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Abstract
Odd.Bot weeding solution is made of visual detection and delta arm picking. In this paper, the system
is studied to evaluate the errors’ causes, and a method of accuracy improvement is proposed and ex-
perimentally demonstrated. A precise visual measurement is developed both for weeding and delta arm
kinematic calibration, the latter being original by the uses of visual measurement and machine learning.
Finally, results show that software can compensate for manufacturing inaccuracy and so improve weeding
performances.
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1 Introduction
Odd.Bot is a company that needs to do mechanical weeding with high accuracy to compete and replace
the current use of herbicides. For removing the weeds they chose to get inspiration from hand weeding
by using visual detection and a mechanical arm. To localize the weeds, the camera needs to see in three
dimensions, which is why Odd.Bot has chosen a stereo camera. For high productivity, this arm needs
to be quick, which is why they chose a delta arm (figure 1a), which is mainly used in the industry for
fast pick and place operations. In our case, the delta arm is either used to pick and throw weeds or
push weeds down into the ground. Besides speed, the arm also needs to be accurate for perfect weed
removal, accuracy is also needed for weed localization using a stereo camera. Unfortunately, the current
accuracy of the system can cause it to damage crops or miss weeds, the system’s precision needs then to
be improved. That is my mission here: improve the weeding accuracy.

(a) Delta arm installed on the robot. (b) Delta arm scheme.

However, the delta arm can only be moved accurately if the dimensions of each arm are precisely
known, but each arm is unique due to manufacturing tolerances and assembly errors. For example, in
figure 1b the length of L1 is not perfectly known, and can be slightly different from L2 and L3. Then,
higher accuracy would require the accurate determination of these dimensions.

Due to the same issues, neither the position of the camera is perfectly known. These manufacturing
tolerances add to measurement inaccuracies leading to weeding errors, even with precise AI weed detec-
tion. The accuracy improvement should then focus on more than the delta arm, by integrating camera
position determination and camera calibration evaluation.

Additionally, for moving with high accuracy, the starting angles of the motors have to be precisely
known. For now, it is measured with a dedicated position sensor on each motor. But the placement of
these sensors can’t be done with accuracy due to manufacturing inaccuracies, which causes errors in the
measurements. So for avoiding these errors, improving accuracy, and reducing the complexity and the
cost of the system, it can be beneficial to find another way to measure the starting angles of the motors.

This report will describe how to calibrate the system by finding accurately the dimensions of the arm
and the position of the camera, evaluating the measurement, and determining the initial angles of the
motors. However, first, this section will introduce personal motivations, the context of this work, and
the goals of this study. It ends by giving an overview of the entire paper.
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Figure 2: Two Weed Whackos in a greenhouse.

1.1 Personal motivation
My learning at the ENSTA Bretagne finished with a 6-month internship. I found it in a Netherlands
start-up based in Rotterdam: Odd.Bot. The internship advantage is double: first in Odd.Bot improves
my technical skills, more specifically image processing and deep learning. Also learning about a big
in-development project and about start-up issues. And secondly, in a foreign country to improve my
English and discover another culture with its own vision of work life.

1.2 Context
With the awareness of the climatic crisis, new challenges are emerging. One among them is finding a way
to reduce the use of herbicides without producing less. For now, the only way to do weeding is to either
use a lot of herbicides, which kill biodiversity and damage the soil, or do manual weeding, which is long
and painful. To avoid this practice many companies started to work on robotized solutions, developing
autonomous robots which go weeding in the fields. Odd.Bot is one of them: it is a 5 years-old start-up
that is doing its first real partnership this year by selling its product as a service. Even if their robot is
capable of weeding, there are still plenty of things to work on for improving and robustifying it.

The solution chosen by Odd.Bot to weeding is a delta arm that will take out or push down the weeds.
The robot, called Weed Whacko (figure 2), is composed of a moving platform (the Odd.Carrier) and,
fixed to the Odd.Carrier, the Odd.Core: the camera for weed detection and the delta arm for weed
removal. The Odd.Core, as the name suggests, is where is the core technology of the company, and the
part I will work on.

1.3 Problem statement
Now that Odd.Bot starts working with farmers, they have to do a proper job to retain customers. But
some farmers require high precision and performance, which is why the robot capacities need to be
improved. My mission here is related to the full system, which consists of three parts: a delta arm
(which can be separated into the dimensions of all components and the starting angles), a camera, and
their relative position to one another. The main research question is then: is it possible to improve
the accuracy of the entire setup, such that an object (in our case, a weed) seen by the camera can be
accurately removed by the delta arm? To answer the question, this paper will dive into the following
subquestions:

1. Given the way the full system is modeled at Odd.Bot, how would a mismatch in dimensions affect
the accuracy?
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2. How accurate is the camera as a measurement device, using existing methods and libraries? This
includes estimating the relative position of the camera from the delta arm as well.

3. How accurately can we get the starting angle of the motors using the camera?

4. How accurately can we get the dimensions of the delta arm using the camera and machine learning?

This report starts with a preliminary study of the state of the art, then dive into the modeling of the
delta arm and influences of dimensions errors. It afterward investigates the measurement accuracy by
camera calibration and camera position estimation, and sets up a measurement method for delta arm
calibration purposes. The latter is presented in two parts: first, this report proposed a calibration for
the motor’s starting angles, then it developed the kinetic calibration and the final results that come with
it. Finally, the conclusion is a doorway to further improvement proposals.
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Figure 3: Scheme of the Odd.Core.

