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Introduction

In recent years, autonomous underwater vehicles have become essential tools for ocean ex-
ploration, environmental monitoring, and resource management. However, the complexity
and unpredictability of the underwater environment pose significant challenges to their
control and autonomy.

1 Context

The underwater environment presents unique challenges for robotic control. Many meth-
ods developed for surface or terrestrial robotics cannot be applied directly underwater due
to the specific physical constraints and uncertainties of the marine domain. Strong and
unpredictable currents, limited visibility, communication difficulties, and the lack of ac-
curate GPS signals make precise control and navigation particularly difficult. Moreover,
underwater vehicles are often over-actuated and receive delayed, noisy sensor feedback,
which complicates traditional model-based control approaches.

Artificial intelligence (Al), especially reinforcement learning (RL), offers a promis-
ing alternative by allowing autonomous systems to learn control policies directly from in-
teraction with their environment. Instead of relying solely on predefined models, RL allows
agents to adapt their behavior based on experience, making it well suited to handle un-
certainty, partial observability, and non-linear dynamics. Such adaptive learning methods
could allow underwater robots to cope robustly with disturbances, optimize trajectories in
real time, and recover from failures such as actuator malfunctions or sensor drift.

Recent advances in deep learning have improved RL by integrating deep neural net-
work (DNN), leading to deep reinforcement learning (DRL). Thanks to the powerful
function approximation of DNN, DRL algorithms can scale to high-dimensional state and
action spaces, essential for complex tasks in underwater robotics.

During the past decade, the DRL field has grown rapidly, with a variety of algorithms
that address challenges such as sample efficiency, stability, exploration, and generalization.
From value-based methods such as DQN to policy gradient approaches like Proximal Pol-
icy Optimization (PPO) and Soft Actor-Critic, each offers advantages and limitations
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depending on the task and environment.

Given this diversity, it is crucial to perform a systematic analysis of existing DRL ap-
proaches in underwater robotics. Understanding the strengths, weaknesses, and assump-
tions behind these methods helps identify suitable algorithms for real-world deployment.
This analysis also highlights gaps in the literature and guides future research to improve the
robustness, adaptability, and real-time performance of autonomous underwater systems.

2 Objectives

The primary objective of this internship is to advance the development and evaluation of
RL approaches for underwater robotics. This work follows two complementary directions:
(1) revisiting and reproducing previous PhD research, and (2) establishing a comprehensive
benchmark of modern deep RL (DRL) algorithms through simulation.

A key challenge of this project arises from the rapid evolution of Al tools and robotic
simulation platforms in recent years. In this context, my work focuses on designing and
implementing a complete simulation pipeline: from environment modeling in Gazebo
Harmonic, to interaction via the ROS2 middleware, followed by reinforcement learn-
ing integration using a Gym-based Python environment and the Stable Baselines3
framework, and visualization and analysis through PyQt5 and Matplotlib. The core objec-
tive is to ensure that these heterogeneous components work seamlessly together, providing
a modern and coherent framework for reinforcement learning experiments in robotics.

In parallel, a thorough benchmark of contemporary DRL algorithms is performed,
specifically SAC and PPO. This involves a critical review of the relevant literature, con-
solidation of theoretical foundations, practical implementation within underwater robot
control contexts, and in-depth analysis of the strengths and limitations of these algorithms
with respect to the unique challenges of the underwater domain.

Importantly, the internship aims not simply to compare algorithmic performance, but
to deepen the understanding of RL methods by systematically investigating their efficiency;,
robustness, and limitations. By integrating theoretical analysis with simulation-based ex-
periments, this work highlights the potential pitfalls of popular RL techniques, fostering
informed discussions on their true capabilities and practical considerations in realistic ma-
rine environments. Rather than seeking a single "best’ algorithm, the focus is on identifying
the nuanced trade-offs and factors that influence successful deployment.

Through the identification of key parameters that affect RL training, the development of
rigorous evaluation frameworks, and the creation of analytical tools to interpret the results,
this internship aspires to provide actionable insights. These contributions are intended to
guide future research and practical applications, supporting the careful and effective use of
RL techniques for autonomous underwater vehicle control in complex, nonlinear domains.
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3 Planning

At the beginning of the internship, the initial goals differed somewhat from those defined
later. The research initially aimed to explore the integration of RL into classical control
strategies such as PID or LQR. However, these objectives were not fixed and, in close
collaboration with my supervisors, the scope of the internship evolved based on my findings
and questions during the work.

