned physical system, in this case the water surface. stamp is the time stamp

4

of this variable, express in number of seconds since the Epoch. The uuid is the unique
ID of the specific variable, is calculated pseudo-randomly with the seeds device_id and
stamp. size corresponds to the size of the vector of the values. And data/x is the value
of the fisrt dimension (in this case the only dimension) of the vairable, in this case height
of the water surface above the WGS84 ellipsoid over the robot.

Notice the absence of data quality information over the quality of the data in variables.
At the opposit of set-membership method, data accuracy is not contained in the variables
but in the constraints. It is also important to note the creation of a new variable (with
a new time stamp) when the algorithm gets or computes a new value. The values of a
variable only change during the optimization, whereas all the meta data (device_id,
stamp, etc.) can not be modify.

2.1.2 Constraints

A constraint corresponds to a mathematical relationship between variables at a given
time, for example the physical law between the height of the water surface and the
height of the robot given by the pressure sensor: Prov(t) = ρ g (zws(t) − zrov(t)). The
constraints are the edges of the graph. The optimizer uses the constraints to determine
the values of the variables. In Fuse, a constraint consists of a header (with IDs and
timestamp), a list of variable Universally Unique Identifier (UUID)s and a cost function
to calculate the values during optimization.

fuse_models::ConstantFixed1DStateKinematicConstraint
source: water_surface
uuid: 27477e05-b246-4402-ba71-6be8129476d2
variable 1: 970ad388-15de-533e-aa5a-3c29abd07850
variable 2: d24befa6-1583-5c0a-bdc4-e4d188449b5f
dt: 0.1
sqrt_info: 316.228

Figure 2.2: Example of a Motion Model Water Surface Constraint Representation in
Fuse.

In Figure 2.2, ConstantFixed1DStateKinematicConstraint is the type of the
constraint. source is the name of the physical system generating the constraint, in this
case the water surface. uuid is the unique identifier of the specific constraint, randomly
generated. variable 1 corresponds to the UUID of the first involved variable. dt
is a specific field ConstantFixed1DStateKinematicConstraint which is not in generic
constraint, it is the time difference between the two variables timestamps. dt is only used
in the cost function. And
sqrt_info is the information matrix, in this case a square matrix of size 1 because
there are two 1D variables involved.

5

An important point to note is the absence of time stamps in the constraints. Time
information is contained in the variables. Moreover, the time stamps of the variables
involved are not necessarily close; for example, in Figure 2.2 the time stamps are
different. It’s also important to note that the algorithm creates new constraints to
handle each new variable. A constraint cannot change even during optimization, and no
field can be modified.

There is no limit to the number of variables involved in a constraint, meaning that
in the case of a constraint with only 1 or 2 variables, we can refer to a graph, but with
a constraint with 3 or more variables, the use of the term graph is inappropriate. The
exact mathematical structure is the hypergraph, where the variables are the vertices and
the constraints the hyperedges. As this difference is not important for understanding, we
take the liberty to use the term graph for hypergraph and the term edge for hyperedge.

In Fuse, there are two types of constraints: sensor model constraints and motion
model constraints. Sensor model constraints are induced by new sensor data, while
motion model constraints are generated to take the evolution of a physical system into
account without any new information. Motion model constraints are generated when
necessary, i.e. when requested by a sensor model. While defining sensor models, we must
define which physical system is to be updated (i.e. which motion model constraints are
to be created during callback) when new sensor data are received.

2.1.3 Graph

A hypergraph is an abstract structure in which objects, named vertices, may be related
to each other. Other objects, called hyperedges, establish connections between several
vertices (or a single vertex), without any number limit. A graph is a specific hypergraph
in which hyperedges, called edges, connect vertices in pairs (or singly). In our constraint
graph application, we use a hypergraph structure, although, by habit, we make the
confusion of graph (resp. edge) with hypergraph (resp. hyperedges). Formally, a
hypergraph is a pair (V,E) where V is a set of elements named vertices (or nodes,
points, elements) and E is a subset of P(V) such that ∅ /∈ E. In this application of
graph constraints, we consider variables as vertices and we attach information (such as
IDs or cost functions) to the edges of the constraint frame, as previously discussed.

As we regularly (at the frequencies of the sensors) add variables and constraints to
the graph, we need to remove old variables and constraints to avoid memory usage and
computation time exploding. This removal is called marginalisation. Fuse keeps all
constraints and variables between the current start time and the current time. The
current time is the time of last time stamp awareness and the current start time is
current_start_time = max(first_time, current_time − lag_duration) ; where
lag_duration is a Fuse parameterisable value. To do this, all the variables to be
marginalised are grouped together into an artificial variable, time stamped at the current
start time, which can still be optimised, but does not represent a concrete quantity. The
aim of this is to maintain the influence of history by re-processing all variables during
optimization.

6

2.2 Non-Linear Optimization

2.2.1 Constraint Graph Optimization

The optimization phase is the heart of the constraint graph based fusion. The graph
is the useful structure enabling a minimizer to optimize the values of variables in order
to reduce a loss generated by the computation of cost functions of all constraints. As
minimization is a recurrent issue in various fields of engineering, there is a wide spectrum
of methods and implementations, and no optimizer specific to robotics. As the graph
structure is widely independent of the optimization method used, this part is often
perceived as a black box by roboticists. The main points to bear in mind are that
the computation can be relatively heavy and is not always compatible with real-time
processing, and that the result can be downright inaccurate under certain conditions
if the algorithm used converges to a local minimum. In this case, choosing another
optimizer (or changing the settings of the optimizer in use) may be a solution for finding
a global minimum despite an unfavorable cost function.

2.2.2 Non-Linear Least Squares Optimizer

Fuse uses a non-linear least squares [7] optimizer called Ceres [5]. Each constraint has
an associated cost function. There are two types of inputs to the cost function: some
constants3 and variables to be optimised. The output of the cost function is named
residual. A residual is a vector that characterises the error weighted by the information
matrix associated with the constraint. If the error vector of a constraint is err(x), and
A is the associated information matrix (meaning the noise is assumed to be Gaussian),
the residual is:

res(x) := A err(x). (1)

During optimisation, Ceres performs optimisation steps until the loss is below a
threshold. At each step, all the residuals are calculated and transformed into a residual
block:

RBi := ρi

(
∥resi∥2

)
(2)

Next, the optimizer can compute the loss :

loss :=
∑

i

RBi =
∑

i

ρi

(
∥resi∥2

)
(3)

If the loss is below the threshold, the optimisation stops, otherwise Ceres starts another
optimisation step of the Levenberg-Marquardt algorithm [7] to find new values for the
variables and minimise the loss. For the sake of clarification and simplification, we will
consider from now on that the output of a cost function is the error err instead of the
residual res.

3The term constant is relative to Fuse. This type of inputs are constant for a given constraint and
do not vary during optimisation. But they will change over time and take on different values in different
constraints. Bear in mind that constraints are time stamped.

7

2.3 Fuse

2.3.1 Constraint Graph Implementation

Fuse [2] is an opensource (BSD License) ROS framework created by Locus Robotics
to allow a customisable implementation of constraint graph optimization base on Ceres
solver. Once in hand, Fuse allows to use constraint graph only by developing constraints
and variables (or using existing variables) and calling them up in a configuration file.

An important asset of Fuse is to provide a completly asychronous framework. This
allows to add multiple constraints without concern for the frequency of the input sensors.

2.3.2 ID Based Graph Architecture

A particular feature of the Fuse architecture is that each device (a device corresponds
to a physical system), variable and constraint is identified by a unique UUID. A UUID
is a standard 128-bit format. The probability of two random UUID being identical is
low enough (1

2128 ≈ 10−39) to be considered negligible, allowing a unique identifier to
be created without the need for a centralised authority. On the one hand, Fuse uses
a classical random generator to create the device and the UUID constraint. On the
other hand, for variable devices UUID Fuse uses a specific random generator which uses
two seeds to generate the variable UUID. The special feature of this two-seed random
generator is that it is possible to invert the generator to recover the seeds from the UUID
output. The first seed is a device UUID and the second is a time stamp. This specificity
will be used to find a desired variable on the graph.

