
Development of Adaptive Human-Machine

Interaction and Multi-User Capabilities in LOTUSim

for Maritime Human-Drone Teaming

Author: DUBROMEL Marie - FISE 2025 - Robotics
Naval Group Supervisor: Pr. BUCHE Cédric

Master Jury President: Pr. HARDOUIN Laurent
ENSTA Supervisor: Pr JAULIN Luc

Report content checked by: BUCHE
Cédric

Check Date Signature

. .

(École Nationale Supérieure des Techniques Avancées (ENSTA))
(31/03/2025–05/09/2025)

© Naval Group Pacific. All rights reserved 2025. Both the content and the form of this document and its appendices are the property
of Naval Group Pacific and/or of third parties. It is therefore prohibited to copy, duplicate, extract or transmit all or part of the

document or its appendices, by any means and in any form, without the prior written consent of Naval Group Pacific. The information
contained in this document and its appendices is provided for information purposes only. Naval Group Pacific shall not be held liable

for any damage resulting from the use of this document or its appendices. Naval Group Pacific – SAS with capital of 562 000 000 euros
– RCS Paris 418 163 895 – SIRET 418 163 895 00135 – APE 3011 Z

©Naval Group SA property, 2025, all rights reserved. 1

21/07/25

madei
Crayon

madei
Crayon

1 Acknowledgements

I would like to express my deepest gratitude to Professor Cedric BUCHE for his
exceptional guidance, advice, and support throughout this internship. His mentorship has
been instrumental not only in supporting my technical and professional development but
also in helping me adapt and thrive in life outside of work during my time in Australia.
I am truly grateful to have been part of a project I deeply believe in. Thank you for
entrusting me with meaningful tasks and for always encouraging curiosity and initiative.

I am also sincerely thankful to S.B. for warmly welcoming me into the company,
making me feel safe and confident, and for introducing me to the tools and professional
practices essential to evolving in a large-scale industrial environment.

A heartfelt thanks to J.G. for her continuous support during the entire internship. Her
technical guidance, availability, and willingness to share her experience made a significant
impact on my progress and confidence.

I would also like to thank B.N.M. for taking the time to explain the strategic and
organisational challenges of the defense sector. Her perspective helped me step back from
the technical details and better appreciate the broader picture and societal implications
of our work.

Many thanks to B.D. as well, with whom it was a pleasure to collaborate and combine
efforts on our shared objectives.

Finally, I extend my deep appreciation to Professor Luc JAULIN for introducing
me to the world of robotics, for his inspiring teaching, and for encouraging me to pursue
research beyond borders. His passion for robotics continues to motivate me to delve
further into this field.

©Naval Group SA property, 2025, all rights reserved. 2

Abstract

This report presents the development and evaluation of LOTUSim, a modu-
lar and real-time simulation platform designed to support research in multi-agent
autonomous robotics and human-machine interaction. The system enables collab-
orative operations between multiple users and robotic agents, such as Unmanned
Underwater Vehicles (UUVs), surface drones, and aerial systems, within a shared,
high-fidelity 3D environment. Key contributions include the integration of physio-
logical and cognitive user tracking tools (such as eye trackers, leap motion), enabling
adaptive interfaces that respond to the operator’s state in real time. Additionally,
the implementation of a multi-user architecture, to facilitate distributed simulation
and shared situational awareness among operators.

Comprehensive benchmarks were conducted to validate the simulator’s perfor-
mance across various domains, including underwater coordination, real-time AI
training with accelerated time, and large-scale agent deployment. The results
demonstrate LOTUSim’s capacity to support both system-level evaluations and
human-centered experimentation. The platform lays the groundwork for future ex-
tensions, and iterative improvements, such as energy modeling, camera integration,
and broader applications in defense, environmental monitoring, and robotics re-
search. LOTUSim represents a valuable and extensible tool for advancing the state
of the art in autonomous systems and human-machine collaboration.

Keywords : Marine Robotics, Simulation, Multi-Agent System, Autonomous
Agents, User Tracking Sensors, Benchmarking

©Naval Group SA property, 2025, all rights reserved. 3

CONTENTS

Contents

1 Acknowledgements 2

2 Introduction 7
2.1 Contextualising the Emergence of Autonomous Drones 7
2.2 Presentation of Naval Group Pacific, and partnership the Crossing Labo-

ratory and the LOTUSim platform . 7
2.3 Objectives of this study . 8

3 Multi User Support 9
3.1 State of the Art . 9
3.2 Overall Functioning . 10

3.2.1 Launcher and Connection Setup 11
3.2.2 ROS Integration . 11
3.2.3 Game Management and Player Instantiation 12
3.2.4 Player Control and Networking 12
3.2.5 User Interface and Visual Feedback 13
3.2.6 Spectator Camera . 14

3.3 Player Mode . 14
3.4 Spectator Mode . 15

4 Human-Machine Tracking and interaction 16
4.1 Empatica Watch . 16
4.2 Immersive environment : VR headset . 17

4.2.1 State of the Art: Comparison of Head-Mounted Displays for VR-
Enhanced Simulation . 17

4.2.2 Integration : Meta Quest 2 . 18
4.3 Leap Motion : Natural Interaction . 18

4.3.1 Leap Motion Working Principle and Justification 18
4.3.2 Leap Motion Integration for Spectator Mode Navigation 20

4.4 Eye Tracking . 20
4.4.1 Tobii Glasses Pro 3 . 21
4.4.2 Tobii Eye Tracker 5 . 27

5 LOTUSim Benchmark 29
5.1 Overview of LOTUSim . 29

5.1.1 LOTUSim Architecture and Integration 29
5.1.2 Multi-Agent Control System . 30
5.1.3 Environment Modeling in LOTUSim 31

5.2 First tests on LOTUSim . 31
5.2.1 Benchmark Tests and Settings . 31

5.3 Benchmark on UUV Simulator . 34
5.3.1 Real Time Simulations on BlueROVs 36
5.3.2 Simulations for AI training : Accelerated Time Benchmarking . . 37
5.3.3 UUVSim Benchmark Results . 37

5.4 Benchmark on LRAUV Simulator . 40
5.4.1 Real Time Simulations on LRAUVs 40

©Naval Group SA property, 2025, all rights reserved. 4

CONTENTS

5.4.2 Simulations for AI training : accelerated time 42
5.4.3 LRAUV Sim Benchmark Results 42

6 Setting up the three domains integration 43

7 Merging proof of concepts with a scenario and a ROS interface 44

8 Future Development 45
8.1 Integration of PhD Students’work . 45
8.2 Camera Integration and Algorithm Testing 45
8.3 LOTUSim-Energy: a Tool for Renewable Energy Infrastructure 45

9 Conclusion 47

A Appendix 48

B Scientific Paper Publications 49

References 50

©Naval Group SA property, 2025, all rights reserved. 5

LIST OF FIGURES

List of Figures

1 Illustration of the Silent Storm scene . 10
2 Illustration of the new lobby created to start a simulation 11
3 Kyle Robot Fbx Asset . 12
4 Illustration of the Robot Kyle Firing . 13
5 Illustration of the Robot with name and health bar 13
6 Illustration of the multi-user support with two players 15
7 Illustration of the multi-user support with a spectator and a player . . . 15
8 Picture of the Empatica E4 watch . 16
9 Illustration of the Occulus Rift S headset 18
10 Illustration the Meta Quest 2 headset . 18
11 Illustration of the Microsoft HoloLens 2 18
12 Picture of the Leap Motion . 19
13 Illustration of the finger joints detection by the Leap Motion 19
14 Different hand poses implemented for the LOTUSim 21
15 Picture of a user using the Leap Motion integrated in LOTUSim 21
16 Picture of the Tobbi Pro Glasses 3 . 22
17 Illustration of the calibration process for the Tobii Pro Glasses 3 23
18 Comparison between Normalised (gaze2d), Unity (pixel), and Tobii 3D

(gaze3d) coordinate systems . 24
19 Illustration the red rings representing the user’s gaze in Unity 25
20 Illustration of the conversion issue between gaze2d and the rendering of

the red ring (user’s gaze trace in Unity in LOTUSim) 26
21 Illustration of the Tobii Eye Tracker 5 28
22 Illustration of the Eye Tracker 5 in LOTUSim in bubble mode 29
23 Illustration of the Eye Tracker 5 in LOTUSim in heatmap mode 29
24 LOTUSim Architecture Overview . 30
25 Illustration of the BlueROV . 36
26 Illustration of the UUV Simulator . 36
27 Graphic of the evolution of the RAM (%) depending on the number of

BlueROVs spawned (visually, only 333 spawned) 38
28 Simulations of BlueROV: UUVSim vs LOTUSim’s Results 39
29 Graphic of the evolution of the FPS depending on the number of BlueROVs

spawned (visually, only 333 spawned) . 39
30 Simulations of BlueROV: UUVSim vs LOTUSim Accelarated Time’s Re-

sults (RTF) . 40
31 Illustration of an LRAUV in LRAUVSim 41
32 Illustration of the Aerial Gazebo World 43
33 Illustration of the General Gazebo World from the Silent Storm scenario 43
34 Illustration of the scenario . 44
35 Picture of the CDA from Naval Group 45
36 Illustration of an off-shore wind turbine farm created in LOTUSim 46
37 Illustration of bluerov patroling for a maintenace mission in awind turbine

farm in LOTUSim . 46
38 Personal Planning for Tasks First Period 48
39 Personal Planning for Tasks Second Period 48

©Naval Group SA property, 2025, all rights reserved. 6

2 Introduction

2.1 Contextualising the Emergence of Autonomous Drones

Autonomous drones have become a cornerstone of modern technological advancement,
revolutionising sectors ranging from environmental monitoring to defense, logistics, and
disaster response. In marine contexts especially, autonomous systems, including surface
and underwater drones, offer the potential to conduct long-duration missions in harsh
environments where human access is limited or risky. As the complexity of these sys-
tems increases, so too does the need for robust, scalable, and realistic simulation tools
that enable safe development and testing. The risk lies in the technological feasibility
of deploying such systems, reliability, efficiency, and safety implications of autonomous
operations in real-world maritime environments.

2.2 Presentation of Naval Group Pacific, and partnership the
Crossing Laboratory and the LOTUSim platform

In this context, the company Naval Group Pacific is deeply committed to addressing
these challenges through innovation-driven collaboration. As a subsidiary of Naval Group,
Naval Group Pacific aims to become a strategic industrial partner in Australia for research
and innovation. By accelerating R&D efforts, Naval Group Pacific plays a vital role in
an open innovation ecosystem that promotes academic-industry synergies. A significant
driver of this initiative is the CROSSING International Research Laboratory (IRL), es-
tablished in February 2021. Created in partnership with the French National Centre for
Scientific Research (CNRS) and leading academic institutions, CROSSING serves as a
hub for upstream research in human-autonomous systems teaming and is a big partner
for Naval Group Pacific. This lab not only coordinates research and technology strategies
but also facilitates funding acquisition and long-term collaborative partnerships between
scientific and industrial actors. During this internship, they have made available all the
sensors treated in section 4 of this study.

Moreover, simulation plays a central role in marine robotics operations, offering a
cost-effective and repeatable framework for developing and evaluating robotic systems
operating across surface, underwater, and aerial domains. It has been a big topic and
tool in studies for both Naval Group and CROSSING. Effective simulators must support
human-in-the-loop interaction, empowering users to actively engage in the simulation
process, a capability that proves particularly valuable for operator training and teleop-
eration interface development. Moreover, realistic simulation environments are essential
for training artificial intelligence (AI) models, as they enable the generation of large-
scale, diverse, and controllable datasets that are often difficult or impossible to gather
through physical experimentation. To fulfill these goals, simulation systems must accu-
rately model physical phenomena such as hydrodynamics, buoyancy, drag, thrust, and
other domain-specific behaviors.