Given my previous experience with the PPO algorithm during my last internship, and
the lab’s ongoing experiments with the SAC algorithm, it quickly became clear that a
comparative study of different RL methods in our underwater robotic environment would be
both relevant and valuable. Consequently, we decided to focus exclusively on benchmarking
algorithms rather than investigating hybrid Al-classical control methods, an avenue that
could be explored in future PhD work. This strategic refocusing was considered more
appropriate to ensure the delivery of concrete and meaningful results within the limited
time frame of the internship.

Another important factor shaping the planning was the technical challenge of adapting
previous PhD work to current tools and simulation platforms. Because the feasibility
of this adaptation was uncertain at the beginning, it was difficult to establish a precise
schedule. As a result, the internship followed a non-linear progression, with objectives
refined iteratively.

The Gantt chart in Figure 1 illustrates the approximate distribution of time among the
main tasks during the internship.

Section Task Title March I April | May | June July August
Literature review on RL algorithms
g}ln“ﬂi‘l:;:n“ Consolidate RL algorithmic foundations [ | " [ I l |] ‘ | | ]
Draft seientific report on RL benchmarks
Codebase audit & simulator architecture analysis J |
3D Physies Adapt underwater model in Gazebo Harmonic
Simulator Integrate Gazebo model with ROS 2
Integrate a LRAUV model

) ) Design custom Gym-like environment
RL Simulation — . " — " -
Unit and integration testing of simulation environment | |

Environment

Evaluate training loop performance

Define experimental protocol

Training sessions and result analysis
Compare SAC vs PPO vs DDPG
Evaluate sim2real transfer potential

Experimentation

Final write-up & documentation I I

Other

Prepare project presentation | demo

Figure 1: Gantt chart showing the planned time allocation for the major internship tasks.

The remainder of this report is organized into three main chapters. Chapter 1 in-
troduces the fundamental concepts of reinforcement learning and presents the algorithms
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relevant to this work, with a particular focus on SAC and PPO. Chapter 2 describes the
implementation of the simulation environment, including the integration of Gazebo Har-
monic, ROS2, and the reinforcement learning pipeline. Finally, Chapter 3 is dedicated to
experimentation, where the influence of key parameters is systematically analyzed, and the
performance of different algorithms is compared.



Chapter 1

Reinforcement learning concepts and
algorithms

1 Core principles of reinforcement learning

In RL, agents, such as robots, interact with an environment and learn through trial and
error. Unlike supervised learning, which relies on labeled data, RL depends on the agent’s
experience gained by exploring the environment, performing actions, and receiving feedback
in the form of rewards. This feedback encourages the agent to reinforce actions that produce
positive outcomes and avoid those that lead to negative consequences, enabling it to learn
behaviors that achieve specific goals.

1.1 Markov Decision Processes: formal framework

Among the various mathematical frameworks developed to model reinforcement learning,
the Markov Decision Process (MDP) stands out as the standard formalism to describe
the interaction between an agent and its environment. An MDP is a discrete-time stochastic
control process defined by the tuple (S, A, T, R) [1], where:

e S: the set of all possible states,

e A: the set of actions available to the agent,

e T the transition function, i.e., the probability of reaching state s;,; after taking
action a; in state s;, P(sii1 | 8¢, ay),

e R: the reward function, representing the immediate (or expected) reward received
for a transition from s; to sy following action a;, R(si4|s¢, ar).

5
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When both S and A are finite, the MDP is said to be discrete. For example, an action
set such as {up, down, left, right} is discrete, commonly found in video games. Conversely,
continuous MDPs feature states and actions with continuous values, such as controlling
an Autonomous Underwater Vehicle (AUV) where actions such as thruster forces or
positions are really valued.

The choice between discrete and continuous spaces significantly influences algorithm
design: discrete problems are often simpler and computationally less demanding, while con-
tinuous problems offer greater expressiveness but require more sophisticated and resource-
intensive algorithms.