The links between variables, constraints and devices are managed by the UUID system.
Each model (motion model or sensor model) is associated with a unique device by its
UUID. A variable UUID is generated with the UUID of the model that created it and
the time stamp of the sensor data or the current time stamp. To update the graph, Fuse
uses a transaction, which is a temporary sub-graph containing the new variables and
constraints that will be merged into the global graph. To generate a transaction, Fuse
must link the variables or transactions concerned. To do this, Fuse finds the existing
variables on the graph using the variable UUID and the variable type for the search, and
creates the new variables required. Then Fuse creates a new constraint with a random
UUID and links it to the variables by their .

2.3.3 Sequence Diagram

Figure 2.3 shows the sequential Fuse calculation caused by a sensor input. When
a sensor driver sends a new ROS message, the sensor model creates the necessary new
variables and constraints (for the record, all constraints implement a cost function).
The optimizer then updates the appropriate motion models to generate the variables
and constraints corresponding to the evolution of these models. The motion models to
be updated are defined in each sensor model configuration. The graph then contains all

8

Figure 2.3: Fuse Sequence Diagram

the cost functions for calculating the optimisation. Once the optimisation is complete,
the new variable values are sent to the various instances that need them.

9

2.4 Implementation

2.4.1 Notations

I am going to use the Forssea [11] notations, which are themselves inspired by marine
and robotic notations, including the ROS [13, 16, 19, 22] standard. I’m allowing myself
a few variations on this notation, mainly to clarify certain sub-entendres in order to
bring greater clarity to this report. Let {a} and {b} be two frames, we will named the
associate basis by the same name ({a}frame = (pa, {a}basis)). We note the vectors that
compose the basis (uax, uay, uaz) := {a}basis = {a}. And we only use orthonomal direct
bases.

xa: Coordinates of the vector x express in the basis {a}. Or coordinates of
point x express in the frame {a}.

xa
|i i-th coordinate of the vector x express in the basis {a}. Or i-th coordinate

of the point x express in the frame {a}.
pa: Point of origine of the frame {a}. As the is no reference frame, pa refers

to the point rather than its coordinates.
pb/a: Vector of origine of the frame {b} with respect to the frame {a}, i.e. pb/a =

pb−pa = −−→papb. As there is no reference basis, pb/a refers to the vector rather
than its coordinates.

(λ, µ, h): Geographical coordinates latitude, logitude, height above the ellipsoid.
Unless otherwise specified, the WGS84 ellipsoid is used.

dp: Represents the depth of the point p with respect to the water surface above
p. It is measured positive downwards.

hp: Represents the height of the point p with respect to the surface of the
ellipsoid. It is measured positive upwards.

ap: Represents the altitude of the point p with respect to the surface of the
ground below p. It is measured positive upwards. A distinction must
be made between the notations ap for the altitude and ap,a/b or aa/b for
acceleration.

Θab: Tait-Bryan angles, or yaw, pitch, roll of the rotation of the frame {b} with
respect to the frame {a}. Θ = (ϕ, θ, ψ).

qab: Quaternion of the rotation of frame {b} with respect to the frame {a}.
qab =

(
qab |w, qab |x, qab |y, qab |z

)
.

Ra
b : Rotation matrix of the rotation frame {b} with respect to the frame {a}.

Ra
b = R(Θab) = R(qab).

vp,b/a: Linear velocity of the point p fixed in the frame {b} with respect to the
frame {a}. Let us note vb/a = vpb,b/a.

ωb/a: Angular velocity of the frame {b} with respect to the frame {a}.
ap,b/a: Linear acceleration of the point p fixed in the frame {b} with respect to the

frame {a}. Let us note apb,b/a = ab/a. A distinction must be made between
the notations ap,a/b or aa/b for acceleration and ap for the altitude.

∧ : Cross product 3D-vector operator.

If we note x a physical quantity, we will note x̂ the Fuse estimate and x̃ a sensor
input, subject to existence. We also note the error err(x) = x̃− x̂. For example vb/e is a

10

physical quatity of the linear velocity of the body with respect to ECEF frame {e}, v̂b
b/e

is a Fuse estimate of the physical quatity vb
b/e and ṽdvl

dvl/e is the physical measurement
of the physical quatity vdvl

dvl/e made by the DVL sensor. We may use x̂ to refer to a
calculated value compute from fuse variable. For example v̂dvl

dvl/e is the expected DVL
measurement calculated using the Fuse variables. We can use other notations such as
x̊ to differentiate a calculated variable (e.g. a quantity calculated with the combination
of sensor and fuse data) from the associated physical quantity, the use of this notation
requires case-by-case definition.

{e} The ECEF frame is a fixed reference frame relative to the Earth, with the
Earth’s centre of mass as the origin, uez points North, and uex points towards
the intersection of IRM4 with the equator [1, 8].

{m} The map frame, fixed to the Earth, is defined by the user as the local frame
of the working space. The origin is placed on the surface of the reference
ellipsoid, umy points North and umz is the normal to the ellipsoid.

{b} The body frame is the ROV’s fixed frame. The origin is named center of
origin, ubx goes forward and uby goes left.

{n} The navigation frame has the centre of origin of the ROV for origin, ubx points
East and uby points North. This frame is useful for considering the robot’s
position without concern for its orientation.

{o} The odometry frame is a frame in which data from odometry sensor will remain
continous. In the event of a jump in the known {n} due to a new absolute
data from a reliable sensor, the odometry frame will jump to allow transparent
use of odometry sensors [19].

{ws} The water surface frame is the projection of {n} on the water surface. This
corresponds to a translation dpb

unz of the origin of {n}. This frame is used
only for the altitude of the water surface.

{gd} The ground frame is the projection of {n} on the ground. This corresponds
to a translation −apb

unz of the origin of {n}. This frame is used only for the
altitude of the ground.

{s} Each sensor has a frame which the measurements are taken. This frame is
fixed to {b} and known by mesurement before operations on the SolidWorkws
CAD model, see Figure A.7.

{ti} The i-th thruster frame is fixed to {b}. It is used for thrust allocation
calculations.

Most of the time, conversions are performed using the ROS TF tree [12], which
is the standard way to use frames with ROS. The TF tree is constructed from ROS
messages containing the transformation from one frame to another. A Listener echoes
the tf_static and tf topics for transform messages and, when a transform between
two frames is queried, the Listener module walks up through the tree until a common
parent is found. Then the found path is used to calculate the desired transform. All
transformation messages are time stamped. Messages on tf_static are long-lived,
corresponding to fixed transformations that are not expected to change and are

4The IRM is close to Greenwich meridian.

11

occasionally republished. Messages on tf are regularly updated and can support dynamic
movements. At Forssea, TFs are published by the localisation module.

The fusion system used is the composition of three physical systems: Argos, the
water surface above Argos, the ground below Argos. This gives us the state vector:(
pe

b/e, qeb, v
b
b/e, ω

b
b/e, a

b
b/e, dpb

, apb

)
. This makes us a state vector with 18 scalar variables

with 17 degrees of freedom (due to the 3 degrees of freedom of the quaternion qeb).

2.4.2 Depth Constraint

In underwater robotics, the pressure sensor is a highly interesting sensor. It provides
direct and reliable information on the robot’s depth, without any integration and at
little cost.

We will now develop the equations induced by the pressure sensor. Please refer to 2.4.1
for more information on the notations used. The hydrostatic equation gives P (pb) =
ρw gunz · (pws − pb) where P (pb) is the pressure at the position pb; ρw is the density of
the water, assumed to be constant because variations due to salinity, temperature or
pressure are sufficiently small (on the order of 0.1% at most) ; −gunz is the gravitational
acceleration, also assumed to be constant (variations due to the earth’s rotation, its
non-sphericity and altitude are of the order of 10−4% at most) and dpb

is the depth at
pb. This gives us

dpb
:= (pws/e − pb/e) · unz = P (pb)

ρw g
(4)

We now need to calculate the errors of the constraint. The cost function inputs are

composed of pressure sensor data: d̃pb
:= P̃ (pb)

ρ̃sea g̃
and Fuse variables : p̂b

b/e and p̂b
ws/e.