In this context, Naval Group Pacific has started to develop LOTUSim, Learning Oper-
ational Teaming with Unmanned Systems simulation, a real-time, cross-domain maritime
simulation platform designed for human-vehicle interaction and multi-agent experimen-
tation [11]. Developed in Unity and Gazebo, LOTUSim combines immersive user ex-
perience with realistic surface, underwater, and aerial physics. The platform supports
various agent types, including unmanned underwater vehicles (UUVs), surface vessels,

©Naval Group SA property, 2025, all rights reserved. 7

2.3 Objectives of this study

and aerial drones, enabling the design and testing of complex scenarios involving co-
operative or autonomous behaviors. Thanks to its modular and scalable architecture,
LOTUSim accommodates both small-scale and large-scale experiments involving up to
hundreds of agents. Furthermore, its human-centered design allows operators to pilot
vehicles in real-time while simultaneously capturing rich data streams for AI training,
algorithm validation, or scenario testing. As such, LOTUSim serves as both an exper-
imental playground for human-autonomous teaming and a powerful tool for advancing
autonomy in marine systems.

2.3 Objectives of this study

This internship takes place within the context of developing advanced features for LO-
TUSim, with the aim of enhancing its multi-user and human-machine interaction capabil-
ities (section 3). A key objective is to enable distributed simulation experiences through
real-time communication systems and operator-specific perspectives. This approach sup-
ports collaborative mission scenarios where multiple users share situational awareness
and coordinate decisions. Additionally, the project investigates a variety of physiological
and cognitive tracking technologies, including heart rate monitors (Empatica E4), VR
headsets (Meta Quest 2), hand tracking (Leap Motion), and eye-tracking systems (Tobii
Eye Tracker 5 and Glasses Pro 3) to create adaptive interfaces (section 4). These sen-
sors enable the system to adjust dynamically based on the user’s state, promoting more
intuitive control and enhanced situational engagement.

The internship also involves benchmarking other simulation platform (section 5) using
agents such as BlueROVs and LRAUVs. This includes rigorous testing of the performance
and time-accelerated AI training simulations. Furthermore, the internship contributes to
the long-term development of LOTUSim by establishing proof-of-concept features, sup-
porting the integration of PhD research contributions, and preparing tools for energy-
aware simulations (section 8). Through these efforts, the work aims to advance LO-
TUSim toward becoming a cutting-edge platform for autonomous system development
and immersive human-robot teaming experimentation, in order to be a strong tool for
researchers.

This report had to be written a month and a half before the official end of the intern-
ship, as Naval Group Pacific requires a security check to be completed one month prior
to the report submission date. As a result, additional work has since been carried out,
including further benchmark results as well as the developments described in sections 6
and 8. These contributions will not appear in this written document but will instead be
presented during the oral presentation in September.

©Naval Group SA property, 2025, all rights reserved. 8

3 Multi User Support

Before the beginning of this work, the LOTUSim platform was offering one simulation,
where several agents could be spawned and move respecting their physics, and the physic
of the environment. But the user can only monitor the simulation with one computer,
and cannot interact with other user in the simulation. Therefore, the first part of this
internship was to develop a multi-user support, with distributed operator views and real-
time communication systems for multi-user environments in order to have collaborative
scenarios. These systems should then enhance coordination and decision-making among
operators by providing shared situational awareness and communication capabilities.

3.1 State of the Art

To develop a real-time collaborative support in a simulation platforms such as LOTUSim,
the selection of a robust and scalable multiplayer framework is critical to ensure low-
latency communication, flexible user synchronisation, and seamless integration within
Unity. Photon Unity Networking 2 (PUN2) [13] is a widely adopted solution that pro-
vides an optimised client-server architecture for Unity-based applications. Compared
to other networking frameworks such as Unity’s deprecated UNet, Mirror, or MLAPI
(now Unity Netcode for GameObjects), PUN2 offers several advantages, particularly in
terms of integration simplicity, cloud-hosted services, and built-in support for room-based
matchmaking. Following studies found in the literature, the comparaison of performance
has mostly be done between PUN2 and Mirror, as they are the two most used software.
Overall, these two networking softwares are very effective and depend a lot of the needs of
the developer. For the LOTUSim, as this support will be at first a proof of concept, the
chosen software needs to be integrated quickly with a light structure. So even thought in
a controlled evaluation conducted at FIT Turku Centre [1], where Mirror and PUN2 were
directly compared under simulated VR workloads, Mirror demonstrated lower synchro-
nisation delay and more stable frame rates in local-area network setups, particularly for
small groups, PUN2 exhibited higher latency in movement updates: 80–120 ms (cloud
optimised) for PUN and 40–80 ms (Local Area Network), 150 ms (Wide Area Network),
this remained within acceptable bounds for many applications including LOTUSim, and
it is for a VR context which won’t always be the case fot LOTUSim. Complementing
these results, a Toxigon 2025 industry benchmark [24] highlighted the strengths of PUN2
in deployment speed and global scalability. The cloud-hosted architecture of PUN2 en-
sures consistent round-trip latencies under 100 ms between regions, thanks to automatic
selection of optimal server nodes when Mirror can be a bit more complex to setup.
Considering the goals of this internship to create a first version of multi-user support
in LOTUSim, the choice of Photon Unity Networking 2 (PUN2) was based on practical
needs. Although Mirror shows slightly better performance in local networks, PUN2 of-
fers much faster and easier integration into Unity, along with built-in matchmaking and
cloud-based hosting. These features made it easier to quickly build a working prototype.
Its support for multiple platforms, user-friendly tools, and reliable global servers provide
a solid base for enabling collaborative use of the LOTUSim platform, where real-time
communication and shared awareness between users are key.

©Naval Group SA property, 2025, all rights reserved. 9

3.2 Overall Functioning

3.2 Overall Functioning

The integration of a multi-user support has been done in different steps, and the first one
consisted of creating a multi-user game/environment from a basic Unity scene, with few
elements, to develop the correct code, and then integrate it into a more complex scene and
scenario of LOTUSim. At the end of this phase, and after reading the documentation of
the PUN2 plugin [7], the code developed was integrated into a larger scene and the Unity
project part of the LOTUSim project called SilentStorm (Fig 1). This scene contains
various elements and agents such as :

• An Island

• PHA (porte-hélicoptères amphibies)

• FREMM (frégates multimissions)

• LRAUV

• BlueROV

• Mines

• Drones X500

• WAMV (Wave Adaptive Modular Vehicle)

Figure 1: Illustration of the Silent Storm scene

All these entities are scattered into three different domains: underwater, on the surface
of the sea, and in the air.

At this point, the project supports for both players (controlling robots) (para-
graph3.3) and spectators (observing freely) (paragraph 3.40. Each script plays a key
role in establishing connectivity, spawning users, and enabling network-synchronised in-
teraction.

©Naval Group SA property, 2025, all rights reserved. 10

3.2 Overall Functioning

3.2.1 Launcher and Connection Setup

The simulation begins in the Launcher scene, where users:

• Enter their name (PlayerNameInputField.cs)

• Choose a role: player or spectator (through a Toggle object in Unity to tick ir not)

• Specify ROS IP/port (stored via PlayerPrefs) : By default, the ROS IP = 127.0.0.1
(local ip adress) and the ROS PORT = 10000

• Launch the simulation with feedback from the loading animation (LoaderAnime.cs)

The Launcher.cs script then connects to Photon and loads the main scene (SilentStorm)
using PhotonNetwork.LoadLevel.

Key Parameters:

• LoaderAnime.cs

– speed (float) — Angular speed in degrees per second.

– radius (float) — Radius of the rotating particle effect.

– particles (GameObject) — Reference to particle system.

• PlayerNameInputField.cs

– playerNamePrefKey (string) —Key used for saving the player name in PlayerPrefs
(Fig 2).

Figure 2: Illustration of the new lobby created to start a simulation

3.2.2 ROS Integration

The ROSConnectionConfigurator.cs reads the stored ROS parameters and dynamically
sets up a ROSConnection component to communicate with the ROS2 backend. This
enables publishing/subscribing to topics like /it/position during runtime.

Key Parameters:

• (Typically parameters like ROS IP address, port, and topic names are configurable
here.)

This part have been implemented in order to merge the multi-user support with the
rest of the LOTUSim.

©Naval Group SA property, 2025, all rights reserved. 11

3.2 Overall Functioning

3.2.3 Game Management and Player Instantiation

Once inside the room:

• GameManager.cs checks whether the user is a player or spectator.

• Players are spawned using PhotonNetwork.Instantiate with their robot avatar.

• Spectators activate the SpectatorCamera only.

The SetupCamera() method ensures only the correct camera (robot-attached or free-
flying) is active and tagged as "MainCamera".

Key Parameters:

• GameManager.cs

– playerPrefab (GameObject) — Prefab for the player robot (Fig 3).

– spectatorCameraRobotPrefab (GameObject) — Prefab for the spectator cam-
era.

Figure 3: Kyle Robot Fbx Asset

3.2.4 Player Control and Networking

Each player:

• Is instantiated with PlayerManager.cs, which manages input, health, beam inter-
actions, and scene transitions.

• Uses PlayerAnimatorManager.cs to trigger animations like walking and jumping
in sync with movement inputs.

• Controls a beam weapon (Fig 4) via input (Fire1) and gets damaged when inter-
secting with other players’ beams.

Networking state (like IsFiring and Health) is synchronized via the IPunObservable
interface.

Key Parameters:

• PlayerManager.cs

– Health (float) — Player health.

©Naval Group SA property, 2025, all rights reserved. 12

3.2 Overall Functioning

– playerUiPrefab (GameObject) — Player UI prefab for health and name dis-
play (Fig 5).

– beams (GameObject) — Beam weapon GameObject.

• PlayerAnimatorManager.cs

– directionDampTime (float) — Damp time for directional input smoothing.

Figure 4: Illustration of the Robot Kyle Firing

3.2.5 User Interface and Visual Feedback

Each player is followed by a UI canvas:

• PlayerUI.cs instantiates a nameplate and health bar.

• The UI follows the robot’s position and becomes transparent if the player isn’t
visible.

• Player names come from the Photon nickname set in the launcher.

Key Parameters:

• PlayerUI.cs

– screenOffset (Vector3) — Pixel offset of UI above player.

– playerNameText (TMP Text) — Text component for player name.

– playerHealthSlider (Slider) — Slider component for health.

Figure 5: Illustration of the Robot with name and health bar

©Naval Group SA property, 2025, all rights reserved. 13

3.3 Player Mode

3.2.6 Spectator Camera

Spectators are not associated with any robot:

• Instead, SpectatorCamera.cs gives them full 6DOF navigation using keyboard
(WASD + QE) and mouse look.

• The camera has acceleration with Shift, customizable speed, and clamped pitch
for stability.

• This role is useful for supervisors or passive observers.

Key Parameters:

• SpectatorCamera.cs

– baseMoveSpeed (float) — Base movement speed.

– lookSpeed (float) — Mouse look sensitivity.

– accelerationRate (float) — Shift key acceleration rate.

– maxShiftMultiplier (float) — Maximum speed multiplier when accelerating.

The system is designed for modularity, role separation, and network synchro-
nisation. Indeed, for the LOTUSim Simulator, this support is a feature which can be
enabled for different purpose, and more sub features could be added. Here some example
of small features have been added, such as the health bar, the beams, to show that it
is possible. As this simulator should be a tool for researchers, they will be able to keep
developing certain part of the simulation to serve their work. But whether controlling a
robot or spectating, each user connects to a unified simulation with ROS-ROS2 integra-
tion and consistent visual/audio state. In the end, the architecture is scalable and can
be extended for additional robot types, control interfaces, or collaborative tasks.