Figure 1.1 [2] illustrates a simple discrete MDP with three states S = {so, s1, s2} and
two actions A = {ag,a,}. Transition probabilities are displayed next to the arrows; for

example, P(sy | s9,a9) = 0.5. The reward function is represented by orange arrows and is
defined as R(sg|s2,a1) = —1 and R(so|s1, ap) = +5.

Figure 1.1: Example of a simple MDP

A fundamental property of MDPs is the Markov property, which asserts that the
future state depends only on the current state and action, not on the sequence of past
states and actions:

P(8t+1 | Staat> = P(3t+1 | S1,0Q1, - . ~;St,at) (1'1)

This property simplifies the modeling of decision-making problems by focusing only on
the current state.

For simplicity of notation, and as illustrated in Figure 1.1, the reward function will
henceforth be written as R(s;11|s, a;) = Ryp1 = 141
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state reward

o [
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Figure 1.2: Illustration of the agent environment interaction in a Markov Decision Process.

action

Within this framework, the agent aims to learn the most effective behavior to perform
the given tasks. As illustrated in Figure 1.2 [3], in RL the agent perceives the current state
s; through observations o, and selects an action a; according to a policy 7. Executing this
action causes a transition to the next state s;,;, while the environment provides a reward
r¢+1, which quantifies the immediate quality of the pair of action states chosen. This loop
of interaction continues, allowing the agent to learn which actions are most beneficial over
time.

The policy 7 defines a mapping from states to actions and can be either deterministic,
where the same action is always selected for a given state (w(s;) = a;), or stochastic, where
a probability distribution over possible actions is specified given the state (w(a; | ;) =
P(a;=al sy = s)).

The objective in RL is to learn an optimal policy 7* that maximizes the expected
cumulative reward, representing the average total reward achievable over all possible
episodes starting from the initial state and weighted by their likelihood under 7. An
episode is a complete interaction with the environment, from initial state to termination,
either upon reaching a terminal state or after a fixed horizon. Within an episode, each
action influences not only the immediate reward, but also the future states and rewards.
The discount factor v € [0, 1] controls the trade-off between short-term and long-term
objectives, with higher values favoring distant rewards. Formally, the performance of a
policy  is:

J(m) =E,

Z ’yt/’nt_i_l] : (1.2)

1.2 Learning paradigms and policy evaluation

In RL, agents learn from experience using Monte Carlo(MC) or Temporal Differ-
ence(TD) methods [4]. MC provides unbiased estimates from complete episode returns,
ideal for episodic tasks but prone to high variance and delayed updates [5, 6]. TD
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updates incrementally via bootstrapping, blending immediate rewards with future es-
timates for greater sample efficiency and real-time stability, at the cost of some bias.

Policy evaluation can be on-policy or off-policy [7]. On-policy updates from the
current policy ensure stable convergence but waste past data, reducing the efficiency of
sample. Off-policy reuses episodes from other policies (e.g., via replay buffers) to boost
data efficiency and exploration, but may suffer from bias, variance, and instability, is-
sues mitigated by importance sampling, trust region constraints, or entropy regularization.
The choice reflects trade-offs between bias/variance and stability /efficiency.

1.3 Balancing exploration and exploitation

In RL, agents face the exploration—exploitation trade-off: they must explore un-
known sequence of actions to gain information while exploit known rewarding actions to
maximize cumulative reward [4, 8|. During training, exploration dominates to gather di-
verse experiences, shifting toward exploitation as knowledge improves. Common strategies
include e-greedy, which selects a random action with probability ¢ and the best known
action otherwise, typically decreasing e¢ over time, and entropy regularization, which
encourages randomness of the policy in gradient-based methods to prevent premature con-
vergence to suboptimal solutions [4, 9]. Properly balancing these mechanisms improves
both learning efficiency and policy quality in complex environments.

1.4 RL Strategies: policy-based vs. value-based

In RL, two main strategies guide the search for the optimal policy 7*. Policy-based meth-
ods learn a direct mapping from states to actions, while value-based methods estimate a
value function for each state and choose actions that lead to a higher estimated value.