The cost function output is the error : err(dpb
) := d̃pb

− d̂pb
where d̂pb

= p̂b
ws/e |3 − p̂b

b/e |3.
Finaly

err(dpb
) = d̃pb

− p̂b
ws/e |3 + p̂b

b/e |3 (5)

2.4.3 DVL Constraint

A DVL measures the linear velocity of the ground relative to the sensor (i.e. the robot
relative to the ground with one inversion). The measurement is made by sending acoustic
pulses, the variation in frequency of the reflected wave is used to calculate the velocity
using the Doppler effect. The advantage of this sensor is to provide linear velocity values
with no integration error, giving a drift-free linear velocity data.

We are now going to develop the equations induced by the DVL sensor. Please refer
to 2.4.1 for more information on the notations used. The velocity composition gives us:
vb/e = vb/s + vpb,s/e. And the Varignon’s relation: vpb,s/e = vs/e + pb/s ∧ ωs/e. As the

12

frames {b} and {s} are rigidly attached, we have vb/s = 0 and ωs/e = ωb/e. This is given
us

vb/e = vs/e + pb/s ∧ ωb/e (6)

We now need to compute the error of the constraint, where each coordinate of the
error must be expressed as a function of the inputs. The inputs to the cost function
consist of DVL data: ṽs

s/e and Fuse variables: v̂b
b/e, ω̂b

b/e and q̂eb. We also need fixed
constants5. These are p̃s/b and q̃bs. The output of the cost function is the error vector:
err(vb

b/e) := err(vb
b/e) = v̊b

b/e − v̂b
b/e where v̊b

b/e is a transformation of the DVL data ṽs
s/e

to represent the velocity of the body express in the body basis. It is important to note
that v̊b

b/e is not direct sensor data and that Fuse variables are used for its calculation.

Let us now express the relation (6) in the body frame {b} with the intputs and outputs
of the problem in order to write the cost function. We have vb

s/e = Rb
s · vs

s/e and Rb
s =

R(qbs)

vb
b/e = vb

s/e + pb
b/s ∧ ωb

b/e

= R(qbs) · vs
s/e + pb

b/s ∧ ωb
b/e

v̊b
b/e = R(q̃bs) · ṽs

s/e + p̃b
s/b ∧ ω̂b

b/e

err(vb
b/e) := v̊b

b/e − v̂b
b/e = R(q̃bs) · ṽs

s/e + p̃b
s/b ∧ ω̂b

b/e − v̂b
b/e (7)

2.5 Assets and Drawbacks

It is too early in the Fuse implementation at Forssea to provide relevant results to
assess the effectiveness of Fuse. For the moment, the Fuse model with the Argos gazebo
simulation is giving very good results compared with the simulation truth, but this is
mainly due to the simplicity of the Fuse system used and the noise configuration of the
gazebo simulation. There is no point in pushing the evaluation any further until the
Fuse implementation is more complete. I will therefore draw some advantages from the
disadvantages of the constraint graph and the use of Fuse in a qualitative way, without
carrying out a quantitative study in relation to the algorithm currently used and in
relation to the simulation and the ground truth.

2.5.1 Assets

The first advantage of Fuse is its modularity: it can integrate as many sensors or
evolution constraints as required, and it is easy to switch from one sensors configuration
to another. This means that Fuse can be used in various contexts, such as for SLAM.
This enables Fuse to be used in different products such as INS ROVs and INS agnostic
ROVs, but also in Forssea’s smart cameras. Modularity is relevant from the point of
view of the user and the developer, but it is also relevant for the implementation of Fuse.

5p̃s/b and q̃bs are measured before the operation on the SolidWorkws CAD model.

13

Indeed, Fuse provides a completely asynchronous framework, which allows parallelism
and independence of certain processes during code execution.

Furthermore, Fuse provides a higher level framework. This means that it is not
necessary to master the nonlinear minimisation algebra nor Ceres to develop a new
constraint, neither is it necessary to master Fuse to use Fuse and to fine-tune the Fuse
configuration. Its handling of non-linear constraints and its way of preserving history
with marginalisation are also interesting features. Fuse uses a Google open source library
for optimisation, which gives it high reliability, an extensive Application Programming
Interface (API) and a good community. In addition, Fuse is based on ROS, which allows
natural integration with the ROS style in the Forssea environment.

2.5.2 Drawbacks

Like all localization methods, Fuse is not perfect and has its disadvantages. The first
drawback I’d like to point out is the one that has been a major difficulty in my work:
the heaviness of the Fuse implementation. Indeed, the code is complex and the fact
that execution is highly asynchronous makes understanding the Fuse code non-trivial.
As I started working with a version of Fuse modified by Forssea, which didn’t run, this
difficulty in understanding the Fuse code shouldn’t be as important in the future Forssea
development as it was for me.

Besides the accuracy of results, all real-time localisation methods need to be executed
at a sufficiently high frequency to be reliable. For the moment, Fuse’s consumption
on the CPU is low, but the computation of the Ceres optimisation will increase as the
number of constraints increases. This increase of CPU consumption has no reason to
grow non-linearly, on the contrary it can grow very quickly. In terms of CPU efficiency
and reliability, the use of ROS is no guarantee of quality. Even if the use of ROS 2
improves efficiency and reliability, ROS remains a heavy framework and bugs still occur.
We can add to the above disadvantages the small community of Fuse users compared
with more popular methods such as Kalman libraries.

2.5.3 Justification of the Method

As we have seen above, good use of Fuse, properly tuned for Argos localization, will
be a major improvement for the Forssea ROV and for future development. As the choice
to use Fuse is not a trivial one, a full quantitative study will be required in terms of
accuracy, robustness and CPU consumption.

14

3 Frontal Sonar
To use a sonar in an acoustic SLAM for a ROV, we need to interface the sonar’s

embedded software with the robot’s software ecosystem. To do so, I developed a ROS
driver for an oculus sonar from BluePrint Subsea.

3.1 Forward-Looking Sonar

3.1.1 Sonar Presentation

A multi-beam forward-looking sonar is an underwater composed of tree parts. Firstly,
an acoustic transmitter that sends sound pulses into the water, which means that sonar is
an active sensor (i.e. a sensor that alters its environment). Secondly, an acoustic receiver,
which can sometimes be the same component as the transmitter. Thirdly, a software
layer that takes into account the date the pulse was sent, and the date, orientation and
intensity of the corresponding received echo, for data calculation and returns to the
user. The term multi-beam refers to the directionality of the receiver: the receiver is
able to discriminate the angle of the echo beams, as explained in the Figure 3.2. The
forward-looking term refers more to the use of sonar than to its intrinsic characteristics.
An Forward Looking Sonar (FLS) is intended to provide information ahead of the boat
or robot, often for navigation, obstacle avoidance and/or environmental observation.

Figure 3.1: Operating Principle of the Oculus Sonar from BluePrint Subsea
Documentation.

Figure 3.2: Crossed Beams Principle for Multibeams Sonar from Ifremer.

Compared with electromagnetic waves, acoustic waves provide less precise and noisier
data. However, the density of water allows the sound to propagate well with fairly little
absorption, whereas electromagnetic waves disperse very quickly. This makes sonar an
interesting tool for underwater observation of the environment.

15

3.1.2 Oculus

As ENSTA Bretagne’s robotics laboratory, Forssea Robotics chose to use an FLS
Oculus M-Series6 from Blueprint Subsea, cf Figure 3.3.

Figure 3.3: Blueprint Subsea Forward-Looking Sonar Oculus M-Series 1200d

3.2 ROS Driver

Bueprint Subsea only provides an Human Machine Interface (HMI) for using the
sonar. As there is no API, the sonar has the major disadvantage of not being directly
interfaceable with the Forssea Robotics software environment. Thus, the creation of a
driver, allowing integration on the web HMI and intelligence codes, was necessary. To
do this, we needed a C++ API to communicate with the sonar software, then a ROS
package to interface the C++ API with the Forssea software environment.