3.3 Player Mode

Now, as described in the previous section, two different modes are available in this multi-
user support. The first one, the player mode, allows a user to take direct control over
a simulated robot, enabling hands-on training in mission scenarios that reflect real-life
challenges. This mode is particularly valuable in high-risk domains such as defense op-
erations or environmental interventions, for instance during the maintenance of offshore
wind turbines, where quick decision-making and operational accuracy can be critical.
The player is spawned using a prefab (playerPrefab) and is controlled via inputs such as
movement and action triggers. Camera control is handled by the CameraWork.cs script,
which follows the player during the simulation. With this mode, several players can in-
teract in and with their environment, but also with other players (Fig 6), connected to
the same simulation.

©Naval Group SA property, 2025, all rights reserved. 14

3.4 Spectator Mode

Figure 6: Illustration of the multi-user support with two players

3.4 Spectator Mode

The second mode, called the spectator mode can be used with or without operators
connected to the simulation through the player mode (Fig 7). It offers a flexible and
non-intrusive way to observe missions from various perspectives, providing trainers, su-
pervisors, or engineers with situational awareness without directly participating in the
simulation. This is essential for mission debriefing, team coordination, and scenario
validation, especially in collaborative or educational settings. Therefore, the spectator
camera (SpectatorCamera.cs) can be freely moved and rotated using configurable param-
eters such as baseMoveSpeed, lookSpeed, and acceleration settings (accelerationRate,
maxShiftMultiplier). When enabled, this mode disables player instantiation and instead
activates an orbiting or free-flying camera that provides a holistic view of the simulated
environment.

Figure 7: Illustration of the multi-user support with a spectator and a player

©Naval Group SA property, 2025, all rights reserved. 15

4 Human-Machine Tracking and interaction

As the LOTUSim is a real-time maritime simulation platform for human-drone teaming,
which would be a base for very diverse research works, one of the goal is to make sure the
operators benefits from an immersive interface to experiment the simulation platform and
to train themselves with new kinds of human-autonomous agents collaborative scenarios.
In this section, multi-sensor systems (such as eye trackers, heart rate monitors, cameras)
to capture real-time data for analysing human factors have been integrated. This data will
serve as the foundation for developing adaptive interfaces that dynamically respond to
the operator’s physiological and cognitive state. Additionally, offer a range of interaction
methods (like eye control, gesture recognition...) to enhance situational awareness and
facilitate more intuitive navigation of the tactical situation.

An important thing to note is that the sensors which could be possibly integrated
in the LOTUSim are only the ones available wether through the CROSSING Lab, or
directly via Naval Group Pacific. This explains why some state of art have a restrictive
list of sensors. As all these implementations are proof of concepts for research purposes,
it is not necessarily in the company’s best interest to spend a lot of money for the best
and latest sensors.

4.1 Empatica Watch

As the CROSSING Lab is one of Naval Group Pacific’s partners, the Empatica E4 watch
(Fig 8) and its sensors were made available for potential integration into the simulator.
Integrating the Empatica E4 watch into the LOTUSim platform could have brought valu-
able insights into human physiological and cognitive states during simulation. The E4 is
a medical grade wearable device equipped with multiple sensors, including electrodermal
activity (EDA), heart rate, skin temperature, and accelerometer data, all of which can
be exported in CSV format for further analysis. These real-time physiological signals can
help detect stress, cognitive workload, or fatigue levels, providing a deeper understanding
of operator states during human-drone collaboration scenarios or for research work about
human fatigue in simulations. Such data would be essential for building adaptive inter-
faces that respond to the current condition of the user, enhancing immersion, decision
making, and overall performance.

Figure 8: Picture of the Empatica E4 watch

However, as stated in the official notice from Empatica [10], the E4 software suite,
including E4 Connect, E4 Manager, E4 Realtime App, E4 Streaming Server, and E4 SDK,
has been officially discontinued and can no longer collect or store data, rendering the
provided services inoperative. And unfortunately, without the aforementioned software,
the data cannot be extracted from the watch, and therefore not analysed. The only

©Naval Group SA property, 2025, all rights reserved. 16

4.2 Immersive environment : VR headset

solution would be to upgrade to their latest model, which was not the priority of the
company at this stage of development of the platform.

4.2 Immersive environment : VR headset

For the implementation of this sensor, the design considerations were driven by the ne-
cessity to incorporate both a VR headset and a Leap Motion controller (paragraph 4.3.2)
to enable hand-tracking capabilities within the immersive environment

4.2.1 State of the Art: Comparison of Head-Mounted Displays for VR-
Enhanced Simulation

In the context of immersive simulation environments such as LOTUSim, the integration
of Virtual Reality (VR) headsets plays a crucial role in enhancing user presence, natural
interaction, and spatial awareness. Among the most relevant Head-Mounted Displays
for this purpose and available for Naval Group Pacific, are the Oculus Rift S, Meta
Quest 2, and Microsoft HoloLens 2. Each device presents a different trade-off between
immersion, tracking capabilities, computational independence, and compatibility with
hand-tracking peripherals such as the Leap Motion Controller.

The Oculus Rift S (Fig 9), launched by Oculus in 2019, offers high-quality inside-out
tracking with five onboard cameras and a refresh rate of 80 Hz. It requires a tethered con-
nection to a PC, allowing access to high-performance rendering and simulation engines.
While the Rift S has been discontinued in favor of newer devices, its support for Unity,
low latency, and compatibility with the Leap Motion (via USB integration) make it a
technically robust but legacy choice for desktop-based simulation platforms. However,
the lack of native support and manufacturer discontinuation raises concerns regarding
long-term viability in research and development.

In contrast, the Meta Quest 2 (Fig 10) represents a more recent VR solution, sup-
porting both untethered operation and Oculus Link for PC-based simulation. With a
resolution of 1832×1920 per eye and a 90-120 Hz refresh rate, it delivers higher visual
fidelity compared to the Rift S. Its inside-out tracking system and growing developer
ecosystem make it suitable for both local and remote training applications. Importantly,
its support for Unity XR plugins and OpenXR ensures straightforward integration with
simulation software like LOTUSim. Although Leap Motion support on the Quest 2 re-
quires custom integration (since it lacks USB-A ports), recent research demonstrates
successful attachment via external mounts and USB-C adapters, enabling hand-tracking
in VR environments. Or another possible implementation would be to directly use the
hand controllers of the head set.

The Microsoft HoloLens 2 (Fig 11), meanwhile, differs fundamentally as it imple-
ments a mixed reality (MR) paradigm rather than full VR. It uses spatial mapping and
see-through holographic displays, allowing users to interact with virtual overlays while
maintaining perception of the physical environment. Although it features robust hand
tracking and eye tracking without external peripherals, its limited field of view (approxi-
mately 52◦ diagonal) and relatively low holographic resolution make it less suited for fully
immersive training simulations. Moreover, HoloLens 2 is optimised for industry-specific
AR workflows rather than fully immersive VR scenes, which are central to LOTUSim’s
objective of simulating high-stakes scenarios like offshore wind turbine maintenance or
defense training.

©Naval Group SA property, 2025, all rights reserved. 17

4.3 Leap Motion : Natural Interaction

Figure 9: Illustration of
the Occulus Rift S headset

Figure 10: Illustration the
Meta Quest 2 headset

Figure 11: Illustration of
the Microsoft HoloLens 2

Therefore, for implementing VR atop the LOTUSim simulator while maintaining
compatibility with the Leap Motion Controller and achieving a high level of immersion,
theMeta Quest 2 offers the most balanced solution. Its performance, developer support,
and hybrid tethering make it suitable for both research and deployment. The Rift S, while
still viable, is becoming obsolete, and the HoloLens 2, although technologically impressive,
aligns more closely with augmented rather than immersive virtual training environments.

4.2.2 Integration : Meta Quest 2

A Unity simulation was developed with a basic environment in which the Meta Quest 2
headset was successfully integrated. However, during the attempt to integrate the head-
set into the existing LOTUSim simulator, the process failed due to compatibility issues
with the High Definition Render Pipeline (HDRP) package. Indeed, LOTUSim relies on
a highly realistic visual environment, including detailed waves, sky, and clouds, which
results in graphics quality that exceeds what the Meta Quest 2 can render effectively.
Displaying such content in the headset would require a significant reconfiguration of the
HDRP rendering pipeline, which was outside the scope of this task. Therefore, it was de-
cided to postpone this integration effort and proceed with the next planned development
phase.

4.3 Leap Motion : Natural Interaction

To enhance the natural interaction within the simulator’s spectator mode, a Leap Motion
hand tracking (Fig 12) was integrated to enable operators to navigate without relying
on traditional keyboard inputs. This approach allows operators to move freely by simply
gesturing with their hands in physical space, which is particularly useful for training
scenarios in confined or constrained environments such as command boats or maintenance
rooms. This integration is a proof of concept, and the device was lent again by the French
Australian CROSSING Lab.

4.3.1 Leap Motion Working Principle and Justification

The Leap Motion Controller (LMC) operates using stereo infrared cameras in combi-
nation with projected infrared (IR) light to create a high-resolution, low-latency 3D
interaction space extending several tens of centimeters above the device [4]. Specifically,

©Naval Group SA property, 2025, all rights reserved. 18

4.3 Leap Motion : Natural Interaction

Figure 12: Picture of the Leap Motion

the system captures images at high frame rates (up to 120 Hz) using two 640× 240 IR
cameras spaced approximately 40mm apart. The depth estimation is achieved through
stereo-vision algorithms supported by LED illumination in the near-infrared spectrum
(around 850 nm) according to Daniel Bachmann, Frank Weichert, and Gerhard Rinke-
nauer’s paper [4]. This hardware configuration enables the detection and tracking of up
to 27 hand elements, including finger joints, palm position, orientation, and velocity (Fig
13), which is more than enough for the LOTUSim and will guarantee precise gesture
recognition and responsive control.

Figure 13: The Leap Motion Controller (LMC) hand model provides access to the posi-
tions of individual bones in the tracked hand. The system tracks the metacarpal, proximal
phalanx, intermediate phalanx, and distal phalanx for each finger (the thumb is modeled
with zero-length metacarpal). (a) Hand model based on the original diagram by Mari-
anna Villareal1, used by the LMC SDK; (b) view of a detected hand.

According to Weichert [4], the Leap Motion Controller offers sub-millimeter ac-
curacy in static conditions and approximately 1–1.2mm error in dynamic scenarios.
While the interaction space is limited—commonly ranging from 80mm to 300mm above
the sensor within a 150◦× 120◦ field of view—this is sufficient for natural, contactless
hand-gesture control.

Integrating this technology into the simulator enhances the spectator mode naviga-
tion by providing a hands-free and intuitive control interface. This allows operators
to navigate complex environments, such as ship bridges or wind turbine nacelles, simply
through hand gestures, without needing physical input devices.

As a result, this interaction method is highly appropriate for LOTUSim, espacially
thanks to its precision and low latency, perfect to control the free-fly camera in real time.

1https://commons.wikimedia.org/wiki/File:Scheme human hand bones-en.svg

©Naval Group SA property, 2025, all rights reserved. 19

https://commons.wikimedia.org/wiki/File:Scheme_human_hand_bones-en.svg

4.4 Eye Tracking

4.3.2 Leap Motion Integration for Spectator Mode Navigation

The implementation follows the Ultraleap Unity integration guidelines [25], including
adding Unity’s XR Origin to the scene for proper camera positioning relative to the XR
device (in case the LOTUSim would one day have a VR interface), and configuring the
project’s scripting backend and architecture to ensure compatibility with Leap Motion
hardware. Using the Leap Motion SDK, several PoseDetector game objects were created
to recognise specific hand poses corresponding to movement directions: forward, back,
left, right, up, and down.

What can also be noted is that the Leap Motion can be head mounted (usefull for
VR) and desk mounted. For this project, the Leap is set on the desk, the cable pointing
to the left so that the user is completely free and doesn’t have to wear any device.

The core of the movement logic is implemented in a LeapMotionMovement script,
which reads the detected poses each frame and translates them into directional movement
vectors. Specifically, for each detected pose pi, the corresponding movement vector vi is
added to a cumulative movement vector v:

v =
∑
i

vi · 1pi (1)

where 1pi is an indicator function that equals 1 if the pose pi is currently detected,
and 0 otherwise.