2 State of the art
State of the art describes the preliminary research of this project, it introduces the tools and concepts
used throughout this report. First, this section introduces the system that this report is about. Then it
explains what calibration is and how it works, then describes the measurements: essential for weeding
accuracy improvement and arm calibration. The second to last subsection shows how machine learning
could be used to improve the command of the delta arm. Finally, this section ends with the chosen
method of weeding accuracy improvement.

2.1 The weeding system
Detection of the weeds is handled by a camera linked to the delta arm by a fixed connection, with the
embedded computer this formed the Odd.Code (figure 3). This delta arm consists of three connected
arms, each moved by one stepper motor. This parallel configuration allows a maintained orientation of
the gripper placed at the end of the whole arm. For moving the gripper to the wanted position, the
command of the motors is calculated by the inverse kinematic equation. Those commands assume that
the motors are initialized perfectly, this initialization happens at each startup with the homing process,
using inductive sensors [1](figure 5). Due to his configuration and the length of his limbs, the delta arm
has a limited action workspace, which is where it operates optimally (figure 4), causing naturally bigger
positional errors at the boundaries than in the middle of the workspace. This Odd.Core is transported
by the autonomous carrier which travels in the field following the lines. In the carrots fields where the
robot is working, the crops are planted on ridges, so the robot’s wheels are guided by the empty space
between the rows (figure 2). When the robot moves, the weeds are detected at the front of the delta arm,
and then removed when they arrive in the workspace. Based on the number of weeds and the speed of
the robot, the removal can happen close to the camera view or further in the workspace. The weeds are
only removed around the crops, so it’s where the accuracy needs to be high.
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(a) Range of each limb (mm). (b) 3D view of the workspace.

Figure 4: Workspace of the delta arm.

2.2 Overview of arm calibration
Calibration is a process for improving robot accuracy by modifying the software rather than the design
of the robot [2]. It involves identifying a more accurate relationship between the arm’s joints and the
gripper’s position and using it to permanently change the robot positioning software. Compared to an
adaptive control that continuously adjusts the parameters, the calibration happens one time and improves
definitely the accuracy of the arm. There are three levels of arm calibration. The joint calibration is
the first level, the goal is to establish the relationship between the joint displacement and a joint sensor
(like the current homing that calibrates the motor using an induction sensor), and it is typically run at
each power-up of the robot. The second level aims to calibrate the kinematic model of the robot. To
improve the arm accuracy, the relationship between the kinematic model and the real joint displacement
is improved. For this level, the limbs are assumed rigid and the joints perfect, so we assume that there
are no non-kinematic errors such as joint compliance, friction, or clearance. These types of errors are
handled by the level 3 calibration, which aims to improve the dynamic model.

All of those calibrations have the same four steps [3]: modeling, measurement, identification, and
compensation.

• Modeling is choosing a relationship that suits the behavior of the robot, a good calibration leans
on a relevant model.

• The second step is here for getting real data by measuring input and output, the quality of this
measurement is critical for a good calibration. The measurement error and the real robot error
are not easy to separate, to compensate for this it is possible to integrate the error of position and
rotation of the measurement device in the model [4].

• The third step consists of the identification of the parameters based on the collected data, it also
involves the identification of the error in those parameters due to the noise or the measurement
error.

• The final step is compensation, which is the implementation of the new model in position control.
Calibration can lead to a significant accuracy improvement [5], but it could not be perfect due to
the measurement accuracy and the robot repeatability.
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Figure 5: One of the motor’s homing inductive sensor.

Sensors Reachable accuracy (mm) Commentary

Lidar [14] [15] ∼ 10 Not accurate enough
Sonar [16] [17] 0.02 - 10 Underwater
Gnss [18] [19] ∼ 10 Not accurate enough
Optoelectronic sensor [20] [21] < 3 Don’t measure in 3D space
Laser tracker [22] < 0.1 Target have to be slow
Stereo camera [23] [24] [25] [26] < 1 Have to be calibrate accurately
Depth camera [27] [28] [8] ∼ 5 Not accurate enough

Table 1: Sensors comparison table

2.3 Measurement methods
For the arm calibration, the measurement of the gripper position is essential: whatever the wanted
precision, the measurement has to be more accurate [6]. For choosing the measurement method, first,
let’s look at the existing sensors that can be used in our case (Table 1). The sensors able to measure
with sub-millimeter accuracy in this use case, for precise arm calibration, are the laser tracker and the
stereo camera [7]. Even if the laser tracker is easier to use and provides better accuracy, it is expensive.
Especially for a start-up. Add to the fact that Odd.Bot already has stereo cameras makes me choose this
second option. The camera used by the company is an Oak D POE camera[8], which has the advantage
to be already calibrated. However, calibration is a big part of camera measurement accuracy. Then it
could be interesting to evaluate it. Now, if the gripper is clearly detected in each stereo image view,
it is possible to calculate the distance to the camera using triangulation equation: 8.1.3[9]. Accurate
detection of markers is a deeply explored search field, especially for robots [10][11]. Those specific
markers come with robust detection algorithms that assure a good pose estimation [12][13], however for
our requirements, cause of the known environment, a newly original detection could be more accurate.
To compare this measurement to the command, the position of the camera to the delta arm has to be
accurately known[7]. Cause of this, the camera already in the Odd.Core will be used. But even in this
configuration, cause of the manufacturing tolerances, the knowledge of the camera position could be
improved.

The research on accurate measurement for arm calibration has another goal: the precise camera
position will benefit weed detection and removal, improving the whole system’s accuracy.
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Figure 6: Inverse kinematic model training by machine learning

2.4 Machine learning for identification
The compensation is the final part of the calibration, and there are a lot of different methods for solving
parallel kinematic mechanisms[6]. One of those is using computational intelligence.