3.2.1 Low Level Communication

The API is provided by the oculus_driver library developed at ENSTA Bretagne
by Pierre Narvor. This library, written in C++, offers a C++ and Python API for
interacting with the sonar software via sockets. As is customary at Forssea, the ROS
package is developed in C++, so the Python API is seldom used.

The oculus_driver library allows to enable and disable the connection with the sonar,
to obtain and modify its configuration and to define callbacks. The first settable callback
is called at every status message send by the sonar (in practice, every second), and the
second settable callback is called at every ping message send by the sonar (in practice,
as soon as the sonar software processes a ping echo).

The ping callback provides the data returned by the sonar software, as explained in
Figure 3.4. The ping data consists of a header (OculusSimplePingResult) including
metadata, echo beams bearings (Bearings) and echo beams sound intensity values
(PingData). Metadata includes information such as timestamps and sonar configuration
information during the ping. Bearings are sent with each ping, as they are not constant

6M750d for ENSTA Bretagne’s robotics laboratory and M1200d for Forssea Robotics.
Further information on the manufacturer’s website: https://www.blueprintsubsea.com/oculus/
oculus-m-series

16

https://www.blueprintsubsea.com/oculus/oculus-m-series
https://www.blueprintsubsea.com/oculus/oculus-m-series

over time. Indeed, due to the calculation method used by the sonar to process the echo
data, the bearings of each direction heard by the sonar can change from one ping to the
next and have no reason to be a linear scale, as explained by Figure 3.5. Consequently,
angular resolution is neither linear nor fixed. More precisely, angular resolution is finer
around the sonar center and coarser at the extremities. This resolution varies with
distribution from ping to ping, while the number of bearings remains constant.

OculusSimplePingResult Bearings (int16_t) PingData ...

0x0 sizeof(OculusSimplePingResult) imageOffset

nBeams x sizeof(int16_t) imageSize = nRanges x (4 + nBeams)sizeof(OculusSimplePingResult)

Figure 3.4: Oculus Sonar Ping Contents

Figure 3.5: The Bearings of the Oculus Sonar: non-linear nor constant throught time.

However, frontal sonar has a vertical angular aperture of 12° or 20°, depending on
the frequency used, see Figure 3.6. This vertical angular aperture is a source of error,
as we cannot define exactly where the object is located vertically within this angle, see
Figure 3.7. This is an important point to bear in mind before proceeding with any
sonar data processing. Moreover, this vertical indeterminacy makes it difficult to use
this type of sonar for 2D localization or mapping: depending on the distance from the
object concerned, the sonar rendering can be very different, as you can see in Figure 3.8.

To reduce the weight of sonar data, the intensity of pings received by the sonar is
weighted by gains. More precisely, each time a ping is sent by the sonar, it listens to the

17

Figure 3.6: Aperture Angle Oculus M1200d Sonar from BluePrint Documentation.

Figure 3.7: Aperture Angle Indetermination from BluePrint Documentation.

sound intensity on each of its bearings. At each instant, an intensity is obtained for each
bearing. These intensities are normalized by a gain to obtain the best 1-byte resolution
for all intensities at the same instant. The gain and data are then stored in memory in
the form explained in Figure 3.9.

3.2.2 ROS Package

The package, named oculus_sonar7, is a ROS 2 metapackage that contains the
packages oculus_interfaces and oculus_ros2. The purpose of oculus_interfaces
is only to provide the necessary ROS interfaces, i.e. to create customized ROS messages.
The aim of oculus_ros2 is to connect the ROS interfaces with the oculus_driver

7These packages are also available on GitHub from the robotics department at ENSTA Bretagne:
oculus_ros and oculus_ros2.

18

https://github.com/ENSTABretagneRobotics/oculus_ros
https://github.com/ENSTABretagneRobotics/oculus_ros2

Figure 3.8: Importance of Vertical Aperture Angle.

Line "Gain" Line data

4 bytes = sizeof(uint32_t) nBeams bytes

Line "Gain" Line data

Line "Gain" Line data

Line "Gain" Line data

...

nR
an

ge
s

imageOffset

imageOffset + 4 + nBeams

imageOffset + 2*(4 + nBeams)

imageOffset + 3*(4 + nBeams)

imageOffset + (nRanges - 1)*(4 + nBeams)

Figure 3.9: Ping Data Contents

API. This means requesting the sonar to ping, generating the raw image and/or the
conical image, converting and publishing the status and ping data into ROS messages
and creating ROS parameters and managing their modification from ROS but also from
the sonar itself. To do this, the code is split into two C++ classes: SonarViewer, which
handles all the transformation of a sonar ping into a raw image or a conical image; and
OculusSonarNode, which uses the oculus_driver API, the SonarViewer class and the
RCLCPP API to create the ROS node.

To produce an image, it is necessary to remove the gains (Line "Gain") and correct
the raw echo data (Line data), as shown in Figure 3.10. To do this, every pixel in the
line must be corrected using the following formula:

gain_corrected_pixeli,j =
raw_pixeli,j√gaini

∀i, j ∈ nRanges× nBeams

The raw image is a cartesian image that makes the data visible as it is without constructing
the conical image once the gains have been removed and the data corrected by the gains
; pixel (i, j) is the intensity of the echo received in the j-th angle at the i-th moment of
beams reception. The conical image is constructed by taking into account the position
(i.e. bearings and ranges) of each pixel to provide a scaled image that respects angles
and distances. Eventually, filtering can be performed. The image is encoded in an 8-bit
data channel. The intelligence code will use this image as is, so the HMI will need a
YUV-I420 conversion to handle the image without any processing.

19

Figure 3.10: Range Gains Influence on Sonar Images.

In order to provide better protection to prevent the sonar from overheating and
to enable ROS users to use the standby mode more intuitively, two FSM has been
introduced.

3.2.3 Sequence Diagram

The sequence diagram in Figure 3.11 shows details of the driver’s execution. We
can see the sonar interacting with the low-level driver, which interacts with the ROS
driver, which in turn interacts with ROS. We can count three types of interaction with
the sonar: status data sent by the sonar, ping data sent by the sonar and configuration
received and sent by the sonar. Status messages are parsed into ROS messages almost
without change. In contrast, the Ping message needs the data to be transformed as
described above. As the sonar may or may not accept a configuration change, each
configuration request requires feedback.

20

Figure 3.11: Sequence Diagram

3.3 Tests and Validations

An important part of my work on the ROS package driver has been to write and
execute test protocols to validate that the use of sonar conforms to the requested design.
As Forssea aims to adopt more industrial processes, the idea is to generalize testing and
validation of hardware and code independently and also in use cases. This enables bugs
and limitations to be detected as soon as possible. Since writing and executing tests is
time-consuming and tedious, this task naturally tends to be postponed. Performing a
rigid test protocol also allows to change the development setup, in which I always use the
same recorded data (in rosbag format) or with the same known environment to observe.

3.3.1 Low Level Integration Tests

Tests are usually divided into two categories: unit tests and integration tests. Unit
tests are low level tests that validate the correct behavior of an elementary component. In
software, unit tests are often a series of boolean checks to verify the correct implementation
of a function or class. Integration tests can again be divided into two categories: low
level integration tests and user integration tests. Whereas low level integration tests are
there to validate the correct behavior of a part of an overall system, user integration
tests aim to validate each user feature in the final use case. The tests I performed on
sonar package are low level integration tests.

21

The aim of conducting these tests is to validate the quality of sonar outputs on ROS
topics in relation to the chosen ROS configuration. In other words, these tests concern
the package’s interfaces with ROS, but also with the low level sonar driver.

To validate the ROS package I developed, I used the jira Quality Test tool, see
Figure 3.12. This tool allows you to create a test for each specific feature and group
them into a rigid test protocol. The test protocol enables an uninformed person to
mechanically follow the protocol and have clear measurements to validate, or not, each
test. Jira also allows the tester to create a bug ticket that will be assigned to a developer
to fix the problem.