For example:

• The “move forward” pose adds the camera’s forward vector f .

• The “move left” pose subtracts the camera’s right vector r.

• Vertical movement uses the world up and down vectors u and −u.

The resulting vector v is then scaled by a speed factor s and the frame time ∆t,
producing the displacement ∆x:

∆x = s× v ×∆t (2)

This displacement is applied via Unity’s CharacterController.Move() method, al-
lowing smooth and physics-aware movement of the spectator camera.

To ensure reliable pose detection and control responsiveness, hand positions were
calibrated using the Leap Motion Pose Recorder, storing each pose (Fig 14) in dedicated
HandPoses assets. This enables accurate detection of the operator’s intended movements
while minimising unintended gestures triggering the camera. Additionally, the movement
speed is adjustable in the LeapMotionMovementController object within the scene to
accommodate operator preferences and training requirements.

Overall, this implementation provides a natural and intuitive interface for simulator
navigation (Fig 15), which can significantly improve operator immersion and training
efficiency in real-life critical mission scenarios, and it works for for Windows and Linux.

4.4 Eye Tracking

Another way to enhance the simulator and could help measuring the quality of the ex-
perience of the user in the simulator would be to be able to track the gaze of the user.

©Naval Group SA property, 2025, all rights reserved. 20

4.4 Eye Tracking

Figure 14: Different hand poses implemented for the LOTUSim

Figure 15: Picture of a user using the Leap Motion integrated in LOTUSim

In fact, as a research tool, the LOTUSim could be used in the medical field, where some
researchers could be interested in knowing the stress, fatigue or interest of the user while
using the simulator. Furthermore, such a feature could enable safety protocols where the
simulator detects when the user is too stressed or fatigued to continue making critical
decisions. In such cases, the system could trigger a replacement process, an important
safeguard that could potentially save lives during high-risk missions, such as those simu-
lated in rescue operations.

The following paragraph describes the implementation of two different devices. The
first one is the Tobii Glasses, owned by the Crossing Lab, which were the sensors initially
requested for integration into the simulator as part of this project.

4.4.1 Tobii Glasses Pro 3

The Tobii Pro Glasses 3 (Fig 16) are wearable eye trackers designed to capture gaze data
in dynamic, real-world scenarios [20]. In this research, they are employed to determine
and visualise where a user is looking within a Unity-based simulation environment. The
glasses support a sampling frequency of up to 100 Hz and offer wide-angle scene coverage
while maintaining comfort and natural behavior like Thibeault explain in his paper [19].
For data collection and analysis, the optional Tobii Pro Lab software is available. It
provides a comprehensive research platform for experiment design, gaze data recording,
synchronisation with biometric sensors, and precise timing accuracy. Alternatively, third-
party software developed with the Tobii Pro SDK [22] researchers could be used, allowing

©Naval Group SA property, 2025, all rights reserved. 21

4.4 Eye Tracking

full access to the raw gaze data stream and integration with custom Unity applications.
But in this project, the goal is to extract gaze coordinates in real time and overlay them

within the Unity-based LOTUSim simulation. To achieve this, the Tobii Pro Glasses 3
Web API Interface was deemed more suitable, as it provides access to the live scene view,
real-time eye images, and built-in tools to test API functionality. Additionally, the Web
API facilitates data transmission over the network, for an easier integration of gaze data
into the Unity environment.

Figure 16: Picture of the Tobbi Pro Glasses 3

Step 1: Real-Time Gaze Data Acquisition Using the Tobii Pro Glasses 3
Web API

In order to visualise the user’s point of gaze in real time within the Unity, which is used
to render the LOTUSim simulator, the Tobii Pro Glasses 3 were interfaced through their
dedicated Web API. The device was connected to the computer via an Ethernet cable,
enabling stable and low-latency communication. The API Web Interface was accessed
through a local network address (http://tg03b-080201135331.local), which allowed
full access to live eye images, system diagnostics, and streaming endpoints.
Among the various available options for communication, the WebSocket protocol was
selected over HTTP due to its capability for persistent, bidirectional data transmission,
an essential feature for streaming eye-tracking data at a frame rate of approximately
30Hz.

On the Unity side, the integration was implemented using the NativeWebSocket
library[22]. A custom C# script, TobiiG3NativeWebSocketClient, was developed to
handle connection, authentication, and continuous polling of gaze samples via WebSocket
requests. Each gaze sample message was structured as a JSON object containing gaze2d
(normalised coordinates on the viewport) and gaze3d (a 3D vector indicating gaze direc-
tion), along with detailed information for each eye such as gaze origin, direction vectors,
and pupil diameter.

Two types of messages can be used: one for the Inertial Measurement Unit (IMU)
and another for gaze tracking data which will be the one needed for the eye tracking.

©Naval Group SA property, 2025, all rights reserved. 22

http://tg03b-080201135331.local

4.4 Eye Tracking

But before staring the simulation, a calibration needs to be performed. To do so, the

Web API can be used, with a special calibration card (Fig 17). Then the glasses can
be launched with a play button in the Web API, and after that, they are ready to go.

Figure 17: Illustration of the calibration process for the Tobii Pro Glasses 3

- IMU Sample Request (just for further research)
To access the latest IMU sample, the following message is sent:

1 string msg = "{ \"path\":\"rudimentary.imu -sample\", \"id\":2, \"method\":\
"GET\" }";

Listing 1: IMU Sample Request

The corresponding response includes a timestamp and two 3D vectors:

• accelerometer: linear acceleration in m/s2.

• gyroscope: angular velocity in °/s.

1 {
2 "id": 2,
3 "body": {
4 "timestamp": 37.580546,
5 "data": {
6 "accelerometer": [1.24, 9.70, -0.52],
7 "gyroscope": [2.01, -1.53, 1.59]
8 }
9 }

10 }

Listing 2: IMU Response Sample

- Gaze Data Sample Request
To obtain the latest gaze sample, the following command is used:

1 string msg = "{ \"path\":\"rudimentary.gaze -sample\", \"id\":2, \"method\":
\"GET\" }";

Listing 3: Gaze Sample Request

©Naval Group SA property, 2025, all rights reserved. 23

4.4 Eye Tracking

The response includes normalised 2D and 3D gaze data (Fig 18), as well as eye-specific
origin, direction, and pupil diameter:

• gaze2d: normalised 2D coordinates on the scene camera (range: 0 to 1).

• gaze3d: 3D gaze vector in millimeters.

(0;0)

(1;1)

Camera Screen

(a) Normalised screen coor-
dinates (gaze2d)

(0;L) (W;L)

(W;0)(0;0)

Unity Screen Space

(b) Unity screen coordinates
(pixels)

x

y

z

(c) Tobii 3D coordinates
(gaze3d)

Figure 18: Comparison between Normalised (gaze2d), Unity (pixel), and Tobii 3D
(gaze3d) coordinate systems

• eyeleft and eyeright: each includes:

– gazeorigin (mm)

– gazedirection (unit vector)

– pupildiameter (mm)

1 {
2 "id": 2,
3 "body": {
4 "timestamp": 5.652236,
5 "data": {
6 "gaze2d": [0.4398, 0.6069],
7 "gaze3d": [60.46, -53.80, 510.17],
8 "eyeleft": {
9 "gazeorigin": [33.05, -9.23, -27.56],

10 "gazedirection": [0.05, -0.10, 0.99],
11 "pupildiameter": 3.15
12 },
13 "eyeright": {
14 "gazeorigin": [-30.37, -8.07, -26.80],
15 "gazedirection": [0.16, -0.05, 0.98],
16 "pupildiameter": 3.16
17 }
18 }
19 }
20 }

Listing 4: Gaze Response Sample

These messages and formats were identified using the Tobii Web API interface. To

render the gaze location in Unity, a Canvas was configured in Screen Space - Overlay

©Naval Group SA property, 2025, all rights reserved. 24

4.4 Eye Tracking

mode with a dedicated RectTransform for the gaze pointer. The normalised gaze coor-
dinates received from the WebSocket stream were converted to screen space (like in Fig
18) to be finally displayed in a Unity scene as a red ring, representing the user’s gaze.

The conversion from normalised gaze coordinates to Unity screen coordinates is done
by flipping the y-axis and scaling by the screen resolution:

xunity = xnorm · Screen width

yunity = (1− ynorm) · Screen height
(3)

The overall setup, when combined with calibration and synchronisation procedures
detailed in the developer documentation[21], ensured a responsive and intuitive user feed-
back loop during immersive simulation tasks.were then integrated into the Unity-based
LOTUSim simulation to visually overlay gaze data in real time.

Step 2: Least Square Resolution
Now at this point of the work, in a setup with a screen resolution of 1920× 899, the

top-right corner should ideally correspond to (1920, 899) in screen space, but the Tobii
Glasses reported (1313.86, 774.67), and therefore the red rings obtained when the four
are corners of the Unity screen/computer screen are being pointed by the user, are these
Fig19:

Figure 19: Illustration the red rings representing the user’s gaze in Unity

The observed issue is that gaze2d are the coordinates of the user’s gaze’s position
through the camera of the glasses, therefore, despite the conversion from normalised gaze
coordinates to Unity screen coordinates with Equation (3), the gaze points did not align
with the corners of the Unity window as expected. This discrepancy was consistent across
all corners and varied between simulation runs. This is because when the user look at
the screen of its computer, the screen doesn’t take its entire field of view like the final
rendering would in Unity. Therefore, even after being converted to the screen resolution,
the gaze2d coordinates still won’t match the corner of the computer’s screen, but the real
positions of each corner in the glasses’ camera view. This idea is illustrated in Fig 20.

To address this, a linear least-squares regression was applied to estimate the affine
transformation between the gaze view coordinates of the screen’s corners and the real
screen coordinates.

We chose a data-driven approach, by collecting seven sets of empirical gaze data where
the user was asked to fix precisely each corner of the Unity window: the top-left, top-
right, bottom-left, and bottom-right corners of the Unity display. For each of these, the

©Naval Group SA property, 2025, all rights reserved. 25

4.4 Eye Tracking

Figure 20: Illustration of the conversion issue between gaze2d and the rendering of the
red ring (user’s gaze trace in Unity in LOTUSim)

corresponding experimental screen coordinates (in pixels) were recorded from the gaze
projection, denoted as:

rtop left = (xtl, ytl),

rtop right = (xtr, ytr),

rbottom left = (xbl, ybl),

rbottom right = (xbr, ybr),

Having these data, the transformation model to solve has the two following system
System 1 (for horizontal mapping — screen X)

a · xtr + b = 1920

a · xtl + b = 0

a · xbr + b = 1920

a · xbl + b = 0

(4)

Let’s rewrite this as a matrix system:
xtr 1
xtl 1
xbr 1
xbl 1

 · [ab
]
=


1920
0

1920
0


Then compute the least squares solution using the normal equation:

x = (ATA)−1ATy (5)

With:

x =

[
a
b

]
, A =


xtr 1
xtl 1
xbr 1
xbl 1

 , y =


1920
0

1920
0



©Naval Group SA property, 2025, all rights reserved. 26

4.4 Eye Tracking

We can calculate the inverse and multiply numerically, but to shortcut the algebra,
the final values which have been averaged from the seven experiments for more precision
are:

a ≈ 2.6502, b ≈ −1591.08

System 2 (for vertical mapping — screen Y) Same logic for the y:
c · ytr + d = 899

c · ytl + d = 899

c · ybr + d = 0

c · ybl + d = 0

(6)

Matrix form: 
ytr 1
ytl 1
ybr 1
ybl 1

 · [cd
]
=


899
899
0
0


Final result (after same process):

c ≈ 3.6121, d ≈ −2331.79

Final Equations {
ScreenX = 2.6502 · x− 1591.08

ScreenY = 3.6121 · y − 2331.79
(7)

To conclude, even if this approach significantly improved the alignment between the
projected gaze and the Unity display, the red rings are still not always perfectly fitting the
screen of the simulation. After some analysis it can be concluded that this misalignment
arises because the gaze data is reported in a coordinate system that is head-relative and
not dynamically corrected for head position and viewing angle. Consequently, the rectan-
gle formed by the four gaze-reported corners was neither accurately scaled nor positioned.