1.4.1 Value-based methods

Value functions In value-based RL, the objective is to assign a numerical value to states
or state—action pairs, reflecting the expected cumulative return when starting from a
given state (or state—action pair) and following a policy 7. The return G; denotes the
discounted sum of future rewards from the timestep ¢t onward G; = ZZOZO VT

The state value function V7 (s) is the expected return from state s under policy 7:

V™(s) =E; [Gy| s = s]. (1.3)

The action value function )™ (s, a) extends this definition to state—action pairs.
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These functions are related through: V7(s) = Equr(|s) [Q7(s,a)], where the notation
a ~ 7 means that action a is chosen according to policy 7.

Finding the optimal policy 7* is often done using the optimal value functions: V*(s) =
max, V7 (s) or Q*(s,a) = max, Q"(s,a) [10].

Bellman equations

In MDP, the Bellman equations relate the value of a state (or a state—action pair) to
the value of its successors, reducing computational redundancy [11, 1].

Therefore, for a policy 7, the value functions can be defined as:

V7(s) = Ex[resr + 7V (s041) | 50 = s, (1.4)
Q"(s,a) = E; [Tt+1 +7Es o [QF(StH, at—i—l)} St =35, Gt = a]. (1.5)

Value function estimation

When the dynamics of the environment are unknown, the value functions are estimated
from the sampled data using MC or TD methods.

MC methods estimate the state values using the total discounted return Gy of complete
episodes:

Vist) < V(se) + a(Gy—V(sy)), (1.6)

TD methods incrementally update the value function using the TD-error (d;), which is
based on the Bellman equations (1.5). The value function is then updated as:

V(st) < V(se)+ady  with 6 =ripq + 4V (se401) — V(se) (1.7)

The updates are controlled by a learning rate a, which balances the speed of learning
and the stability of convergence.

Example of value-based algorithms

Two common TD value-based algorithms are SARSA (State-Action-Reward-State-
Action) and Q-learning. SARSA is on-policy and updates the state action value using
the TD-error along the experienced trajectory:

Q(8t, ar) < Q(s¢,a) + a[rt—i—l + YQ(St41, Arg1) — Q(5¢, at)]- (1.8)

Q-learning is off-policy and updates towards the maximal next-state value:

Q(st,ar) + Q(sy, ar) + Oé[rtJrl + ’Ym(?XQ(StHa a) — Qs atﬂ- (1.9)
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In practice, both algorithms typically select actions according to an e-greedy policy:
with probability 1 — e the agent exploits by choosing the action with the highest estimated
Q-value, and with probability e it explores by sampling a random action, thus maintaining a
balance between exploration and exploitation. The key distinction is that SARSA updates
its value function using the action actually taken by the agent (on-policy) 1.8, while Q-
learning updates as if the greedy action had been selected (off-policy), regardless of the
agent’s exploratory choice 1.9.

1.4.2 Policy-based methods: direct policy optimization

Policy-based methods aim to learn the optimal policy 7* directly, without relying on an
intermediate value function. They optimize a parameterized policy my to maximize the
expected cumulative reward:

J(@)::EW9[2§3»¢TH4]. (1.10)

These methods are divided into two families: gradient-based, which update policy
parameters using the gradient VyJ(0) and are effective in high-dimensional or continu-
ous action spaces, and gradient-free, which rely on heuristics such as random search or
evolutionary strategies when gradient information is noisy or unavailable |7].

Policy gradient methods

The evolution of the policy is based on the objective J (), which represents the expected
return over a trajectory 7, the sequence of state-action pairs, 7 = ((s¢, ar), (St41, @¢41), - - - (ST, 07)),
generated by the policy my:

T
J(0) =Eruny[Gi], G = Z'Vkrt—i-k—i—l« (1.11)
k=0

Equivalently, summing over all trajectories weighted by their probability:

J(0) =Y P(7;0) G, (1.12)

P(r;0) = [ [ P(ses1 | s, a0) mo(ay | s1), (1.13)

t=0

where P(s;11 | s¢, a¢) is the transition probability of the environment and 7g(a; | s;) is the
probability that the agent selects the action a; from state s; given our policy [§].
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To maximize J(6) Policy gradient methods perform gradient ascent with a learning rate

0« 0+aVy(0), (1.14)

Using the policy gradient theorem, the gradient can be estimated as

T
V@J(H) = ]ETNﬂ—Q ZV@ 10g7r9(at ‘ St> Gt . (115)

t=0

Example of a policy-gradient algorithm

REINFORCE [12] is a straightforward MC policy-gradient algorithm that samples
complete episodes and updates the policy parameters based on the observed returns Gj.
The algorithm 1 presents its pseudocode.