Figure 3.12: Jira Quality Tests Tool

The test environments themselves can be classified into two types: Factory Acceptance
Testing (FAT) and Sea Acceptance Testing (SAT). FAT is a common industrial protocol,
while SAT is logically specific to certain subsea products. As the test involves software,
a FAT does not take on the aspect of a product end-of-line test. By the acronym FAT,
I mean all the tests that can be carried out in the workshop, i.e. water bucket tests and
pool tests.

22

3.3.2 FAT

As the sonar needs to be in water to cool down prior to being safely powered on, the
minimum setup for development or testing is to place the sonar in a bucket of water. In
this case, the sonar images are totally unusable, but this setup allows to pass a number
of configuration tests.

The workshop has a pool, which is the easiest way to obtain a proper setup allowing
acceptable rendering of the sonar image. However, the pool still has its drawbacks, such
as the lack of interesting features to observe (only the sides, corners and bottom of the
pool) and the presence of echoes due to the confined environment.

3.3.3 SAT

A SAT is the best way to pass all the tests. I took advantage of several Argos SATs
on the Harmatan. The Harmatan is a boat moored on the Quai du Maros in Sète. This
boat is an simple way for Forssea to carry out Argos development tests or SATs. As the
boat rental and Argos deployment are costly and resource consuming, these tests take a
full week. Most of the time, the Harmatan remains docked, which is sufficient for most
Argos tests, allowing me to easily go on board to run the whole test protocol.

23

4 Controllers Chain

4.1 ROS 2 Control

ROS 2 Control is a ROS framework to work with controllers. The main idea of
this framework is to provide a standard, efficient and reliable tool for implementing
controllers and associated interfaces. Classic controllers are already implemented, and
others are created by the ROS community. As the direct heir to ROS Control, which
was the framework for ROS 1, ROS 2 Control, like ROS 2 itself, aims to be more efficient
by rethinking the framework from top to bottom (clearer semantics and architecture,
simpler and more customizable code, creation of chained controllers can be noted). A key
feature of ROS 2 Control is to provide a level of abstraction by ensuring that all control
blocks are called based on a configuration file. The aim is to be highly customizable and
to cover a wider range of use cases with the same blocks.

Figure 4.1: An Example of ROS 2 Use in roscon22

To bypass ROS topics’ communication style, which can be unnecessarily heavy
depending on the DDS used, ROS 2 Control prefers to use a system based on shared
memory named ROS interfaces. There are two different types of interfaces. Command
interfaces, which are used to communicate commands from controllers (resp. previous
controller) to resources (resp. next controller). And state interfaces, which are the
interface to communicate feedback from resource (resp. next controller) to controller
(resp. previous controller).

ROS 2 Control’s architecture is based on a dual node management system. A
Controller Manager, which manages the nodes related to the control proper ; and
a Resource Manager, which manages the interface between the controllers and the
resources, i.e. between the controllers and the actuators and sensor drivers. The
Controller Manager is the central component of ROS 2 Contol. Its task is to load and
update controllers in accordance with a configuration file as described in Figure 4.2.

24

Figure 4.2: ROS 2 Control Architecture from ROS 2 Documentation

In control design, it is common to consider controllers as blocks that can be
combined sequentially, as in Figure 4.3. The aim of ROS 2 Control’s chainable
controllers is to enable the framework user to employ this representation in the
development and use of controllers. A chainable controller is a controller that can
take another controller (or other controllers) as input. Each chainable controller can
be used as a standalone controller in a way that is completely transparent to the
user. In the Figure 4.4 example, the controllers JointLimitsController,
diff_drive_controller, pid left wheel and pid right wheel are chainable
controllers8. Besides ControllerInterface, the usual parent class for controllers, ROS
2 Control provides ChainableControllerInterface as a parent class for chainable
controllers. Both parent classes follow essentially the same ideas, but
ChainableControllerInterface includes the modifications needed to put the controller
into chaining mode.

8Further details on this example can be found in the ROS 2 Control documentation [3] at https://
control.ros.org/master/doc/ros2_control/controller_manager/doc/controller_chaining.html

25

https://control.ros.org/master/doc/ros2_control/controller_manager/doc/controller_chaining.html
https://control.ros.org/master/doc/ros2_control/controller_manager/doc/controller_chaining.html

Figure 4.3: An Example of ROS 2 Chainable Controllers in roscon22

Figure 4.4: Examples of ROS 2 Chainable Controllers from ROS 2 Control
Documentation (in development)

One major change to note between chainable and non-chainable mode is the
modification of the ControllerInterface::update function. This function is called in
the control loop by the Control Manager to update the controller’s command
values. In chainable controllers, the function is split between
ChainableControllerInterface::update_reference_from_subscribers and
ChainableControllerInterface::update_and_write_commands. The function
update_and_write_commands is executed in the control loop and has the same task as
ControllerInterface::update. update_reference_from_subscribers is executed
before update_and_write_commands only if the controller is not in chained mode. In
non-chained mode, the purpose of update_reference_from_subscribers is to update
the controller’s input without reading certain command interfaces provided by another
controller. These inputs can be updated via topics, for example.

4.2 Argos Control

On Argos, there are three control modes, as illustrated in Figure 4.5. Thrust control
is the basic control historically employed on the ROV. The pilot directly requests the
desired wrench via the joysticks, and the ROV control computes and commands the

26

thrust allocation of each thruster. Velocity control allows the pilot to be a notch higher
in abstraction. This means the pilot is less perturbed by sea currents or umbilical cable
disturbances; if the ROV doesn’t take the desired direction, the control automatically
corrects it. But the drift obtained during the control’s correction will never be corrected.
The final control mode is position control. The pilot only requests a position, in
georeferenced coordinates or relative to the ROV, and the control brings the ROV to
this point. Position control also allows the ROV to follow a trajectory represented as
a series of positions. While thrust control requires no sensors, velocity control requires
a DVL or INS, and position control requires an INS. At least for now, better home-
made filtering of sensors like Fuse could enable the INS agnostic ROV to perform well
in position control.

joystick input

current

vertical a...

Rov's depth

Desired depth

Speed

time

Accelerati...

time

Behaviour of the ROV (top view) when using the different joystick control modes

joystick input

current

joystick input

current

Thrust control Velocity contr... Position contr...

trajectory @... trajectory @...trajectory @...

Behaviour of the ROV (compass view) when using the different joystick control modes

N

S

W E

rov's heading heading's trajectory...

N

S

W E

rov's heading

desired heading

desired heading's...

rov follows in...

Behaviour of the ROV (side view) when using the different joystick control mod...

desired depth...

rov follows in...

vertical a...

Rov's depth

depth trajectory...

vertical a...

Rov's depth

rov dives at desired...

Thrust control Velocity contr... Position contr...

Thrust control Position contr...

Position tracking

Velocity tracking

Speed

time

Desired velocity

Controlled velocity

Breaking

Speed

time

Breaking mode activated

Figure 4.5: Behaviour of the ROV When Using the Different Joysticks Control Modes
from Forssea Documentation.

As pilots have a strong experience of thrust control, and to allow the pilot to keep
control of Argos in case of a sensor malfunction, the different operating modes do not
replace each other, but must coexist. To manage the transition from one control mode
to another, an FSM is implemented. This FSM is managed by the MainController
component, which lives alongside the ROS 2 controller chain.

4.3 Control Framework Implementation

As we can see in Figure A.2 in annexe, the control framework is divided into different
controllers, interfaces and work libraries. We present below an overview of the control
framework more focused on our concerns, referring to Figure 4.6. The framework
can be divided into two sequential blocks, the controller rov_controller and the
controller thrust_allocation_controller. The rov_controller handles user inputs
and calculates the desired wrench. The thrust_allocation_controller then receives
the wrench, calculates the thrust allocation for each ROV thruster and sends it to the
hardware components.