Because this issue is intrinsic to the eye-tracking glasses, and in order to still move for-
ward with the project and implement an eye-tracking system nonetheless, the following
paragraph presents an alternative method that was developed during this project.

4.4.2 Tobii Eye Tracker 5

In order to avoid this head-related coordinate system, the Tobii Eye Tracker 5 (ET5
Fig 21) was selected for integration into the simulator primarily due to the fact that
the device is mounted directly on the screen of the computer, its accessibility, ease of
use, and compatibility with real-time visualisation tools such as Tobii Ghost. While
it is a consumer-grade device, it offers sufficient tracking accuracy and robustness for
many interactive simulation and user interface applications, especially where qualitative
or semi-quantitative insights are sufficient. Its unobtrusive form factor and USB interface
make it ideal for quick deployment in experimental setups without requiring extensive

©Naval Group SA property, 2025, all rights reserved. 27

4.4 Eye Tracking

calibration or specialised hardware like the Tobii Glasses. Initially, a quote was requested
from Tobii for the higher-end Tobii Pro Spark [23] as it is not available to the public,
which offers access to raw gaze data and more advanced analytics; however, the cost
was too high for the project scope. As this phase was intended to serve as a proof of
concept for the simulator, the organisation accepted after this analysis to purchase the
Eye Tracker 5, which provided an adequate balance between functionality and budget.
Despite restrictions on accessing raw gaze data via the Pro SDK, the ability to visualize
gaze behavior in real time within Unity using Tobii Ghost made the ET5 a practical and
cost-effective choice for validating early-stage user attention modeling in the simulation.

Figure 21: Illustration of the Tobii Eye Tracker 5

It operates based on the principle of pupil center corneal reflection (PCCR), using
near-infrared (NIR) light to create reflections on the cornea (glints), which are detected
by its built-in infrared cameras. By identifying the relative position of the pupil and the
corneal reflection, the tracker computes the gaze vector and estimates the user’s point of
regard on the screen with a sampling rate of up to 90 Hz[2].

For its accuracy, several analysis can be found in the literature, including one from the
Human-Computer Interaction book. In their independent evaluation study, the Tracker’s
average gaze error is approximately 35 pixels, which corresponds to about 0.74° of visual
angle, with a standard deviation around 18 pixels (0.39°) (for a test involving three par-
ticipants across 21 fixed points and 252 measurements). In this paper, the researchers
also present a possibility to improve these results with a Multi-Layer Perceptron Regres-
sor (MLP Regressor). In the context of eye tracking, this neural network is trained to
correct inaccuracies in the gaze data collected from eye-tracking devices. So when the
raw gaze data does not perfectly align with where the user was actually looking (due to
device limitations, calibration errors, etc.), the MLP Regressor learns a mapping from the
measured gaze positions to the true gaze targets (usually provided during a calibration
procedure). After training, it can then be used to reassign or adjust the predicted gaze
points, making them better match the expected or intended gaze location on the screen.
This could potentially be added to the LOTUSim in the future if experiments requiring
more accuracy was needed.

But for this project, as it is a proof of concept, only the gaze trace was added to the simu-
lator, using the Tobii Experience Driver v1.133 [3] to do the calibration (with or without
glasses, and depending the size of the screen), and the Tobii Ghost v1.14.1 application
[3] to set the type, size, color of the gaze trace (Fig 22 and Fig 23).

Here are some illustrations of its integration in LOTUSim :

©Naval Group SA property, 2025, all rights reserved. 28

Figure 22: Illustration of the Eye
Tracker 5 in LOTUSim in bubble mode

Figure 23: Illustration of the Eye
Tracker 5 in LOTUSim in heatmap
mode

5 LOTUSim Benchmark

In the previous sections, the work presented primarily focused on the implementation
of features and proof-of-concept developments for LOTUSim. This section now pro-
vides a more detailed overview of how LOTUSim operates by highlighting the results of
performance benchmarks. These benchmarks were carried out to compare LOTUSim’s
performance with other existing simulators, in the context of preparing a scientific paper
submission to the IEEE International Conference on Robotics and Automation (ICRA).
The benchmarking of LOTUSim was conducted by J.G., a post-doctoral researcher. This
section begins with an explanation of LOTUSim’s architecture and design, followed by
a presentation of two benchmarking campaigns performed during this intership on the
UUV Simulator and LRAUV Simulator, in order to compare their results with J.G.’s
evaluation of LOTUSim.

5.1 Overview of LOTUSim

5.1.1 LOTUSim Architecture and Integration

LOTUSim is a distributed multi-agent simulation framework that integrates ROS 2,
Gazebo, and Unity to offer a modular and flexible simulation environment. ROS 2 is used
to manage inter-agent communication and facilitate the connection with real robotic sys-
tems. Gazebo provides realistic physics-based simulation capabilities, while Unity offers
high-fidelity rendering for visualisation.

The primary goal of LOTUSim is to support scalable and distributed simulations
across diverse domains, with a particular focus on maritime applications. The architecture
is organised around a client-server model, where Gazebo acts as the central orchestrator
for managing all simulated assets. Various interface modules are connected to Gazebo
via custom plugins that delegate specific tasks such as physics computation, rendering,
and agent interaction.

The core control unit, referred to as the multi-agent simulation controller, is interfaced
with three major subsystems represented in Fig 24:

• Physics Computation: During each simulation update cycle, Gazebo queries
the physics client to compute dynamics based on the asset’s state and the elapsed
timestep. A standardised physics interface abstracts the underlying engine require-

©Naval Group SA property, 2025, all rights reserved. 29

5.1 Overview of LOTUSim

ments, enabling interoperability with external engines like LOTUSim-Xdyn. Com-
munication is typically conducted over gRPC or WebSocket.

• Rendering: Visualisation is handled through Unity by default. The rendering
client receives positional and event-based data (creation or destruction of assets) at
each simulation step. Users may also integrate custom rendering features, such as
visual effects, or even disable visualization when not required (during AI training
for instance).

• Agent Interaction: This is managed via ROS 2, allowing agents to operate in-
dependently and interact through DDS-based messaging. Users can interface with
the system using various programming languages by publishing to topics or using
action servers.

This modular and distributed setup also enhances scalability. Computational loads
can be offloaded to external machines, and agents can be dynamically spawned or re-
moved during runtime. The physics plugin randomizes asset update order to reduce
scheduling bias, and communication latency naturally introduces non-determinism into
the simulation.

Figure 24: LOTUSim Architecture Overview

5.1.2 Multi-Agent Control System

The LOTUSim architecture facilitates robust and flexible multi-agent simulations by
allowing each entity to operate semi-independently. The MAS (Multi-Agent System)
plugin in Gazebo serves as a central controller and exposes a ROS2 action server capable
of managing asset spawning and behavior updates.

©Naval Group SA property, 2025, all rights reserved. 30

5.2 First tests on LOTUSim

Agents can be deployed across different machines in a network and interact asyn-
chronously. Commands for spawning, moving, or removing agents are processed at each
update step, with execution order being inherently randomised due to network delays.

5.1.3 Environment Modeling in LOTUSim

• Surface : To simulate surface physics, LOTUSim integrates Xdyn8, an open-source,
ship simulator that models real-time vessel dynamics at sea, created by SIREHNA
[17]. Xdyn8 computes vessel motion based on Fossen’s equations of motion [8],
incorporating detailed hydrodynamic effects such as Froude–Krylov and diffraction
forces as described in their documentation [18]. LOTUSim allows the export of
environment data from Xdyn as 2D or 3D grids for offline analysis. In the current
official release of Xdyn, surface elevation data is already available [18].

• Underwater : For subsurface ocean currents, an Ekman layer model was imple-
mented by a former intern, divided in the followng three layers according to his
report:

– The surface layer, where wind stress and the Coriolis effect produce the
characteristic Ekman spiral.

– The bottom layer, where seabed friction and bathymetry generate a bottom
spiral and vertical flows.

– The geostrophic interior, where flow balances pressure gradients and Cori-
olis forces, largely free from friction.

• Aerial: The winds dynamics have been implemented also by an intern, through a
Gazebo wind plugin

5.2 First tests on LOTUSim

In parallel with this report, two scientific papers are currently being prepared. The
first, which will be submitted to the ICRA conference in mid-September, focuses on the
multi-domain simulation framework for marine robotics. It presents the simulator’s archi-
tecture, the implementation of the environment, the modeling choices, and preliminary
benchmark results. The second paper will provide a more in-depth analysis, dedicated
entirely to the detailed results of the three benchmark studies conducted during the
internship.

Before starting to implement benchmarks on other simulators, an important step was
to try to perform few tests with J.G’s benchmark on the LOTUSim, in order to get a
bit more familiar with the architecture, and the core of the simulator, to then be able to
create the two other benchmarks for this study.

5.2.1 Benchmark Tests and Settings

Settings During these tests, a few features and settings have been noted to keep in mind
for the future benchmarks to perform.

The important elements which are gonna have to be replicated in the other bench-
marks, are the .sdf files, describing the different agents of the simulators, but also the
.world files, where the Gazebo worlds are described, as all the compared simulators work

©Naval Group SA property, 2025, all rights reserved. 31

5.2 First tests on LOTUSim

with Gazebo. Indeed, the goal here is to compare the LRAUV and BlueROV simulated
in LOTUSim, with the one simulated in BlueROVSim, and LRAUVSim, therefore, In
the end here are the shared parameters we kept: For the LRAUV and BlueROV:

• Masses: LRAUV = 120kg, and BlueROV = 10kg

• Sensors: For the commun comparaison, only the IMU was kept

• Rigid body inertia matrix I: for a rectangular cuboid in the body frame is:

I =

0.2 ·m · y2size + 0.2 ·m · z2size 0 0
0 0.2 ·m · x2

size + 0.2 ·m · z2size 0
0 0 0.2 ·m · x2

size + 0.2 ·m · y2size


where m is the mass, and xsize, ysize, zsize are the dimensions along each principal
axis.

• Linear damping matrix: defines resistance forces that are proportional to the
vessel’s velocity, modeling viscous drag effects at low speeds. It has been calculated
during the work done in paragraph 5.3, and according to the coefficient found in
the Fossen book [8]. Here is the from of the matrix:

Dlin =


Xu 0 0 0 0 0
0 Yv 0 0 0 0
0 0 Zw 0 0 0
0 0 0 Kp 0 0
0 0 0 0 Mq 0
0 0 0 0 0 Nr


where Xu, Yv, Zw are the linear damping coefficients for translational motion, and
Kp,Mq, Nr for rotational motion. The coefficient recommended by Fossen were :
11.7391, 20, 31.8678, 25, 44.9085 and 5.

• Quadratic damping matrix: accounts for resistance forces that increase with
the square of velocity, capturing turbulent flow effects at higher speeds. It has also
been calculated in the paragraph 5.3, and here is its from:

Dquad =


X|u|u 0 0 0 0 0
0 Y|v|v 0 0 0 0
0 0 Z|w|w 0 0 0
0 0 0 K|p|p 0 0
0 0 0 0 M|q|q 0
0 0 0 0 0 N|r|r


where the coefficients (X|u|u) represent damping proportional to the square of the
velocity components. For the benchmarks, all coefficient were set to 0.

• Added Mass: When an underwater vehicle accelerates, it must also accelerate
some surrounding fluid. This effect is captured by the added mass, which represents
the inertia of the fluid that the vehicle must move along with itself. But we set
this to zero, because if this was working in UUVSim, is was causing some issues in
LOTUSim, as the calculs of the physics by Xdyn were diverging.