The concept of machine learning dates back to the 1950s when researchers began exploring the
idea of creating computer programs that could learn from data. Progress was relatively slow until the
1990s, when advancements in computing power and the availability of large data sets led to significant
breakthroughs. Today, machine learning is able to make complex decisions. it can now recognize patterns,
understand language, and perform tasks with remarkable accuracy.

A neural network is one of many models that can learn from data. It modifies its inner parameters
to match inputs with outputs. In our case, the model can be the forward or inverse kinetic equation,
and our data is the motor angles and the gripper positions (figure 6). Therefore the model parameters
will get modified for the equation to match the real arm behavior.

The constraints inflicted by the inverse kinematic equation can improve the convergence of the model
[29], so this model seems more numerically efficient [30]. Therefore those constraints are already there in
our data set, cause this equation is already used for the control, and the errors, bigger at the gripper than
in the joints, could improve the training results. As well, some experimentation proves that the forward
kinematic model can lead to better results [7]. All of that shows that the choice of the model depends on
the use case, so we will use the simulation to make our choice between the inverse and forward kinematic
models. For implementing those models we will use Pytorch, which is a library that allows the creation
of personalized models like our arm equations, and personalized loss function for the training.

2.5 Chosen method
As identified before, weeding performances are based on measurement and delta arm accuracy. A method
of improvement has been chosen ground on this preliminary work and the available resources.

For this project, the weed measurement will be studied by evaluating the camera calibration and
verifying the relative position from the camera to the arm. The delta arm will be calibrated using the
method chosen based on this preliminary work and the available resources. The choice of the forward or
inverse kinematic model will be made based on the simulation results. Regardless of the chosen model,
the parameters will be selected based on the dimensions of our delta arm, and their impact will be
identified. For the arm calibration, the gripper measurement will be done using a stereo camera, and the
detection will be evaluated to verify accuracy. Finally, the calibration will be done in two phases: a joint
calibration with the replacement of the current homing using the camera, and a kinematic calibration
using machine learning to identify the model’s parameters.
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3 System modeling
Before every improvement, it is essential to identify inaccuracy causes and evaluate their impact on the
weeding performances. This section introduces and uses the equation of the delta arm as a model to
represent and modify the behavior of the system. First, the delta arm is modeled to include parameters
that expressed inaccuracy causes. Then, using this model, the impact of those parameters is evaluated
in the simulation.

3.1 Error identification
To move the gripper where the camera detects the weed, the distance and orientation between the arm
and the camera are needed. We assume to know it with an accuracy of 1mm and 0.01 rad. For moving
the gripper to the wanted position, the command of the motors is calculated by the inverse kinematic
equation. This equation uses the delta arm dimensions which are known with a precision of 1mm due
to manufacturing tolerances. Those commands assume that the motors are initialized perfectly, but in
reality, this initialization is handled by inductive sensors with an accuracy of 0.006 rad. There are other
geometric error sources [22][30], but this study is confined to those previous ones.

The delta arm is made of three arms. an arm is composed of two limbs joined together, the upper
one is linked to the chassis plate and the lower one to the gripper. An arm i is therefore modeled by four
parameters:

{R, r, L, l}i (1)

Where L and l are the lengths of the upper and lower limb, R is the distance from the motor to the
chassis plate middle and r is the distance from the gripper center to the lower joint. The delta arm is
modeled by three arms which aims at a model of 12 parameters (equations 8.1.1 and 8.1.2).

The error during the homing process aims at a homing angle error, it is modeled by an offset on the
angle command in each motor:

{eh}i (2)

Since this offset is different at each initialization, this parameter is dissociated from the previous ones as
it will be calibrated another way.

Another factor that influences the gripper position is the relative position from the camera to the
arm. Indeed if this position is incorrectly known, even if the weed detection is perfect, the removal
accuracy will be relative to this position. A translation and a rotation are introduced to depict the real
camera position:

{βx, βy, βz, θx, θy, θz} (3)

Those 6 parameters will be determined first, during the measurement improvement phase, cause a good
measurement is essential to the calibration of the delta arm model.

The modelization of the arms, the homing error, and the camera position lead to 21 tunable parame-
ters. Those, fitted well, will lead to improvement of the measurement and of the arm behavior, and this
way improve the weeding accuracy.

3.2 Parameters impact
Once those parameters are identified, it is essential to evaluate their impact on the gripper position. For
this, the delta arm is simulated using the inverse kinematic equation. Then, by modifying a parameter
on the simulation, it is possible to see its impact by comparing the gripper position to the command.
Each parameter has a different impact on every three dimensions X, Y , and Z the depth. For this study,
the accuracy is expressed by the distance of the gripper from a referential point: a value that includes
the error in every three dimensions.
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(a) Upper arm up. (b) Upper arm down.

Figure 7: Simulated impact of parameter R1 on the gripper position accuracy, function of command
position (figure 4a).

First, this subsection identified the impacts of the delta arm dimensions which is known with a
precision of 0.1mm. Due to the parallelism of the arm, the error of the parameters can compensate or
accentuate themselves, and their impacts are different depending on the position of the gripper. Each
Ri has a more significant influence when the arm i moves to the front (upper arm down). As shown by
the error in different positions in figure 7, an error in this parameter impacts the accuracy from 40% to
100% of the parameter error. By the same process, it is identified that ri has the same impact as Ri, Li

impacts the accuracy the most when arm i moves to the back: by 40% to 60% of the parameter error.
Finally, li has a constant impact of 40% of the parameter error. Each of those parameters hasn’t a big
impact individually, but all together they can lead to a substantial non-linear error.