27

rov_controller needs various components to compute the desired wrench command.
The database must store the control framework’s inputs and the FSM’s internal state
(from MainControllerInterface, which handles all inputs, and from StateMachine via
ControlReference), and make them available. StateMachine handles the FSM already
described above. The BaseController provides all the useful control equations to
calculate the wrench, depending on the state, different functions of the BaseController
are called by MainController. And MainController is the class that returns the wrench
when requested by RovController.

RovController is a ROS 2 controller, it inherits from ControllerInterface and is
managed by the Control Manager (Control manager in Figure 4.6). RovController
uses MainController to get the wrench command and send it to
ThrustAllocationController. Then, it uses the work library Allocator to transform
the wrench into a thrust allocation.

4.4 Chainable Controllers Implementation

As the chainable controllers of ROS 2 Control were not yet available when the
Forssea control framework was created, the RovController class was inheriting from
ThrustAllocationController which was inheriting from ControllerInterface. So,
before my work, there were two ROS 2 Controllers but they couldn’t be used by the
Control Manager as controllers at the same time. The solution was to have the Control
Manager use the RovController and have the RovController::update function call the
ThrustAllocationController::update function. My work on the control framework
was to ensure that RovController inherits directly from ControllerInterface and
ThrustAllocationController is a ROS 2 Control controller, used by the Control
Manager. ThrustAllocationController is a chainable controller, which means that
it inherits from ChainableControllerInterface, it can be used as an output of the
RovController or listen to a wrench ROS topic.

28

Control framework
[Framework]

rov_controller
[controller]

HMI
[Framework]

Allows the user to set parameters, and outputs
joystick commands

MainController
[Class]

Database
[Contains: Input, command, internal and

parameter data]

Stores structures containing control variables

BaseController
[Component: function]

Computes desired wrench

Controller manager
[Software System]

Runs the controllers and executes their update()
function

StateMachine
[Component: Finite state machine]

Handle the different control modes of the
framework

sets
[user parameters]

publishes
[topic position_command]

is read

updates updates

MainController update()
[Component: function]

Assembles the wrench

updates runs the right
controller

calls

calls

ThrustAllocationController
[ROS 2 chainalbe contoller]

Allocates the desired wrench to the available
thrusters

calls

Thrusters
[Hardware]

returns wrench

[state_interface: wrench]

is read

writes

[commande_interface: wrench]

is read

writes

[state_interface: allocation]

is read

writes

[commande_interface: allocation]

is read

writes

Localisation framework
[Framework]

Outputs current state

publishes
[topic state]

returns
wrench

RovController
[ROS 2 contoller]

Create the wrench

Allocator allocate()
[Component: function]

Computes desired thrust for each thruster

runs

returns allocation

thrust_allocation_controller
[controller]

is read

Figure 4.6: New Control Framework Components Simplify Overview focused on
Chainable Controllers.

29

5 Conclusion
Working at an industrial level to make an underwater robot more autonomous was a

perfect practical application of my ENSTA Bretagne training. First of all, the general
concepts of robotics (ROS, EKF, controllers) but also the specificities of the underwater
world (inertial navigation, DVL, FOG INS, use of acoustic waves) had been discovered
at the school and were used and consolidated at Forssea. It enabled me to make the
link between the theoretical and practical skills acquired during my training at ENSTA
Bretagne and industrial practices (fusion algorithm, Lie theory). In order to make
Argos autonomous, we had to rely on different areas of research in robotics, as well
as mathematics or geodesy. This research was followed by a no less significant work
of implementation. My work has sometimes been more research-based and sometimes
more implementation-based, but most of the time the skills I’ve brought to bear have
been right on the frontier of both.

The variety of tasks, from (from implementing C++ code, to creating graph constraints
and writing and validating tests), I was given enabled me to become aware of the different
facets of the project to improve the autonomy of a 200kg ROV. This gave me an overview
of the efforts required for successful implementation and a better understanding of the
challenges involved. This experience helped me to understand the subtleties of missions
that might have seemed simple at first sight (rework code containing bugs, manage
different versions of code under development). This experience also enabled me to
acquire skills, both in the applied technical dimension (advenced C++ and ROS) and
in the ability to step back from each task and consider it in the context of the project
as a whole (git management, github pull request, better general understanding).

As my work is part of a more global project, the prospects for development are very
interesting. Whether it’s the use of sonar in an acoustic SLAM or the finalisation of
the implementation of Fuse, the continuation of my work will enable me to finalise the
building blocks needed to implement an autonomous Argos.

I believe that this experience will be a real added value for Forssea and also for me
in the rest of my career. It complements my previous training in preparatory classes
and engineering school. In particular, for the doctoral thesis that I’m starting after my
experience at Forssea.

30

A Annexes

I

List of Figures
1.1 Argos . 1
2.1 Example of a Water Surface Variable Representation in Fuse. 4
2.2 Example of a Motion Model Water Surface Constraint Representation in

Fuse. 5
2.3 Fuse Sequence Diagram . 9
3.1 Operating Principle of the Oculus Sonar from BluePrint Subsea Documentation. 15
3.2 Crossed Beams Principle for Multibeams Sonar from Ifremer. 15
3.3 Blueprint Subsea Forward-Looking Sonar Oculus M-Series 1200d 16
3.4 Oculus Sonar Ping Contents . 17
3.5 The Bearings of the Oculus Sonar: non-linear nor constant throught time. 17
3.6 Aperture Angle Oculus M1200d Sonar from BluePrint Documentation. . . 18
3.7 Aperture Angle Indetermination from BluePrint Documentation. 18
3.8 Importance of Vertical Aperture Angle. 19
3.9 Ping Data Contents . 19
3.10 Range Gains Influence on Sonar Images. 20
3.11 Sequence Diagram . 21
3.12 Jira Quality Tests Tool . 22
4.1 An Example of ROS 2 Use in roscon22 . 24
4.2 ROS 2 Control Architecture from ROS 2 Documentation 25
4.3 An Example of ROS 2 Chainable Controllers in roscon22 26
4.4 Examples of ROS 2 Chainable Controllers from ROS 2 Control Documentation

(in development) . 26
4.5 Behaviour of the ROV When Using the Different Joysticks Control Modes

from Forssea Documentation. 27
4.6 New Control Framework Components Simplify Overview focused on Chainable

Controllers. 29
A.1 Finite State Machine for the Running Mode of oculus_sonar VIII
A.2 Control Framework Components Overview from Forssea Documentation. . IX
A.3 Argos in operation . X
A.4 Argos’s Winch . X
A.5 Hand Controller . XI
A.6 Test pools (in the old workshop on the left and in the new workshop on

the right) . XI
A.7 Measurement of Sonar Lever Arm on Argos SolidWorks CAD Model . . . XII
A.8 Forssea Evaluation of the PFE . XIII

II

Glossary
API An Application Programming Interface (API) is a particular set of rules and

specifications that one software program can follow to access and use the services
and resources provided by another particular software program that implements
that API. IV, 14, 16, 19

AUV An Autonomous Underwater Vehicle (AUV) is a self-propelled, untethered underwater
robot designed to operate autonomously without human intervention. AUVs are
equipped with various sensors, navigation systems, and onboard computers that
allow them to navigate, collect data, and perform tasks underwater. Unlike ROVs,
AUVs operate independently, following pre-programmed paths or using real-time
decision-making algorithms to explore and survey underwater environments for
scientific research, underwater mapping, oceanography, and other applications. III

DVL A Doppler Velocity Log (DVL) is an underwater sensor used to measure the
velocity of a moving vehicle, typically a watercraft or underwater robot, relative
to the surrounding water. It operates based on the Doppler effect, which involves
measuring the frequency shift of sound waves reflected off particles in the water.
DVLs provide crucial information for underwater navigation, enabling precise speed
and direction estimation without relying on external signals like GNSS. They are
commonly used in various marine applications, including Autonomous Underwater
Vehicle (AUV)s, ROVs, and surface vessels, to enhance underwater navigation and
mapping accuracy. 2, 3, 11–13, 27

EKF The Extended Kalman Filter (EKF) is one of the most widely used sensor filters in
robotics and underwater localization. The EKF can use non-linear evolution and
prediction functions and linearise the current estimate for covariances and Kalman
gain calculation. V, 4

FAT Factory Acceptance Testing (FAT) is a process where equipment or systems, often
industrial or technological in nature, are tested and verified to ensure they meet the
agreed-upon specifications, standards, and requirements before they are delivered
to the customer. This type of testing occurs at the factory or manufacturing site
to ensure that the product is ready for installation and use. IV, 22

FLS Forward Looking Sonar (FLS) is a sonar system designed and implemented to
provide real-time, direct-view underwater imagery for navigation, obstacle avoidance
and seabed mapping. 15, 16

FOG Fiber Optic Gyroscopes (FOG) INS refers to a type of INS that uses FOG as its
primary sensors. FOG are based on the principle of the Sagnac effect, where light
propagating in opposite directions along a coiled optical fiber experiences a phase
shift due to rotation, which can be used to measure angular velocity accurately. 2,
4

GNSS Global Navigation Satellite System (GNSS) is a system of satellites and ground
stations that enables precise positioning, navigation, and timing information worldwide.