©Naval Group SA property, 2025, all rights reserved. 32

5.2 First tests on LOTUSim

• max step size = 0.2: defines the maximum simulation time step (in seconds),
controlling the physics update granularity and stability. In this work, the real-time
update threshold for the simulation was set to 200 ms to ensure responsiveness
suitable for soft real-time operation. Prior research indicates that update delays
longer than 200 ms may impair system responsiveness and user interaction [12].
For scenarios involving direct control of physical robots, the stricter threshold of 30
ms is commonly cited to maintain stable hard real-time performance, for instance,
closed-loop control in ROS-based systems typically runs at 30–100 Hz (10–33 ms
cycle times) [16]. Therefore, setting the 200 ms maximum for simulation updates
aligns with best practices for simulation-based training, while keeping in mind the
tighter 30 ms constraint required for real-world robot control.

• real time factor = 1: sets the ratio between simulation time and real-world time
(1.0 means real-time).

• real time update rate = 5: specifies the desired number of physics updates per
second in real time.

Evaluation

To assess LOTUSim’s, UUVSim’s and LRAUVSim’s performance, we monitor the
following key metrics:

The RTF is a metric used to evaluate the performance of a robotics simulator such as
Gazebo. It measures how fast the simulation is running compared to real time. The It is
defined as:

RTF =
Simulated Time

Real Time
(8)

More precisely, for each simulation update step:

RTF =
∆tsim
∆treal

(9)

where:

• ∆tsim is the amount of simulated time advanced in one update step (0.001 s for a 1
ms timestep),

• ∆treal is the amount of wall-clock (real) time required to compute that update.

For example, if the simulator advances the simulation time by 1 ms while requiring 2
ms of real time to compute it, then the RTF would be:

RTF =
0.001

0.002
= 0.5 (10)

This indicates that the simulation is running at half the speed of real time.

The realUpdateDuration or update rate in Gazebo measures the wall-clock time
consumed during a single simulation update iteration on the server side. This duration
includes the computational cost of the following elements:

©Naval Group SA property, 2025, all rights reserved. 33

5.3 Benchmark on UUV Simulator

• Physics updates: Execution of the physics engine (ODE, Bullet, DART).

• Sensor updates: Generation of synthetic sensor data (sonar, IMU, and camera
data), excluding rendering.

• World plugins: Execution of world-level behaviors such as environmental dynam-
ics or global controllers.

• Model plugins: Execution of model-level behaviors such as autopilots, thruster
dynamics, or sensor controllers.

• Communication overhead: Inter-process or intra-process message passing inside
the Gazebo server (gzserver).

However, it is important to note that realUpdateDuration does not include these, but
done by the measruement of the FPS:

• Rendering time: All operations related to visual rendering, which are handled
by the client (gzclient).

• GUI plugin time: Execution of graphical user interface plugins.

• File logging time: Unless file Input/Output operations (I/O) is explicitly exe-
cuted inside plugins, logging time is excluded from this duration.

To assess these aspects in LOTUSim, UUVSim, and LRAUVSim, two dedicated eval-
uation procedures were introduced:

• Algorithm 1 is used to evaluate real-time performance in the context of human-in-
the-loop interaction.

• Algorithm 2 is designed to measure simulation acceleration, which is critical for
efficient training of AI models.

5.3 Benchmark on UUV Simulator

The UUV Simulator (UUV Sim) is an open-source underwater robotics simulation frame-
work built on top of ROS and Gazebo (Fig 26), designed to test and evaluate underwater
vehicle behaviors (like the BlueROV in Fig 25) and control strategies in realistic marine
environments [26]. In this work, UUVSim was used on Ubuntu 18.04, which relies on
ROS Melodic and Gazebo 9 (detailed in Table 1) (can be cloned from their GitHub [6]).
The benchmarking experiments were conducted in the empty underwater world, which
provides a minimal environment for evaluating performance without additional rendering
or physics complexity. The benchmark setup involves three separate terminals: the first
one is used to launch the ROS core; the second runs a custom ROS node responsible for
initialising and spawning a predefined number of agents in the underwater world for a
given simulation duration; and the third terminal runs a script to apply external cur-
rent forces in the simulation, mimicking realistic marine currents such as those observed
in the LOTUSim environment. Importantly, all agents are initially spawned underwater
and float naturally to the surface due to their buoyancy, replicating real-world underwater
behavior.

©Naval Group SA property, 2025, all rights reserved. 34

5.3 Benchmark on UUV Simulator

Algorithm 1 Real-Time Performance Benchmarking

Require: Set of agent population A = {a1, a2, . . . , aN}
Configure simulator:

• max step size← 200 ms

• RTF← 1

• T← 5 min (Simulation Duration)

Initialize simulation with n = 1 agent
RTFn ← RTF1 measure
update raten ← update rate1 measure
if RTFn ≈ 1 and update raten < max step size then
for each n ∈ A do
Initialise simulation with n agents
Measure over duration T (after agent spawned):
• update raten
• FPSn
• RTFn

Store (n, update raten, FPSn, RTFn)
end for

end if

Algorithm 2 Accelerated-Time Performance Benchmarking

Require: Set of agent population A = {a1, a2, . . . , aN}
Configure simulator:

• max step size← 30ms

• RTF←MaxV alue (as-fast-as-possible)

• T← 5 min (Simulation Duration)

Initialise simulation with n = 1 agent
RTFn ← RTF1 measure
if RTFn > 1 then
for each n ∈ A do
Initialise simulation with n agents
Measure RTFn over duration T (after agent spawned)
Store (n, RTFn)

end for
end if

©Naval Group SA property, 2025, all rights reserved. 35

5.3 Benchmark on UUV Simulator

Figure 25: Illustration of
the BlueROV Figure 26: Illustration of the UUV Sim-

ulator

Specification UUVSim LOTUSim
OS Ubuntu 18.04.6 LTS Ubuntu 22.04.5 LTS
Processor Intel Core i7-11800H (11th Gen) Intel Core i9-13980HX (13th Gen)
CPU Clock Speed Up to 4.6 GHz Up to 5.6 GHz
GPU NVIDIA GeForce GPU NVIDIA GeForce RTX 4090 Laptop GPU
GPU VRAM 8 GB 16 GB
NVIDIA Driver 470.223.02 570.133.07
CUDA Version 11.4 12.8
Python Version Python 2.7.17 Python 3.10.12
Gazebo Version Gazebo 9 Gazebo Harmonic
ROS Version ROS1 Melodic ROS2 Humble

Table 1: Benchmark system specifications comparison: UUVSim vs LOTUSim

5.3.1 Real Time Simulations on BlueROVs

The benchmark procedure for UUVSim, is to incrementally add more agents into the
same simulation environment to assess system scalability. The simulation is considered
to have failed when either the Real-Time Factor (RTF) drops below 1, indicating that
the simulation is no longer running in real time, or when the real-time update duration
exceeds a critical threshold of 200ms.

So to be able to measure all these values, modifications were introduced directly into
the simulator’s source code to extract and continuously log three essential performance
metrics: the Real-Time Factor (RTF), the Real Update Time, and the Frames
Per Second (FPS). Each of these metrics was recorded into a separate .csv file to
facilitate post-processing and visualisation.

Modification of Gazebo’s Source Code

The extraction of RTF and Real Update Time was implemented at the simulation core
level, specifically within the World.cc file. The World::RunLoop() function, which gov-
erns the main simulation loop, was modified to compute the real update time as the
wall-clock duration required to simulate a single time step. This was accomplished by
capturing timestamps before and after each call to Update(), using high-resolution time
functions from the Gazebo time library. The real-time factor was then computed as the
ratio between the simulation time increment (typically fixed at 1 ms or another configured
timestep) and the measured real update time. These values were written to two separate
files, real update time.csv and rtf.csv, through standard C++ file streams. Logging
was configured to occur periodically (every second of simulation time) to avoid excessive
I/O overhead.

©Naval Group SA property, 2025, all rights reserved. 36

5.3 Benchmark on UUV Simulator

To capture the rendering performance on the client side, modifications were applied in the
graphical user interface components, particularly in the MainWindow.hh and MainWindow.cc
files. A periodic callback was introduced to access the frame rate data using the method
UserCamera::AvgFPS() . This value, representing the average number of rendered frames
per second, was appended to fps.csv at fixed intervals using a QTimer. Integration with
the Qt event loop ensured that the logging process was non-blocking and did not interfere
with GUI responsiveness.
Once all these modifications in the source code had been done, Gazebo 9 was entirely
recompiled using cmake and make.
In total, these modifications enabled precise tracking of simulation performance under
increasing load, particularly during large-scale experiments involving the spawning of
hundreds of autonomous underwater vehicles.

5.3.2 Simulations for AI training : Accelerated Time Benchmarking

The next phase of the benchmarking process aimed to evaluate the simulation’s capacity
for accelerated time, which is essential for enabling efficient training of AI agents.
This was particularly intended to demonstrate that UUVsim, and more importantly LO-
TUSim, can support such accelerated training workflows. To perform this test in UU-
Vsim, the simulation’s max step size parameter was set to 0.03, same as the benchmark
on LOTUSim’s side, and the real-time factor (RTF) target was significantly increased,
aiming for values up to 200%. Then, the number of agents (BlueROV vehicles) was in-
crementally increased in the simulation until the RTF dropped below 1, indicating a loss
of real-time performance, and the limit of doing accelerated time.

Due to UUVsim’s reliance on older frameworks, namely ROS 1 and Gazebo 9 on
Ubuntu 18.04, agent spawning is notably slow, taking approximately 10 minutes to ini-
tialise 200 agents. Consequently, to ensure consistency in the benchmark results, only
the RTF values measured after all agents were fully spawned were considered for analy-
sis. This approach allows for a clear comparison of performance between UUVsim and
LOTUSim under accelerated time conditions.

5.3.3 UUVSim Benchmark Results

Real Time Performance

We observed that the simulation reaches a critical point at approximately 333 agents.
Although the terminal output indicated that all requested agents (340 or 400) were suc-
cessfully spawned, only 333 models were visible in the Gazebo model list. At 330
agents, the real-time update time was still below the critical 200ms threshold (specifically
93.88ms), suggesting that another bottleneck is responsible for the simulation limit.

This limitation appears to be primarily due to GUI and rendering overhead. Each new
agent added to the simulation requires Gazebo’s client interface (gzclient) to render new
entities, manage associated resources (meshes, textures, sensors), and update the model
list panel. This panel is implemented via Qt’s QTreeView, which becomes increasingly
inefficient when handling several hundred models. Around 300-400 models, the Qt tree
view begins to lag, and in some cases, fails to display additional agents even if they exist
in the simulation backend (gzserver). This GUI limitation can be mitigated by running
the simulation in headless mode (without gzclient), in which case more agents can be
simulated successfully.

©Naval Group SA property, 2025, all rights reserved. 37

5.3 Benchmark on UUV Simulator

Further testing of system resources showed that at 333 BlueROVs, the system mem-
ory usage reached 92.7% (Fig 27), with some CPU cores at 100% utilisation. However,
GPU memory usage remained low at only 4MiB, suggesting that the bottleneck is not
GPU-bound but primarily due to GUI rendering and CPU limitations.

Figure 27: Graphic of the evolution of the RAM (%) depending on the number of
BlueROVs spawned (visually, only 333 spawned)

For comparative benchmarking, the same experiment was conducted in the LOTUSim
environment by J.G. Results indicate that LOTUSim can simulate up to 450 BlueROVs
before reaching a similar perception limit (real-time update time exceeding 200ms). Re-
garding physics time-step constraints, LOTUSim begins to exceed the 30ms threshold
with more than 30 agents, whereas UUV Simulator can sustain up to 130 agents before
hitting this limit. These results (illustrated in Fig 28) demonstrate a significant advan-
tage of LOTUSim in terms of scalability and performance, highlighting its suitability for
large-scale multi-agent simulations and AI training tasks.