Afterward, the impact of the homing offset is discussed. This parameter is known with an accuracy
of 0.006 rad and each {eh}i leads to a constant linear error of 1.5mm maximum. As for the dimensions
of the arms, the parallelism of the delta arm conducts at each {eh}i inflict on each other impacts. Those
parameters have a big impact on the system’s accuracy, but compared to the arms dimensions there are
easy to dissociate cause are just an offset on the command, and so can be calibrated independently.

Finally, the camera position error is the last parameter to evaluate. It is composed of a translation and
a rotation known with a precision of 1mm and 0.01 rad. The translation simply induces an inaccuracy
equal to itself cause it shifts the measurement related to the arm. The rotation is the one that creates
the bigger error since its impact is based on the depth from the camera to the gripper. This error is
linear and it caused a maximum inaccuracy of 4mm to 5mm depending on the depth in the workspace.
This is the biggest identified error by far, showing that the dimensions of the support of the camera are
really relevant parameters.

Now that the system is widely known and the impacts of mismatch in dimensions have been identified,
it is time to dive into the system accuracy improvement, starting with the visual measurement.
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4 Measurement
Good delta arm calibration required accurate measurements, indeed the more the data set is close to
reality the more the calibration will rectify the behavior of the arm. For this, this section will start by
diving into the measurement of the 3D coordinate of the gripper, with particular attention to marker
detection. Then, the method of measurement is explained, and finally, the camera position is determined
and the measurement accuracy is discussed.

4.1 Coordinate measurement
For a good measurement, a good camera calibration is vital. Fortunately, the used camera is calibrated in
the factory, assuring good distortion correction and rectification. However, to estimate the measurement
accuracy it is useful to evaluate camera calibration. For this, a simple test is set up: a marker is fixed
to a flat straight sliding device (figure 8), and measurements are made horizontally and vertically by
sliding the marker on the device. Then each bunch of measurements is fitted by a straight line using least
squares fitting: figure 9. The calculation of the sum of squared residuals informs on the curvature of the
camera image: table 2. The biggest error is, as expected, on the borders of the image, with a maximum
of 0.47mm localized at the bottom of the picture. The errors induced by the camera calibration are
through less than 0.5mm, which is sufficient to calibrate some of the identified errors and promise good
weed detection.

To get the coordinates of the gripper we need to detect its position in both stereo images. For sub-
pixel detection, a clear marker and a good detection algorithm are needed. The chosen marker has to be
small to allow its detection in the biggest part of the camera view, indeed in the setup the camera is close
to the gripper, so the viewing angle is constrained. Here three markers with their detection algorithms
are compared. One is the ArUco marker, well-known in robotics for its robustness, the two others are
original markers created for accurate detection.

• The chosen ArUco marker is 4x4 bits to get the best results with the size restriction, and it
is detected using openCV tools with standard detection parameters. For the following original
markers, the detection parameters are tuned based on experimentation.

• Ellipse is the easiest shape to detect accurately [31], so the first original marker will be a white
dot on a black background. For the detection, the following algorithm is used: figure 11.a. The
grayscale image of the stereo camera passes through a gamma correction filter to raise the contrast,
then thresholding creates a binary image after which the contours of the shapes are extracted [32].
Those are filtered based on their size and circularity, and finally, the shape is fitted by an ellipse
[33] for a sub-pixel detection of the marker’s center.

• The second original detection is based on the first one and designed to improve accuracy and
repeatability. The idea is to multiply the object detection number by creating a pattern to lower
measurement error, as it could be used for camera calibration [34][35] or vision-based metrology [7].
There is no consensus on the optimal number of detection points other than the more the better,
but some studies with good results use around fifteen points. Cause of the camera view detection
issue, the pattern will then be made up of thirteen dots (figure 10). The detection algorithm is as
follows: figure 11.b. As in the previous detection the image is binarized, the shape contours are
extracted, filtered, and fitted by ellipses. To avoid similar objects from the environment slipping
into the detection, the remaining points are filtered to keep the thirteen closest dots from the center
of the detection cloud. Finally, to avoid missing pattern points, the rectangularity of the detection
cloud is evaluated. The pattern middle is found by the average of the position of the points, thanks
to the symmetrical shape.

The last step is the calculation of the 3D position of the marker from the pixel position in each
image. The triangulation equation is used to get the marker coordinates (equation 8.1.3). Now that
3D coordinates can be measured with all the different detection, there are compared to choose the
more relevant one. The marker comparison will be based on robustness and repeatability for getting an
accurate distance between each measurement thereby generating a reliable and accurate data set.
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Figure 8: Setup for testing camera calibration.

Figure 9: Measurements and least squares polynomial fitting of lines.

For evaluating repeatability, several measurements in fixed position are executed, and the standard
deviation is calculated: table 3. Those values show variation between each measurement. First, it appears
that all detection have a planar dispersion lower than 0.1mm, which is very good. Pattern detection
has the best repeatability, followed by the dot and the ArUco detection. It is interesting to see that the
depth measurement has the biggest disparity, which reaches a significant deviation of 0.5mm more than
5% of the time with the ArUco detection.

To evaluate the robustness, measurements are made in different coordinates in the workspace: table
4. Light and angle fluctuation can lead to non-detection of the marker, requiring user intervention. With
big data sets to gather it is important to minimize external assistance, but usually robust detection
comes with poor repeatability. As expected ArUco marker is detected in all cases, dot detection for its
part needs a little assistance, and pattern detection requires light adjustment nearly 15% of the time.