III

The most well-known GNSS is the Global Positioning System (GPS), operated by
the United States. Other systems like GLONASS (Russia), Galileo (European
Union), BeiDou (China), and NavIC (India) also contribute to the GNSS network.
These systems work by using signals from multiple satellites to triangulate a
device’s location, providing accurate positioning data for various applications,
including navigation, mapping, and geolocation-based services. III, IV, 2

HMI A human-machine interface (HMI) is the set of interfaces used by the user to
interact with the machine, in our case the robot. The Argos HMI is mainly based
on joysticks and a WEB graphic interface. 16, 19

IMU Inertial Measurement Unit (IMU), is a sensor device commonly used in robotics for
inertial navigation that combines various sensors such as accelerometers, gyroscopes,
and sometimes magnetometers to measure linear acceleration and angular velocity,
without the need for external references. IV

INS Inertial Naviagation System (INS) is a software layer to filter data from a Inertial
Measurement Unit (IMU) and often other various sensors to obtain linear and
angular position and velocity. INS are used when GNSS positionning is not
sufficient, beceaus of its inaccuracy are because the environment do not allow
satelite communication (as underwater environment). As all dead reckoning methode,
INS need to inegrate two time linear acceleartion to get position, this mean their
major weakness is its dirft. III, 2, 4, 13, 27

PFE Projet de Fin d’Étude (PFE) is the last semester graduation project. 1

R&D Research and Development (R&D). 3

RCLCPP RCLCPP is the name of ROS 2 API for C++. 19

ROS Robot Operating System (ROS) is an open-source robotics middleware that provides
a large community and tends to become a standard in robotics research laboratories.
The main interest of ROS is to manage inter-process communication, standardise
data communication and coding style, and facilitate the integration of the number
of open-source packages available. IV, 2

ROV A Remotely Operated underwarter Vehicle (ROV) is an underwater robotic device
controlled from the surface through a umbilical calbe connection. Equipped with
cameras, sensors, and often mechanical arms, ROVs are deployed in underwater
environments to perform tasks that are hazardous, inaccessible, or logistically
challenging for humans. They find applications in scientific research, offshore
industries, marine exploration, and underwater infrastructure maintenance, providing
a means to visually inspect, collect data, and manipulate objects beneath the
water’s surface with precision and control. Argos is the name of Forssea’s ROV
model. II, III, 1–4, 11, 13–15, 26, 27

IV

SAT Sea Acceptance Testing (SAT) is a phase in maritime equipment and vessel testing,
occurring after FAT. During SAT, the equipment or vessel is tested at sea to
validate its performance, functionality, and adherence to specifications in real-
world marine conditions. This testing is essential to ensure the equipment operates
safely and effectively before deployment, contributing to its reliability and suitability
for operational use in maritime environments. 22, 23

SLAM Simultaneous Localization and Mapping (SLAM) is a computational technique
used in robotics to create maps of an unknown environment while also determining
the robot’s position within that environment. SLAM is particularly useful when a
robot needs to navigate in an environment without prior knowledge of its surroundings.
The process involves integrating data from various sensors, such as cameras, lidars,
and odometry, to build a map of the environment and simultaneously estimate
the robot’s location within that map. SLAM algorithms are essential for enabling
robots to autonomously explore and navigate in dynamic or unfamiliar environments,
such as in autonomous vehicles, drones, and mobile robots. 1, 2, 13, 15

UKF The Unscented Kalman Filter (UKF) is a major alternative to EKF in Kalman-
based filters. In the UKF, the Kalman covariances and gain are not calculated
by linearising the evolution and prediction functions, but by using an uncentred
transform to calculate them. The uncentred transform evaluates the functions at
different points to estimate the covariances and then calculate the Kalman gain. 4

UUID Universally Unique Identifier (UUID), is a 128-bit identifier that is used to
uniquely identify information in computer systems. It’s designed to be globally
unique across time and space, meaning that the probability of two UUIDs being
the same is extremely low. UUIDs are commonly represented as a sequence of
hexadecimal digits separated by hyphens. They have various applications, such
as identifying resources in distributed systems, generating unique filenames, and
ensuring data integrity in databases. See 2.3.2 for Fuse context. 5, 8

V

References
[1] Wgs 84 implementation manual. Eurocontrol & IfEN, Version 2.4, 1998.

[2] Fuse github. Locus Robotics, 2023.

[3] Ros 2 control documentation. ROS Control, 2023.

[4] Ros 2 humble documentation. ROS, 2023.

[5] The Ceres Solver Team A. Sameer, M. Keir. Ceres Solver. https: // github. com/
ceres-solver/ ceres-solver , 2.1, 2022.

[6] The Ceres Solver Team A. Sameer, M. Keir. Ceres Solver Modeling Non-linear
Least Squares. http: // ceres-solver. org/ nnls_ modeling. html , 2022.

[7] The Ceres Solver Team A. Sameer, M. Keir. Ceres Solver Solving Non-linear Least
Squares. http: // ceres-solver. org/ nnls_ solving. html , 2022.

[8] National Geospatial Intelligence Agency. World geodetic system 1984 datasheet.
United Nations Office for Outer Space Affairs, United Nations, 2021.

[9] J.L. Blanco. A tutorial on SE(3) transformation parameterizations and on-manifold
optimization. University of Malaga, (Technical report 012010), 2022.

[10] J.L. Blanco-Claraco. A tutorial on SE(3) transformation parameterizations and
on-manifold optimization. CoRR, abs/2103.15980, 2021.

[11] A. El Jawad A. Bougois. Localization and frame convention in couronne. Forssea
Robotics, (v1.0), 2023.

[12] Tully Foote. tf: The transform library. Open Source Robotics Foundation, Mountain
View, CA 94043.

[13] T. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley Sons, Ltd, 2011.

[14] J. Hajjami. Sonar: Sound navigation and ranging. Forssea Robotics, 2023.

[15] J. Deray J. Solà and D. Atchuthan. A micro lie theory for state estimation in
robotics. Institut de Robòtica i Informàtica Industrial, CSIC-UPC, (Technical
Report IRI-TR-18-01), 2018.

[16] M. Legris. Navigation sous-marine. ENSTA Bretagne, 2020.

[17] T. Laidlow M. Burri G. Nuetzi P. Fankhauser D. Bellicoso C. Gehring S. Leutenegger
M. Hutter M. Bloesch, H. Sommer and R. Siegwart. A primer on the differential
calculus of 3d orientations. ETH Zurich, (Report 10.3929/ethz-a-010666114), 2016.

[18] B. Magyar. A practitioner’s guide to ros2_control. In ROSCon, 2022.

[19] W. Meeussen. Coordinate frames for mobile platforms. ROS REP 105, 2010.