Algorithm 1: REINFORCE Algorithm
Input: Stochastic policy my(a | s), number of episodes N, learning rate «
Output: Optimized policy parameters 6

1 Initialize 6;

2 fori=1to N do

3 Generate a complete episode sg — a9 — r1 — - -+ — sy following my;
4 fort=0to T —1do

5 Compute return: G; = ZZZHI Yt

6 Update parameters: 0 < 0 + a Vylogmg(a, | s¢) Gy;

7 return 6

1.4.3 Actor-Critic methods

Actor—Critic methods [13| combine policy-based and value-based approaches to exploit
the strengths of both: the Actor selects actions according to a parameterized policy, while
the Critic evaluates these actions with a value function, providing a low-variance learning
signal to improve the policy efficiently.

Example of an actor—critic algorithm with Q-value estimation: At each step,
the actor selects an action according to the policy my, while the critic evaluates it using
the action value function @),,. The Critic is updated incrementally via the TD error, and
the Actor is updated using the policy gradient. This interaction enables learning from
partial episodes, enhancing sample efficiency and stability compared to pure Monte Carlo
methods.
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Algorithm 2: Actor-Critic with Q-value Estimation

Input: Initial 6, w; learning rates ay, a,,; discount ; episodes N
Output: Optimized 6, w

for:=1to N do

Initialize sq;

repeat terminal until

Sample a; ~ my(- | ;) and observe 1,1, S¢y1;
Sample a; 11 ~ (- | S411);

Op <= Tig1 + VQuw(St41, Ary1) — Qu(Se, ar);

W 4 W+ 0 ViuQuw(St, ar);

0 < 0+ g Vologmy(ay | st) Qu(se,ar);

® N O ok W N =

return 0, w

©

1.5 Deep reinforcement learning

Classical RL methods, such as tabular Q-learning, store value functions V(s) or action
value functions Q(s,a) in lookup tables, associating each state or state—action pair with
a numerical value. This is feasible only for small, discrete spaces and fails in most real-
world problems, including robotics, complex video games, and autonomous driving, where
states are continuous, high-dimensional, and often derived from unstructured sources such
as images or sensor data.

DRL uses deep networks fy(x) with weights 6 to approximate state-value functions
V™(s) ~ Vp(s), action-value functions Q™ (s,a) ~ Qa(s, a), or policies 7(a | s) = my(a | s).
By the universal approximation theorems [14, 15|, a network with at least one hidden layer
and sufficient neurons can approximate any continuous function in a compact domain,
allowing agents to learn complex and generalizable behaviors in rich state spaces.

A key example is the Deep Q-Network (DQN) [16], which uses convolutional networks to
estimate Q(s,a) directly from raw image frames in Atari games, automatically extracting
relevant features.

In summary, the “deep” in DRL shifts RL from symbolic representations to distributed
representations, allowing scalable, generalizable learning in complex domains of the real
world.

2 Detailed study of selected algorithms

This chapter presents a brief overview of the reinforcement learning algorithms used in
the internship. All selected algorithms belong to the class of model-free methods and are
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capable of handling continuous state and action spaces. Their implementations are based
on the Stable Baselines library [17], an improved and actively maintained version of the
original OpenAl Baselines repository [18|.

2.1 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [19] is a model-free, on-policy reinforcement learning
algorithm that balances performance and stability. It uses an actor-critic framework with
an advantage function for critics and with a clipped objective to limit large policy
updates, ensuring stable learning. PPO performs particularly well in continuous action
spaces and is valued for its simplicity, reliability, and strong empirical results.

The network architecture uses a shared backbone with separate heads for the policy
(actor) and value function (critic). Sharing layers enables efficient state representation,
reduces overfitting, and stabilizes training.

The PPO objective function or loss combines three components: the clipped surrogate
policy loss LCMP | the loss of the value function LY¥, and an entropy bonus S[m] for
exploration. These elements thus then the advantage function will be defined later. The
total loss is written as:

Letal(g) = B, [ LOYP () — ¢, LYF () + eS|l (s)] . (1.16)

where ¢; and ¢y are scalar coefficients controlling the contributions of the value and
entropy terms [19].