The goal of this marker’s detection is to measure the behavior of the arm. Since the latest already has
an accuracy of nearly one millimeter, a really precise measurement is needed. For this reason, the ArUco
marker is not the best choice. Indeed, even if it is more robust than the other solutions, its significant
depth deviation invalidates its use. The choice goes then for dot detection: it is way more robust than
pattern detection, which simplifies its use, and its repeatability is good enough compared to identified
errors.
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line position horizontal vertical

bottom/left 0.47 0.09
middle 0.06 0.01
top/right 0.22 0.07

Table 2: Sum of squared residuals of the least squares fit (mm).

Figure 10: Picture of the original pattern.

Figure 11: Diagram of the dot detection (a) and pattern detection (b) algorithm.

Dot Pattern ArUco

X 0.013 0.003 0.025
Y 0.012 0.009 0.037
Depth 0.058 0.017 0.275

Table 3: Standard deviation for 100 measurements using triangulation (mm).
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Dot Pattern ArUco

user intervention 5 18 0
recurrences (%) 4 14.4 0

Table 4: Number of user intervention needed for 125 measurements.

4.2 Method of measurement
In addition to accurate detection, good acquisition is essential for an accurate measurement. Due to the
setup (figure 3) the camera can’t see the gripper in the whole workspace. To resolve that an extender
is fixed to the gripper: figure 13. Through this, by shifting the measurement, it is possible to get the
gripper’s position in a bigger zone. To measure data sets of the gripper’s position, the arm is moved to
different locations, and the program saves the mean value of several measurements of this location. To
be sure that the measurement matches the arm behavior, the gripper should have finished moving to the
wanted position, and the detection detected the marker. To confirm this, the program verifies that the
measurement is closer than three centimeters from the command and that each measurement of the same
position is close to one another. In addition, to avoid positional offset, the measurement is initialized in
(0,0,0). So each measurement measures the position of the marker relative to the initial measurement.

4.3 Camera position and results
The measurements produced by the latter method for each detection are compiled in figure 12a to 12c.
It displays the error between the measurement and the command, composed of the errors of the system
identified previously in this report. As expected, each measurement is pretty close, and the significant
depth deviation of the ArUco detection is visible by an extra variation of 1mm.

For a good calibration of the delta arm, those data sets should only include the error of the delta
arm and the homing. The goal here is so to reduce errors in camera position and measurement. The
measurement has already been improved in this section, then only the camera position improvement is
missing. The latter is done by determining the transformation between the data set and its command
(translate to the error in the camera’s position) using singular value decomposition (SDV). By applying
this transformation {βx, βy, βz, θx, θy, θz} during the measurement a new data set is generated: figure
12d. It demonstrates the improvement induced by a better camera position. From figure 12a to figure
12d variation of planar and depth error have been decreased by 2mm, resulting in a data set closer to the
behavior of the delta arm, and especially a significant accuracy improvement of the whole system. The
remaining offset is due to the homing offset {eh}i, errors in delta arm dimension, and camera calibration.

To conclude, Three different markers for visual measurement accuracy have been used to determine
visual measurement accuracy, improvement of accurate detection, and position determination. It is now
a fact that the camera as a measurement device assures sub-millimeter accuracy, with the worst case
being an error of 0.5mm, a consequence of image distortion and detection variation. This improvement
ensures, first, better weeding, and also the gathering of an accurate data set for delta arm calibration.
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(a) Dot detection measurement. (b) Pattern detection measurement.

(c) ArUco detection measurement. (d) Dot detection measurement with
determined {βx, βy, βz, θx, θy, θz}.

Figure 12: Error between measurement and command for 125 measurements throughout the workspace.
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Figure 13: Extender fixed on the gripper.

Figure 14: Diagram of an limb homing.

5 Joint level calibration: Visual homing
The first step of arm calibration is joint calibration, translated here by the homing of the motors. First,
a subsection will explain the new homing that uses the camera rather than the inductive sensor, and
how it takes as input the measurement error. Then, the accuracy of both the previous homing and the
visual homing are measured and compared, and the results and limitations are discussed.

5.1 Homing algorithm
The goal of the homing is to find the offset αh between the startup angle of the motor and the requested
initial angle, so we can initialize the motor’s position. For now, according to the references of the
inductive sensor, the current homing finds αh with an accuracy of 0.006 rad: maximal error of homing
offset error eh, displayed in figure 14 by the difference between the homing offset and the true homing
offset αh. This error aims at a maximal positional error of 1.5 mm according to the simulation (section
3.2).

This section implements a new homing using the stereo camera. The following algorithm, through
three steps, using multiple measurements and measurement errors, determined the homing offset.
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Figure 15: Diagram of the homing algorithm.
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Figure 16: Estimating the homing offset by several measurements using intervals.

1. Measure the homing offset
For measuring the angle offset αhmaes , the motor command α is compared to the measured motor
angle αmeas.

αhmaes
= α− αmeas (4)

The measured motor angle is calculated from the measured gripper position using a marker fixed
on it, coordinate transformation from the camera to the arm, and the inverse kinematic equation:
equation 8.1.1. But due to the error of both the measurement and the model, There is a homing
offset error eh (figure 14). It is therefore necessary to improve the accuracy of this value for
meticulous calibration

2. Estimate the homing error
Now the algorithm considers the measurement error ehmaes

. By several measurements on different
gripper positions, the algorithm will refine its knowledge of the true offset angle by estimating the
homing error eh. To achieve this, the algorithm uses the interval generated by the measurement
and its error: [αhmaes − ehmaes , αhmaes + ehmaes ]. By merging several measurement intervals the
algorithm is sure to both include the true value αh and get closer to it (figure 16).