VI

https://web.archive.org/web/20081003102629/http://www.icao.int/pbn/docs/eurocontrolwgsman24.pdf
https://github.com/locusrobotics/fuse
https://control.ros.org/master/index.html
https://docs.ros.org/en/humble/index.html
https://github.com/ceres-solver/ceres-solver
https://github.com/ceres-solver/ceres-solver
http://ceres-solver.org/nnls_modeling.html
http://ceres-solver.org/nnls_solving.html
https://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf
https://w3.ual.es/personal/jlblanco/
https://arxiv.org/abs/2103.15980
http://wiki.ros.org/Papers/TePRA2013_Foote?action=AttachFile&do=view&target=TePRA2013_Foote.pdf
http://wiki.ros.org/Papers/TePRA2013_Foote?action=AttachFile&do=view&target=TePRA2013_Foote.pdf
https://www.iri.upc.edu/publications/show/2089
https://www.iri.upc.edu/publications/show/2089
https://www.research-collection.ethz.ch/handle/20.500.11850/117226
https://docs.ros.org/en/humble/The-ROS2-Project/ROSCon-Content.html
https://www.ros.org/reps/rep-0105.html

[20] W. Meeussen V. Pradeep A. R. Tsouroukdissian J. Bohren D. Coleman B. Magyar
G. Raiola M. Lüdtke S. Chitta, E. Marder-Eppstein and E. Fernandez Perdomo.
ros_control: A generic and simple control framework for ros. Journal of Open
Source Software.

[21] B. Gerkey C. Lalancette W. Woodall S. Macenski, T. Foote. Robot operating system
2: Design, architecture, and uses in the wild. Science Robotics.

[22] M. Purvis T. Foote. Standard units of measure and coordinate conventions. ROS
REP 103, 2014.

VII

https://joss.theoj.org/papers/10.21105/joss.00456
https://joss.theoj.org/papers/10.21105/joss.00456
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.ros.org/reps/rep-0103.html
https://www.ros.org/reps/rep-0103.html

A.1 Sonar Run Mode FSM

Figure A.1: Finite State Machine for the Running Mode of oculus_sonar

VIII

A.2 Control Framework Overview

Control framework
[Framework]

rov_controller
[Ros2 controller]

Navigation framework
[Framework]

Issues desired commands

HMI
[Framework]

Allows the user to set parameters, and outputs
joystick commands

RobotStateCallback
[Component: Ros2 subscriber]

Receives robot state messages

PositionCommandCallback
[Component: Ros2 subscriber]

Receives position command messages

VelocityCommandCallback
[Component: Ros2 subscriber]

Receives velocity command messages

JoystickCommandCallback
[Component: Ros2 subscriber]

Receives joystick command messages

ParametersChangedCallback
[Component: Ros2 parameters]

Manages dynamic parameters

MainController
[Class]

Database
[Contains: Input, command, internal and

parameter data]

Stores structures containing control variables

AttitudeController
[Component: PID]

Computes torque based on current and desired
orientation

VelocityController
[Component: PI]

Computes force using current and desired
velocity

PositionController
[Component: PID anti windup]

Compute linear force based on current and
desired position

Controller manager
[Software System]

Runs the controllers and executes their update()
function

StateMachine
[Component: Finite state machine]

Handle the different control modes of the
framework

ControllerReference
[Component: Filters, dynamic systems]

Computes the desired state based on the input
and the state machine's state

MainControllerInterface
[Component: Class]

Sets parameters, sets variables, calls user
events, thread-safe

calls

calls

calls

calls

calls

Localisation framework
[Framework]

Outputs current state

publishes
[topic state] publishes

[topic velocity_command]

sets
[state parameters]

sets
[user parameters]

publishes
[topic position_command]

publishes
[topic position_command]

updates updates

updates

updates

reads

updates

manages

updates

MainController update()
[Component: function]

Assembles the wrench
updates

runs

runs

runs

RovController update()
[Component: function]

Creates the wrench

calls

calls

ThrustAllocationController
[Software System]

Allocates the desired wrench to the available
thrusters

calls

Thrusters
[Hardware]

allocates thrusts

Figure A.2: Control Framework Components Overview from Forssea Documentation.

IX

A.3 Images of Forssea Materials

Figure A.3: Argos in operation

Figure A.4: Argos’s Winch

X

Figure A.5: Hand Controller

Figure A.6: Test pools (in the old workshop on the left and in the new workshop on the
right)

XI

Figure A.7: Measurement of Sonar Lever Arm on Argos SolidWorks CAD Model

XII

A.4 Evaluation

FICHE D'APPRECIATION DE STAGE

A renseigner et à viser par le tuteur entreprise puis faire retour sous aurion
rubrique « mise à jour de PFE »

Organisme Forssea Robotics
Dates du stage 26/09/2022 – 25/09/2023 (contrat pro)

NOM, Prénom du stagiaire Yverneau Hugo

Cocher les cases appropriées

F
(échec)

E
(insuffisant)

D
(passable)

C
 (assez bien à

bien)

B
(bien à très

bien)

A
(remarquable)

Critères d’intégration – Savoir être

Adaptabilité X

Disponibilité X

Culture de l’entreprise X

Puissance de travail X

Qualité d’expression X

Conduite du projet

Identification des tâches X
Organisation/répartition des tâches

dans le temps X

Respect des délais des livrables
demandés X

Force de proposition X

Éventuellement : travail en équipe X

Rapport de stage

Forme (présentation, style…) X

Fond (exactitude) X

Exploitabilité par l’organisme X

Appréciation de la formation ENSTA Bretagne

Les compétences scientifiques et techniques
répondent à mes attendus X

Les compétences méthodologiques
répondent à mes attendus X

Sur quels sujets a-t-il fallu former le stagiaire
avant qu'il ne soit autonome ? Graph SLAM, C++ avancé

Quelles seraient les compétences ou les
contenus de formation à renforcer ? Graph SLAM, C++ avancé, rédaction de rapport

Appréciation générale

Hugo est un très bon élément de l’équipe. Il a su prendre en main les différents sujets sur lesquels il a travaillé, malgré
leurs différences (développement de driver bas niveau, développement de code s’insérant dans une architecture
logicielle existante, théorie de Lie et implémentation d’équations mathématiques, rédaction de procédures de test,
organisation et exécution de ces tests).
Il a maintes fois démontré sa rigueur, sa persévérance et son autonomie sur des sujets parfois complexes et fastidieux,
en proposant des solutions alternatives si nécessaire et en gérant lui-même son emploi du temps.
Son savoir être et son amabilité lui a permis de rapidement nouer des liens avec les différents membres de l’équipe, lui
permettant d’avancer rapidement sur ses projets.
Si vous disposiez d’un poste correspondant au profil du stagiaire, souhaiteriez-vous lui proposer ? X OUI NON

NOM, Prénom du tuteur entreprise : BOURGOIS Auguste Date : 24/08/2023

Fonction : Lead Navigation Engineer Signature :

Figure A.8: Forssea Evaluation of the PFE

XIII

	Résumé
	Abstract
	Acknowledgements
	Keywords
	Introduction
	PFE at ENSTA Bretagne
	Forssea Robotics
	Subssea Robotics
	PFE Unfolding

	Constraint Graph Optimization
	Constraints, Variables and Graph
	Variables
	Constraints
	Graph

	Non-Linear Optimization
	Constraint Graph Optimization
	Non-Linear Least Squares Optimizer

	Fuse
	Constraint Graph Implementation
	ID Based Graph Architecture
	Sequence Diagram

	Implementation
	Notations
	Depth Constraint
	DVL Constraint

	Assets and Drawbacks
	Assets
	Drawbacks
	Justification of the Method

	Frontal Sonar
	Forward-Looking Sonar
	Sonar Presentation
	Oculus

	ROS Driver
	Low Level Communication
	ROS Package
	Sequence Diagram

	Tests and Validations
	Low Level Integration Tests
	FAT
	SAT

	Controllers Chain
	ROS 2 Control
	Argos Control
	Control Framework Implementation
	Chainable Controllers Implementation

	Conclusion
	Annexes
	List of Figures
	Glossary
	References
	Sonar Run Mode FSM
	Control Framework Overview
	Images of Forssea Materials
	Evaluation