The performance of a simulator in terms of rendering speed is critical, particularly
for immersive or interactive applications involving human operators. A widely accepted
standard is that maintaining a framerate above 60 FPS ensures an acceptable user ex-
perience, while values near or above 120 FPS provide a seamless, “super-smooth” visual
output [5]. In our evaluation of the UUV Simulator, we observed a significant degradation
of framerate as the number of agents increased. With 100 agents, the mean FPS dropped
to 11.89, and further declined to around 6–7 FPS for scenarios with 300 to 500 agents,
which are not acceptable for a confortable user experience (Fig 29).

In contrast, LOTUSim, built on the Unity engine, demonstrates consistently supe-
rior rendering performance. Across identical scenarios ranging from 0 to 700 spawned
autonomous agents, the FPS remained above 140. This performance not only guaran-
tees smooth user interaction but also allows for high-fidelity visualisation necessary for
real-time supervision, AI training with photorealistic feedback, and scenario replay. The
architectural differences between the two platforms, Unity’s GPU-accelerated rendering
pipeline versus Gazebo’s CPU-bound engine, largely explain this disparity, underscoring
the importance of graphics backend design for scalable and responsive maritime simula-

©Naval Group SA property, 2025, all rights reserved. 38

5.3 Benchmark on UUV Simulator

Figure 28: Simulations of BlueROV: UUVSim vs LOTUSim’s Results

Figure 29: Graphic of the evolution of the FPS depending on the number of BlueROVs
spawned (visually, only 333 spawned)

tion.
End in the end, the collected data revealed that simulation slowdowns were not strictly
linked to real-time factor thresholds, but rather emerged due to accumulated CPU usage
and graphical rendering limitations on the client side, and that the evaluation of the FPS
is also a priority when operators are involved in a simulation.

Accelerated Time Performance

In order to assess the capability of both simulators for accelerated-time training of AI
agents, a series of experiments was conducted where the max step size was fixed to 0.03 s
and the simulation was run with a target Real-Time Factor (RTF) of up to 200%. Then,
the number of BlueROV agents was gradually increased until the RTF dropped below 1.0,
which is the minimal threshold for performing accelerated training. In these conditions,
UUVSim was capable of handling up to 180 BlueROVs before its RTF fell below

©Naval Group SA property, 2025, all rights reserved. 39

5.4 Benchmark on LRAUV Simulator

1.0. In contrast, LOTUSim maintained an RTF greater than 1.0 up to 25 BlueROVs
(illustrated in Fig 30). While this number is lower compared to UUVSim, it is still
highly effective for AI training purposes, as it enables simulations to run approximately
25 times faster than real-time. This demonstrates that both simulators are suitable for
accelerated-time AI training, with UUVSim offering higher scalability, and LOTUSim
remaining a viable and efficient alternative for smaller-scale, high-speed training tasks.

Figure 30: Simulations of BlueROV: UUVSim vs LOTUSim Accelarated Time’s Results
(RTF)

5.4 Benchmark on LRAUV Simulator

To extend the benchmark analysis to other state-of-the-art underwater simulators, the
LRAUVSim framework was evaluated. This simulator is maintained by Open Robotics
(their work on the simulator have been pubished in this paper [14]) and targets the
simulation of Long-Range Autonomous Underwater Vehicles (LRAUVs). The installation
followed the official instructions and was performed on an Ubuntu 20.04 system, using
the gazebo garden simulation environment [9]. The benchmarking required installing
the gz-sim tool (version 7 or higher) from the Garden suite.

LRAUVSim (Fig 31) itself was installed via its official repository [15], which provides
a detailed walkthrough for compilation and dependencies. Once installed, the simulator
was configured for performance testing under various mission scenarios to compare its
runtime behavior with other platforms like UUVSim and LOTUSim.

5.4.1 Real Time Simulations on LRAUVs

For the LRAUVSim benchmark, the standard .sdf model of the LRAUV provided in
the official simulator repository [15] was used, which is based on the design of the Tethys
AUV. To simplify the setup and ensure fair comparisons with the other simulators (like in
paragraph 5.2.1), only the IMU sensor in the model was retained, disabling other modules.
In order to simulate realistic hydrodynamic conditions, a constant water current was
manually introduced by modifying the HydrodynamicsPlugin.cc source file located in
the LRAUV simulator folder. Specifically, we set the waterCurrent vector to a non-zero
value:

©Naval Group SA property, 2025, all rights reserved. 40

5.4 Benchmark on LRAUV Simulator

Figure 31: Illustration of an LRAUV in LRAUVSim

/// \brief Water current [m/s].
public: gz::math::Vector3d waterCurrent {0.5, 0.0, 0.0};

Although this hardcoded approach bypasses the more modular /ocean current topic
mechanism, it was selected due to project time constraints, as the benchmarks were
performed in the context of an upcoming publication. A cleaner and more flexible imple-
mentation will be considered in future iterations.

Performance Metrics Collection in LRAUVSim To perform a rigorous bench-
mark of the LRAUV simulator, it was necessary to collect key performance metrics in-
cluding Real-Time Factor (RTF), real-time update durations, and rendering frame rate
(FPS) jus like UUVSim, and therefore modify Gazebo’s source code, before recompiling
it. Given the architecture of Gazebo Garden (used in LRAUVSim), the required values
were not readily exposed, necessitating targeted source code modifications. To capture
FPS values, the MainWindow.cc file was extended by connecting a lambda function to
the frameSwapped signal emitted by the QQuickWindow instance. Each time a frame
was rendered, the callback computed the elapsed time and wrote the resulting FPS and
corresponding wall-clock time to a CSV log file (render fps.csv). For the RTF and real-
time update monitoring, modifications were made in the WorldStats.cc file. Simulation
and real-time values were extracted from incoming messages, filtered using exponential
smoothing, and used to compute the RTF as the ratio of simulated time over wall-clock
time. Additionally, simulation timestamps, real-time values, and the computed RTF
were exported to separate CSV files (real time.csv and rtf.csv). These modifications
allowed consistent logging and enabled accurate quantitative comparisons between simu-
lators under test conditions. Unlike Gazebo 9, Garden’s QML-based interface and plugin
architecture required integration with Qt’s signal system and the use of Gazebo’s internal
time representation utilities.

As Naval Group Pacific is a subsidiary of Naval Group working for defense, this re-
port has to go through a security check a month before being submitted to ENSTA and
the jury. Therefore, at the point of the intership (mid July), the results of this bench-
mark and work on LRAUVSim weren’t finish. But they will be presented during the oral
presentation in September.

©Naval Group SA property, 2025, all rights reserved. 41

5.4 Benchmark on LRAUV Simulator

5.4.2 Simulations for AI training : accelerated time

The results for the accelarated time will as well be presented during the oral presentation
as they also haven’t been done yet at this point.

5.4.3 LRAUV Sim Benchmark Results

Although the benchmark results for LRAUVSim are not yet available, valuable insights
into the simulator’s performance can already be found in the literature and have been
already added in the graph in Fig 30. In particular, Player et al. [14] present detailed per-
formance evaluations of LRAUVSim in the context of accelerated development of multi-
AUV missions. Their study demonstrates the simulator’s ability to operate faster than
real time while maintaining high-fidelity physical and environmental modeling. These
findings support the relevance of LRAUVSim as a viable tool for AI training and mission
planning, and the future work done on this benchmark before the end of this internship
will aim to complement this existing data with additional metrics and comparisons under
our specific test configurations.

©Naval Group SA property, 2025, all rights reserved. 42

6 Setting up the three domains integration

Now in the context of the development of the LOTUSim, Naval Group Pacific (based in
Adelaide), works with another subsidiary called Naval Group Far Est (NGFE), based in
Singapore. One of the developers in NGFE has to code the three domains integration,
meaning guaranteeing that the physics, communications, and interactions with agents
from the three different environments (air, surface, underwater) can all work together
with the newest Multi-Agent-System (MAS).
This paragraph present the work that has been done to help with the intergration, of the
three domains.

So to support the integration of the three domains a prototype of a dual-world simu-
lation setup was created.
First, an aerial Gazebo world (Fig 32) was created, featuring X500 drones configured
to interact with environmental wind forces using a dedicated wind plugin. In parallel, a
general simulation world (Fig 33) was designed, containing all agents from the Silent
Storm scenario (excluding the X500s), which relies on Xdyn to compute the physics for
surface and underwater vehicles. This setup has now been sent to NGFE, and a major
challenge in this new implementation lies in merging these two environments coherently,
ensuring that the wind plugin and xdyn do not conflict in terms of external forces such as
gravity or environmental interactions. Additionally, the network-level integration posed
further complexity, as the current agent and entity managers in the simulator were not
originally built to handle a multi-domain simulation architecture. This work lays the
foundation for enabling seamless multi-environment coordination under the MAS frame-
work.

Figure 32: Illustration of the Aerial
Gazebo World

Figure 33: Illustration of the General
Gazebo World from the Silent Storm
scenario

Later on, in August, a big task done during this internship will be to implement the
wind plugin in the Unity side, and also do the connection with the core of the simulator,
through ROS2 nodes and bridges. This part will be detailed and explained during the
oral presentation in September, again because of the early security check required by
Naval Group.

©Naval Group SA property, 2025, all rights reserved. 43

7 Merging proof of concepts with a scenario and a

ROS interface

All developments related to multi-user support and user tracking through sensor inputs
have been successfully integrated into the work led by another intern, B.D., who focused
on building a specialised scenario called Silent Storm (Fig 34). This scenario includes
several types of agents and is notably used to demonstrate the capabilities of the simula-
tor in more complex mission settings. To support this integration, the simulation relies
on ROS 2 Humble for managing communication and physics computation. In the final
setup, one Linux machine runs the core LOTUSim simulation, handling all the physics
calculations and real-time dynamics. Meanwhile, multiple users, whether on Linux, Win-
dows, or other platforms, can connect to the simulation through a Unity-built executable.
By entering the appropriate ROS IP address and port number (described in paragraph
3.2.2), users are able to access the shared simulation scene, interact with it, and observe
agent behaviors in real time. This architecture enables efficient distributed simulation
while maintaining the high-fidelity physics model offered by LOTUSim.

Figure 34: Illustration of the scenario

©Naval Group SA property, 2025, all rights reserved. 44

8 Future Development

Now for the month and a half remaining of internship, several other tasks will be done,
and will also be continued during the end of the year.

8.1 Integration of PhD Students’work

One of the key objectives of LOTUSim’s development is to serve as a modular and reusable
tool for research applications. In the coming months, a set of dedicated ROS2 nodes will
be developed to facilitate integration of custom algorithms. This will enable PhD students
to directly insert and execute their own research code, such as AI training routines or
SLAM algorithms within the LOTUSim environment. These developments aim to make
simulation-based experimentation more accessible and flexible. Regular collaboration
between the PhD students and the Naval Group Pacific team ensures that the architecture
of LOTUSim remains well-suited to accommodate a wide range of research needs.

8.2 Camera Integration and Algorithm Testing

Another future task will focus on the development of a new ROS2 package aimed at
integrating the work of a PhD student whose research involves testing a perception algo-
rithm on an CDA (Fig 35) equipped with a camera. The objective is to enable real-time
visualisation of the drone’s camera feed directly within the Unity interface, providing
an immersive and interactive way to observe the algorithm’s behavior during simulation.
This development will support the validation and debugging of vision-based algorithms
in a realistic underwater environment, further enhancing the capabilities of LOTUSim as
a research-oriented platform.