For this algorithm to estimate the homing error eh it needs different measurements. To speed up the
algorithm, rather than a random gripper position, it is better to choose a position with a big error,
like near the borders of the workspace. This part of the algorithm multiplies the measurements
until the uncertainty of the homing error is tiny enough.

3. Validate an accurate homing offset
With the latter steps, by subtracting the homing error, the algorithm gets the homing offset with
great accuracy. At least when this homing offset is tiny. Indeed, according to the experiments,
when the homing offsets are big or far from each other, the algorithm doesn’t find the perfect value
(Table 5). This final step is here to verify that the found homing offset is good by rerunning the
two first steps with the homing offset implemented. If the resulting homing error of this rerunning
is lower than one increment, then the first homing offset was good, and the homing is finished.
Otherwise, the algorithm adds this new homing error to the previous homing offset and reruns the
two first steps another time.
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Fixed homing error Founded homing error Std for seven experiments
motor 1 motor 2 motor 3 motor 1 motor 2 motor 3 motor 1 motor 2 motor 3

5 0 0 4,7 -0,6 -0,1 0,2 0,4 0,4
5 -5 20 3,7 -6,6 18,6 0,2 0,3 0,5

Table 5: Homing error (in motor increments) found by the two first steps of the algorithm.

Standard homing Visual homing
motor 1 motor 2 motor 3 motor 1 motor 2 motor 3

3,68 1,86 3,56 0,37 0,49 0,47

Table 6: Standard deviation (in motor increments) of each homing method.

5.2 Results
The precision of a homing is evaluated by the standard deviation of the homing offset. Indeed, with
perfect homing, the remaining homing error found by the algorithm should always be less than one
increment. Table 6 compared the standard deviation of the homing offsets after standard or visual
homing for several experiments. It appears that, as expected from the sensor references, the standard
homing has an accuracy of 10 increments 97.7 % of the time (three times the standard deviation). The
new homing, for his part, is accurate to one increment 97.7 % of the time, which is a strong improvement.

To validate this result it is possible to use an inclinometer, which is a sensor that measures the angle
between two planes. After the homing, the angle between the arm’s chassis and the upper arm in the
initial position should be zero (offset error equal to zero in figure 14). This experiment shows that this
angle is closer to zero after a visual homing than after a standard one. This experiment also validates
the visual homing by finding a homing error that looks like the one estimated by the algorithm.

Despite that real improvement, it also appears that the standard homing is accurate to 3 increments
68 % of the time (one time the standard deviation), which aims at a maximal positional error of 0.4 mm
according to the simulation. That means that the standard homing error is negligible most of the time
compared to the whole position error. Moreover, the visual homing has a limitation: The gripper has
to start under the camera, otherwise, the camera can’t detect it and so can’t do the homing. Therefore,
for now, it needs the current homing to move the gripper in the camera view. However, a new homing is
essential for sub-millimeter accuracy, and this visual solution leads to a nearly perfect homing without
any new sensors than the camera already there, it therefore is an accurate and affordable solution.
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6 Kinematic level calibration: Machine learning
After the modeling and the measurement, the kinematic calibration includes the fitting of the parameters
and the compensation inducted by the new model. For this, first, the forward and inverse kinematic
models are compared to choose the more relevant ones in this use case. Then this section evaluates
which data set should be used to train the model. Finally, the results of the calibration are shown and
discussed.

6.1 Model comparison
The kinematic calibration fits the model to the delta arm real behavior by modifying the value of the
parameters {R, r, L, l}i. For this, the machine learning model is fed with measurement of the arm: a
data set composed of motor angles and related gripper positions. At each iteration of the training, the
machine learning model evaluates the accuracy of the parameters using the loss function. The chosen
loss function is the mean value of the gripper positional error.

The delta arm has been modeled with both forward and inverse kinematic equations. Both can be
trained to get new dimensions, but one should get more accurate parameters, which is why comparing
these models is essential for a good calibration. The comparison method is as follows: generating a data
set in simulation, training both models on this data set, generating a new data set using the parameters
from the training, and finely comparing the first data set with the ones from the training. A low error
between the compared data sets signifies good model training, therefore the chosen model will be the
one with the lowest error. To match the real system the first data set is generated with randomized
parameter errors ranging from 0 to 1mm, where the models are initialized with currently used dimension
values. Table 7 gathers the results of the comparison method for different data sets and training epochs.
It appears clearly that the forward kinematic model doesn’t manage to converge since the error gets
bigger with the epochs. In contrast, the inverse kinematic model error converges to zero, no matter the
data set and its size. Therefore it will be used to calibrate the delta arm, with this time a real data set
generated by visual measurements.

6.2 Data sets comparison
But before generating a real data set, it is essential to identify the data that will assure good training
results. A light data set could cause overfitting, and a data set with too much measurement could cause
underfitting. As well, the location of measurements is also important: with a uniform distribution around
the workspace, the model will easily capture the behavior of the arm. location where the kinematic error
is bigger, like at the boundaries of the workspace, could also improve the training [22]. But the present
measurement method does not allow all locations, therefore it is important to compare the training with
data sets including measurements at the workspace boundaries, all around the workspace, and just under
the camera. This is to verify that the data set from the measurement method is worth training.