2.1.1 Clipped surrogate policy loss

Large policy updates can destabilize training. PPO addresses this problem with a
probability ratio between the current and the old policy (@) (1.17) and a clipped surrogate
loss: LELIF(6) (1.18).

r(0) = _molar | st) (1.17)  LCLMP(9) = E, [min (r£(0) Ay, clip(r¢(0), 1—e, 1—1—6)/115)} (1.18)

7Tgold (at | St)

where A, an estimator of the Advantage Function and where € defines the trust region to
ensure safe policy updates. This mechanism limits too large policy changes and stabilizes
training.

Advantage function
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The advantage function A; quantifies how much better taking an action a; in state s;
is compared to the expected value of that state: A; = Q(s¢, ar) — V(st)

In practice, PPO uses Generalized Advantage Estimation (GAE) [19] to calculate A;
efficiently while balancing bias and variance, using TD-error 6; = 7141 + 7 Vo(si41) — Va(se)

A =064+ (YA) 01 + (YA 0pga + -+ -+ (AN F oy, (1.19)

where v is the discount factor and A € [0, 1] controls the bias-variance trade-off.

In practice, advantages are computed on a batch of trajectories to give an estimator
Ay = %{w of the advantage function which ensures consistent scaling for gradient
updates.

Clipping mechanism and stability

The clipping in LY () constrains policy updates to a safe region, preventing exces-
sively large changes that could destabilize learning. Table 1.1 [20] summarizes how the
clipped term is applied depending on the advantage A; and the probability ratio r;(6).
This mechanism ensures smooth, incremental policy improvements and guards against de-
structive updates.

Advantage A; Ratio r,(f) Clipped Term Used

At >0 Tt(e) >14¢ (1+€)At
A <0 r(0) <1—¢ (1 —e)A,;
Else Any r(0) A,

Table 1.1: Behavior of the clipped objective under different advantage and ratio conditions

2.1.2 Value loss :

The value loss LV () measures the mean-squared error between predicted state values
and observed returns:

LYE() = (Vy(s,) — Gy)? (1.20)

where G, is the empirical return starting from s;. A gradient descent is applied to
train the Critic, minimizing the difference between predicted and actual returns to provide
reliable value estimates that stabilize policy updates.
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2.1.3 Entropy bonus:

The entropy term S[mg(s;) encourages exploration by promoting uncertainty in the pol-
icy’s action selection. Maximizing this term discourages the policy from becoming overly
deterministic too early, thus improving exploration and preventing premature convergence
to suboptimal strategies. The coefficient ¢y in the total loss controls the strength of this
regularization.

The pseudocode of the PPO algorithm is summarized in Algorithm 3.

Algorithm 3: Proximal Policy Optimization (Actor-Critic) [19]

1 for iteration = 1,2,... do

2 for actor=1,...,N do

3 Run policy mg,,, in the environment for 7" timesteps;
4 Store (s, ag, riv1, Se+1) in buffer;

5 Compute advantages Ay, Ap using GAE;

6 for epoch =1,..., K do

7 Shuffle buffer and split into minibatches of size M;
8 foreach minibatch do

9 Compute policy ratio r(6);

10 Evaluate clipped policy loss L°F(6);

11 Evaluate value loss LV (0);

12 Evaluate entropy bonus S|m|;

13 Update 6 via gradient ascent on L*%!();

14 Ooiq < 0;

2.2 Soft Actor-Critic: detailed derivation and equations

The Soft Actor-Critic (SAC) algorithm [21] is an off-policy, actor—critic method
specifically designed for continuous action spaces. It demonstrates high sample efficiency
and is particularly effective in tasks that require adaptability, enhancing exploration and
performance in complex, dynamic environments.