Figure 35: Picture of the CDA from Naval Group

8.3 LOTUSim-Energy: a Tool for Renewable Energy Infras-
tructure

In addition to underwater applications, the LOTUSim simulator is also being leveraged
for broader environmental and energy-related scenarios. One such promising appli-
cation is the simulation and planning of offshore wind farms in Australia, in synergy
with the already widespread solar energy infrastructure. Given Australia’s unique geog-
raphy and high solar irradiance, solar power has become a dominant source of renewable
energy. However, solar energy production is inherently intermittent and limited to day-
light hours. Wind energy, particularly from offshore sources, offers a complementary
solution by providing energy during periods of low solar availability, including at night

©Naval Group SA property, 2025, all rights reserved. 45

8.3 LOTUSim-Energy: a Tool for Renewable Energy Infrastructure

and during cloudy conditions. Therefore, during this internship, some work around this
topic has also been done, by preparing a workshop for companies working in the energy
industry, and where demos and presentations of the LOTUSim were performed, to poten-
tially work alongside on future projects. Indeed, the LOTUSim platform could be used to
simulate complex offshore wind farm environments (like illustrated in Fig 36), enabling
research and development in autonomous maintenance using aerial and underwa-
ter drones. These drones can be tasked with inspection (Fig 37), fault detection, and
real-time maintenance, reducing operational costs and increasing safety. The simulator
supports advanced functionalities such as AI training for autonomous navigation, the
deployment and evaluation of fault detection algorithms, digital twin synchronisation,
and predictive energy production monitoring under varying weather conditions. Such a
comprehensive simulation capability is crucial for designing robust, efficient, and scal-
able offshore energy infrastructure. Ultimately, this work contributes to the vision of a
resilient, fully renewable energy grid in Australia, where solar and wind energy sources
operate in tandem to ensure continuous, sustainable power generation.

A third scientific paper presenting the application of the LOTUSim in an environment
context is currently being written.

Figure 36: Illustration of an off-shore
wind turbine farm created in LOTUSim

Figure 37: Illustration of bluerov patrol-
ing for a maintenace mission in awind
turbine farm in LOTUSim

©Naval Group SA property, 2025, all rights reserved. 46

9 Conclusion

To conclude, this work presents a comprehensive exploration into the development and
validation of LOTUSim, a real-time maritime simulation platform tailored for advanced
robotics research and human-machine teaming. The platform integrates cross-domain
robotic agents, underwater, surface, and aerial, and offers a unique framework for real-
istic interaction between autonomous systems and human operators. During this study
a multi-user support was integrated, allowing collaborative scenarios to unfold in real
time with synchronised views. This contributes to the study of coordinated decision-
making and operator workload distribution in complex, multi-agent missions.

Another major contribution of this study lies in the integration of human-state
monitoring systems. Devices such as the eye trackers and hand-tracking interfaces
were incorporated into the simulation pipeline to enable adaptive interfaces. These sys-
tems allow real-time analysis of physiological and cognitive states, opening the path for
dynamic human-machine interaction models that improve situational awareness and re-
sponsiveness.

Benchmarking efforts across different simulators demonstrated the LOTUSim’s ro-
bustness and scalability in comparison to the other simulators. It successfully managed
large-scale deployments, such as the spawning of hundreds of BlueROV agents, while
maintaining real-time performance. Dedicated experiments on underwater and surface
vehicles compared the physical accuracy of the simulators, reinforcing their relevance for
both AI training, enabled by accelerated time, and human-centered evaluation.

Looking forward, the modular nature of LOTUSim opens vast avenues for future de-
velopment. Integration with ongoing PhD research, such as camera-based perception
modules and energy consumption modeling for sustainable maritime infrastructure, will
further enrich the platform’s capabilities. Beyond academic research, LOTUSim presents
high potential for application in strategic defense simulations, operator training, environ-
mental monitoring, and AI testing in safety-critical systems.

In conclusion, LOTUSim establishes itself as a versatile, research-grade simulation ecosys-
tem, bridging the gap between realistic robotics experimentation, collaborative human
interaction, and scalable AI development. As simulation continues to play a central role
in robotics, platforms like LOTUSim will be instrumental in accelerating innovation,
improving safety, and expanding the reach of autonomous systems across domains.

©Naval Group SA property, 2025, all rights reserved. 47

A Appendix

Figure 38: Personal Planning for Tasks First Period

Figure 39: Personal Planning for Tasks Second Period

©Naval Group SA property, 2025, all rights reserved. 48

B Scientific Paper Publications

Three scientific papers related to this work are currently in preparation. The first fo-
cuses on publishing the complete set of benchmarks and performance evaluations of the
simulator.

The second paper will provide a more in-depth analysis, dedicated entirely to the
detailed results of the three benchmark studies conducted during the internship.

And the third paper presents a practical application involving a wind turbine farm
scenario. For confidentiality and plagiarism prevention reasons, the full content of these
articles cannot be included in the appendix at this stage. They will be made publicly
available once officially published.

©Naval Group SA property, 2025, all rights reserved. 49

REFERENCES

References

[1] Pasi Aaltonen. Networking tools performance evaluation in a vr application: Mirror
vs. photon pun2. https://www.theseus.fi/handle/10024/755310, 2022.

[2] Tobii AB. Tobii eye tracker 5. https://gaming.tobii.com/product/
eye-tracker-5/, 2024.

[3] Tobii AB. Tobii eye tracker 5 – get started - software and drivers. https://gaming.
tobii.com/getstarted/, 2024.

[4] Daniel Bachmann, Frank Weichert, and Gerhard Rinkenauer. Review of three-
dimensional human-computer interaction with focus on the leap motion controller.
Sensors, 18(7):2194, 2018.

[5] K. Debattista, K. Bugeja, S. Spina, T. Bashford-Rogers, and V. Hulusic. Frame rate
vs resolution: A subjective evaluation of spatiotemporal perceived quality under
varying computational budgets. Computer Graphics Forum, 37(1):363–374, 2018.

[6] The UUV Simulator Developers. uuv simulator: Underwater simulation with ros
and gazebo. https://github.com/uuvsimulator/uuv simulator, 2023.

[7] Photon Engine. Pun 2 introduction. https://doc.photonengine.com/pun/
current/getting-started/pun-intro, 2025.

[8] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley & Sons, Chichester, UK, 2011.

[9] Gazebo Project. Gazebo garden documentation - installation on ubuntu. https:
//gazebosim.org/docs/garden/install ubuntu src/, 2025.

[10] Empatica Inc. E4 sunset: End of service announcement. https://www.empatica.
com/research/e4-sunset/, 2024.

[11] Helene Lechene, Benoit Clement, Karl Sammut, Paulo Santos, Andrew Cunningham,
and Cedric Buche. LOTUS: Learning from Operational Teaming with Unmanned
Systems. In 2024 IEEE Oceans Conference, pages 1–5, Singapore, April 2024.

[12] XiaoRui Liu, Juan Ospina, Ioannis Zografopoulos, Alonzo Russell, and Charalambos
Konstantinou. Faster than real-time simulation: Methods, tools, and applications.
ArXiv, 2104.04149, 2021. Faster-than-real-time simulation review.

[13] Photon Engine. Photon unity networking (pun2). https://www.photonengine.com/
PUN, n.d.

[14] Timothy R. Player, Arjo Chakravarty, Mabel M. Zhang, Ben Yair Raanan, Brian
Kieft, Yanwu Zhang, and Brett Hobson. From concept to field tests: Accelerated de-
velopment of multi-auv missions using a high-fidelity faster-than-real-time simulator.
In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), May 2023.

[15] Open Robotics. Lrauv simulator - installation guide. https://github.com/osrf/
lrauv/wiki/Installation, 2025.

©Naval Group SA property, 2025, all rights reserved. 50

https://www.theseus.fi/handle/10024/755310
https://gaming.tobii.com/product/eye-tracker-5/
https://gaming.tobii.com/product/eye-tracker-5/
https://gaming.tobii.com/getstarted/
https://gaming.tobii.com/getstarted/
https://github.com/uuvsimulator/uuv_simulator
https://doc.photonengine.com/pun/current/getting-started/pun-intro
https://doc.photonengine.com/pun/current/getting-started/pun-intro
https://gazebosim.org/docs/garden/install_ubuntu_src/
https://gazebosim.org/docs/garden/install_ubuntu_src/
https://www.empatica.com/research/e4-sunset/
https://www.empatica.com/research/e4-sunset/
https://www.photonengine.com/PUN
https://www.photonengine.com/PUN
https://github.com/osrf/lrauv/wiki/Installation
https://github.com/osrf/lrauv/wiki/Installation

REFERENCES

[16] PickNik Robotics. Advances in ros 2 for real-time control. https://picknik.ai/
moveit/ros/2020/02/06/real-time-control.html, 2020.

[17] SIREHNA. Xdyn8 - Lightweight and Modular Ship Simulator. https://github.
com/sirehna/xdyn, 2024. Accessed: 2025-07-19.

[18] SIREHNA. Xdyn8 Documentation, 2024.

[19] M. Thibeault, M. Jesteen, and A. Beitman. Improved accuracy test method for
mobile eye tracking in usability scenarios. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, volume 63, pages 2226–2230, 2019. Original
work published 2019.

[20] Tobii. Tobii pro glasses 3, 2024.

[21] Tobii. Tobii Pro Glasses 3 Developer Guide. Tobii AB, 2024.

[22] Tobii. Tobii pro glasses 3 sdk, 2024.

[23] Tobii AB. Tobii pro spark, 2024.

[24] Toxigon. Photon pun vs mirror: Which is right for your unity game? https:
//toxigon.com/photon-pun-vs-mirror, apr 2025.

[25] Ultraleap. Getting started with unity, 2024.

[26] Zekai Zhang, Jingzehua Xu, Jun Du, Weishi Mi, Ziyuan Wang, Zonglin Li, and Yong
Ren. Uuvsim: Intelligent modular simulation platform for unmanned underwater ve-
hicle learning. In 2024 International Joint Conference on Neural Networks (IJCNN),
pages 1–8, 2024.

©Naval Group SA property, 2025, all rights reserved. 51

https://picknik.ai/moveit/ros/2020/02/06/real-time-control.html
https://picknik.ai/moveit/ros/2020/02/06/real-time-control.html
https://github.com/sirehna/xdyn
https://github.com/sirehna/xdyn
https://toxigon.com/photon-pun-vs-mirror
https://toxigon.com/photon-pun-vs-mirror

	Acknowledgements
	Introduction
	Contextualising the Emergence of Autonomous Drones
	Presentation of Naval Group Pacific, and partnership the Crossing Laboratory and the LOTUSim platform
	Objectives of this study

	Multi User Support
	State of the Art
	Overall Functioning
	Launcher and Connection Setup
	ROS Integration
	Game Management and Player Instantiation
	Player Control and Networking
	User Interface and Visual Feedback
	Spectator Camera

	Player Mode
	Spectator Mode

	Human-Machine Tracking and interaction
	Empatica Watch
	Immersive environment : VR headset
	State of the Art: Comparison of Head-Mounted Displays for VR-Enhanced Simulation
	Integration : Meta Quest 2

	Leap Motion : Natural Interaction
	Leap Motion Working Principle and Justification
	Leap Motion Integration for Spectator Mode Navigation

	Eye Tracking
	Tobii Glasses Pro 3
	Tobii Eye Tracker 5

	LOTUSim Benchmark
	Overview of LOTUSim
	LOTUSim Architecture and Integration
	Multi-Agent Control System
	Environment Modeling in LOTUSim

	First tests on LOTUSim
	Benchmark Tests and Settings

	Benchmark on UUV Simulator
	Real Time Simulations on BlueROVs
	Simulations for AI training : Accelerated Time Benchmarking
	UUVSim Benchmark Results

	Benchmark on LRAUV Simulator
	Real Time Simulations on LRAUVs
	Simulations for AI training : accelerated time
	LRAUV Sim Benchmark Results

	Setting up the three domains integration
	Merging proof of concepts with a scenario and a ROS interface
	Future Development
	Integration of PhD Students’work
	Camera Integration and Algorithm Testing
	LOTUSim-Energy: a Tool for Renewable Energy Infrastructure

	Conclusion
	Appendix
	Scientific Paper Publications
	References