Table 7 gathers the results of the training with different data sets (in the camera view, uniformly
distributed in the workspace, or at the boundaries) of different sizes, trained during various epochs.
First, it appears that whatever the measurement location, they all reach a sub-micrometer error with
5000 epochs. As well, whatever the size of the data set they all surprisingly reach the minimal value with
5000 epochs. The latter is surely due to the simulation that doesn’t model all the errors. But the real
data sets include errors due to the measurement accuracy. Therefore, to attenuate the rate of inaccurate
measurements it could be better to choose a big data set. Cause of this, and due to the fact that the
camera view training gets as good results as the other data sets training, the chosen data set for delta
arm calibration is generated by the measurement method with 125 different locations.
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6.3 Results
After the visual homing, the measurement of a data set using the measurement method, and the cor-
rection of the camera position, the inverse kinematic model is trained. The delta arm is calibrated by
the substitution of the dimensions with the parameters from the model training. For evaluating this
calibration a new data set is gathered: figure 17b. The comparison between the measurement for the
training (figure 17a) and the results of the calibration (figure 17b) is unequivocal: the mean error has
decreased by 0.70mm and the variation by 0.50mm, reaching a system accuracy of 1.63mm, lower than
1mm 75% of the time. It proves that the dimensions of the delta arm can be determined quite accurately
using the camera and machine learning. But those new parameters also compensate for measurement
errors since the model training aims to minimize errors in the given data set, so the new dimensions are
not exactly the ones of the delta arm. However, the kinematic calibration assures a better weeding by
lowering the system errors and completes the process of accuracy improvement.

(a) Measurement for the training. (b) Results of the kinematic calibration.

Figure 17: Error between measurement and command for 125 measurements before and after kinematic
calibration.
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trained data set bash size epochs error inv (mm) error fwd (mm)
mean max mean max

camera view 24 50 0.68 0.99 0.66 0.98
workspace 0.68 1 0.66 0.98
boundaries 0.68 1 0.67 0.99

camera view 24 500 0.63 0.83 0.9 1.16
workspace 0.57 0.78 0.96 1.22
boundaries 0.72 0.94 0.85 1.25

camera view 24 5000 20× 10−5 27× 10−5 0.95 1.11
workspace 5× 10−5 7× 10−5 0.93 1.04
data set boundaries 19× 10−5 25× 10−5 0.9 1.13

camera view 64 50 0.68 0.99 0.66 0.98
workspace 0.67 0.99 0.66 0.98
boundaries 0.68 0.99 0.66 0.98

camera view 64 500 0.62 0.83 0.89 1.15
workspace 0.62 0.85 0.93 1.21
boundaries 0.6 0.83 0.94 1.24

camera view 64 5000 48× 10−5 59× 10−4 0.95 1.12
workspace 53× 10−5 74× 10−5 0.91 1.11
boundaries 22× 10−5 30× 10−5 0.92 1.2

camera view 125 50 0.68 0.99 0.66 0.98
workspace 0.68 0.99 0.66 0.98
boundaries 0.67 0.99 0.66 0.98

camera view 125 500 0.63 0.84 0.9 1.16
workspace 0.62 0.84 0.91 1.19
boundaries 0.62 0.84 0.92 1.24

camera view 125 5000 19× 10−5 24× 10−5 0.94 1.11
workspace 33× 10−5 46× 10−5 0.91 1.15
boundaries 35× 10−5 48× 10−5 0.92 1.19

Table 7: Simulated experimentation of models training with different data sets.
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7 Conclusion
Odd.Bot does robotic weeding. With the rising number of autonomous alternatives to herbicides and
hand weeders, the company has to stand out for retaining customers. Consequently, the weeding should
be beyond reproach and the system’s accuracy should avoid damage to crops or miss weeds. With this
in mind, this paper has searched to improve the accuracy of the entire setup, such that an object (in our
case, a weed) seen by the camera can be accurately removed by the delta arm.

During the first section, the impact of mismatch in dimensions has been identified. Using simulation,
it has been proved that every determined mismatch has its own relevant impact on the system’s accuracy,
leading to a whole error of several millimeters. The latter preliminary identification achieved, the visual
measurement has been the first to be improved since it causes the biggest error and it is used to calibrate
the other dimensions. During this part, the camera calibration has been evaluated to estimate weed
detection accuracy: results show that this can lead to errors of 0.5mm. For the following arm calibration,
the detection accuracy of the gripper has been estimated by the comparison of several visual markers,
assuring accurate measurement of the delta arm position. In closing of this section, the system’s precision
is improved by 2mm with the determining of the camera position relative to the delta arm. After
that measurement accuracy has been identified and improved, the remaining dimensions are calibrated,
starting with the motor homing. The latter, by an original algorithm using the camera, is accurate to
0.0006 rad despite some limitations of use. This study ended with the kinematic calibration of the delta
arm dimensions using machine learning. After identification of the model to train, and by using the
improvement of the previous sections, it results in a mean system accuracy of 0.6mm, and a variation
3mm lower than initially. Assuring the system to remove the weeds with higher accuracy.

Finally, with the studies and experimentations developed in this paper, it is possible to conclude:
yes, it is possible to improve the accuracy of the entire setup, such that an object seen by the camera
can be accurately removed by the delta arm.

However, the remaining accuracy is not perfect. For lack of time, the camera calibration hasn’t
been improved, and some leads, like adding joint dimension in the model, have not been successful. The
identification of parameters’ impact has also been a big part of the work since every error overlaps others.
To go further the model could include gripper orientation, which has been assumed horizontal. Dynamic
calibration of the delta arm could be realized, camera calibration improved, and a laser tracker could be
used to overstep camera limitations.
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Figure 18: Diagram of the arm.

8 Appendix

8.1 Equations
8.1.1 Inverse kinematic equation

The inverse kinematic equation relates the position of a robotic arm’s gripper in three-dimensional space
(X, Y , Z) to the angles of each motor θi, i = 1, 2, 3. This equation allows us to control and move the
robotic arm by specifying the desired gripper position.

The equation of a limb is expressed in the YZ plane (figure 18). For the first limb θi is equal to:

θ1 = actan

(
zJ1

yF1 − yJ1

)
Let’s find the coordinate of J1(0, yJ1, zJ1) using Pythagore theorem on F1J1, E′

1J1. Let Li and li
define the lengths of the upper and lower arm segments, and ri and Ri the gripper and upper arm radius.

E1(X,Y − r1, Z) ⇒ E′
1(0, Y − r1, Z)

E′
1J1 =

√
E1J1

2 − E1E′
1
2 =

√
l21 −X2

{
(yJ1 − yF1)

2 + (zJ1 − zF1)
2 = L2

(yJ1
− yE′

1
)2 + (zJ1

− zE′
1
)2 = l21 −X2

⇒

{
(yJ1

+R)2 + z2J1
= L2

(yJ1
− Y + r1)

2 + (zJ1
− Z)2 = l21 −X2

⇒ J1(0, yJ1, zJ1)

Due to the design of the robot, the coordinate system can be rotated to get each motor angle with
the same equation. So θ2 and θ3 are found using the equation in the new reference frame X ′Y ′Z ′.

X ′ = Xcos(α) + Y sin(α)

Y ′ = −Xsin(α) + Y cos(α)

Z ′ = Z

,α =
2π

3
,
4π

3
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8.1.2 Forward kinematic equation

The kinematic equation relates the angles of the motors (θ1, θ2, θ3) to the position of the robotic
arm’s gripper in three-dimensional space (X, Y , Z). The strategy here is to calculate the coordinate of
E(X,Y, Z), the intersection of three spheres representing the rotation of each limb. Those spheres have
l1 as radius and J ′

i as center, the translation of Ji from the vector EiE (figure 18).
Let Li and li define the lengths of the upper and lower arm segments, and ri and Ri the gripper and

upper arm radius. Let’s find the coordinates of J ′
i :

OF1(0,−R1, 0)

F1J1(0,−L1 cos θ1,−L1 sin θ1)

J1J
′
1(0, r1, 0)

OJ ′
1 = OF1 + F1J1 + J1J

′
1

⇒ OJ ′
1(0, r1 −R1 − L1 cos θ1,−L1 sin θ1)

J ′
2 and J ′

3 are get by coordinate rotation:

OJ ′
2([r2 −R2 − L2 cos θ2] cos

2π

3
, [r2 −R2 − L2 cos θ2] sin

2π

3
,−L2 sin θ2)

OJ ′
3([r3 −R3 − L3 cos θ3] cos

4π

3
, [r3 −R3 − L3 cos θ3] sin

4π

3
,−L3 sin θ3)

E(X,Y, Z) is calculate by resolving the sphere interactions equation:
(X − xJ′

1
)2 + (Y − yJ′

1
)2 + (Z − zJ′

1
)2 = l21

(X − xJ′
2
)2 + (Y − yJ′

2
)2 + (Z − zJ′

2
)2 = l22

(X − xJ′
3
)2 + (Y − yJ′

3
)2 + (Z − zJ′

3
)2 = l23

⇒ Z = −b+
√
d

2a
; X =

a1Z + b1
dnm

; Y =
a2Z + b2
dnm

with

w1 = y2J′
1
+ z2J′

1

w2 = x2
J′
2
+ y2J′

2
+ z2J′

2

w3 = x2
J′
3
+ y2J′

3
+ z2J′

3

dnm = (yJ′
2
− yJ′

1
)xJ′

3
− (yJ′

3
− yJ′

1
)xJ′

2

a1 = (zJ′
2
− zJ′

1
)(yJ′

3
− yJ′

1
)− (zJ′

3
− zJ′

1
)(yJ′

2
− yJ′

1
)

b1 = −
(w2− w1)(yJ′

3
− yJ′

1
)− (w3− w1)(yJ′

2
− yJ′

1
)

2
a2 = −(zJ′

2
− zJ′

1
)xJ′

3
+ (zJ′

3
− zJ′

1
)xJ′

2

b2 =
(w2− w1)xJ′

3
− (w3− w1)xJ′

2

2

a = a12 + a22 + dnm2

b = 2(a1b1 + a2(b2− yJ′
1
dnm)− zJ′

1
dnm2)

c = (b2− yJ′
1
dnm)2 + b12 + dnm2(z2J′

1
−

(
l1 + l2 + l3

3

)2

)

d = b2 − 4ac
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8.1.3 Triangulation equation

The triangulation equation determines the coordinates of an object in a 3D space from its position in
several images. For this, first, the distortion has been corrected using the intrinsic parameters, and the
images rectified with the extrinsic parameters.

Let represent the focal length f , the distance between the cameras’ optical center b, and the width
and the height w and h. Consider u1 and u2 as the 2D homogeneous vectors, capturing the object’s
coordinates within images left and right, respectively.

Z =
b · f

Xu1 −Xu2

X =
Z · (Xu1 − w/2)

f

Y =
Z · (Xu1 − h/2)

f

Here, X, Y , and Z are the spatial coordinates of the object.

8.2 Gantt diagram
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