The pseudo-code of the SAC algorithm is summarized in algorithm 4.
2.2.1 Maximum entropy reinforcement learning framework

SAC is built upon the maximum entropy reinforcement learning framework, which
augments the standard RL objective with an entropy term. This encourages exploration
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Algorithm 4: Soft Actor-Critic (SAC) |21, 22]

1 Initialize policy parameters 6, Q-function parameters ¢, ¢2, and empty replay buffer D;
2 Set target network parameters: @rarg,1 <= @1, Prarg,2 < 2;

3 for each iteration do

4 for each environment step do

5 Sample action a; ~ my(- | s¢);

6 Execute a; and observe reward and next state (r¢ i1, si+1,d;);
7 Store transition (¢, ag, r¢41, S¢+1,d¢) in D;

8 if it’s time to update then

9 for each gradient step do

10 Sample a batch B of transitions from D;

11 Sample ay11 ~ mo(- | S¢41);

12 Compute the target value y(ri+1, St+1,dt);

13 Update critics ¢1, ¢2 with (1.28) via gradient descent;
14 Sample a; ~ mg(- | s¢);

15 Update policy 0 with (1.29) via gradient ascent;
16 Update target networks ¢iarg, 1, Grarg,2 With (1.27);

while learning a high-performance policy. The objective function is therefore defined as:

J(m) =En | Y A (risa + aH(m(- | 50))] (1.21)
t=0
where the entropy H is given by:
H(r(|3)) = ~Equrllog 7([s)]; (1.22)

and o > 0 is the temperature parameter that balances exploration and exploitation
[21, 22].

The entropy-regularized state value function is defined as:

V™(s) = Egur [Q7(s,a) — alogm(als)], (1.23)

and the corresponding entropy-augmented action value function, derived from the Bell-
man equation, is:

Q"(s,a) =Ex|rep1 + 7 Eapy o [Q”(stﬂ, az+1) — alog 7r(at+1\st+1)} | st =8,a; =al. (1.24)

2.2.2 Action sampling via the reparameterization trick

Actions are generated via a differentiable transformation of Gaussian noise £ ~ N(0, ).
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a; = ag(s,&) = tanh (ug(s,€)), with wy(s,&) = pe(s) + ay(s) ©E, (1.25)

where 15(s) and og(s) are the outputs of the policy network. Thus, a; denotes an action
sampled from the current policy 7y at the state s;. The tanh function ensures that
actions remain within the valid bounds of the environment while preserving differentiability
for backpropagation.

2.2.3 Critics and actor updates

SAC maintains two Q-function approximators, Q4, and @Q4,, to mitigate overestimation
bias [21]. The target value is based on the TD-error and uses the target networks ¢iarg1

and ¢targ,2:
Y(reers Sep1,de) = 11 v (1 —dy) - JHZI% Qrarg,; (5t41, Ary1) — alog me(ayyr]se41) |, (1.26)

where d; is the terminal flag and @;.1 ~ my(+|s44+1) is the action sampled via the reparame-
terization trick.

The parameters ¢ag; correspond to slowly updated copies of the critic networks, known
as target networks and ensure that the regression target changes gradually between updates.

To achieve this, SAC applies Polyak averaging:
¢targ,i < p¢targ,i + (]- - P) ¢i7 (127)
The critic loss for each i € {1,2} is:

L(¢2) = E(St,at,TtH,StH,dt)ND [<Q¢i(3t7 at) - y(Tt+1, St41, dt))Q} ) (1'28)

where D is the replay buffer storing past transitions. The critic parameters ¢; are updated
to minimize the difference between the predicted and target Q-values.

The policy (actor) loss is:

Lﬂ-<0) = EstND,&tNWg(-|st) JIE%% Qd)] (St, &t) — OélOg Wg(&t‘st) . (129)

The policy parameters # are updated to maximize this entropy-augmented expected Q-
value.






Chapter 2

Simulator implementation

This chapter presents the development of a high-fidelity physics simulation framework for
training autonomous underwater vehicles using reinforcement learning. It covers simulator
selection and adaptation, integration with modern robotics software, and the design of the
BlueROV2 RL environment, including state representation, rewards, and training proto-
cols. Together, these elements provide a robust foundation for effective simulation-based
underwater vehicle control.

1 High-fidelity physics-based simulation environments

This section first reviews the scientific rationale for simulation-based reinforcement learning
(RL) in underwater robotics and summarizes prior laboratory research. Then, it details
the adaptations required to update legacy simulation frameworks for modern software
environments. Subsequently, a comparative evaluation of leading robotics simulators is
presented, followed by a description of the BlueROV2 simulation model in development
and an overview of system integration alongside encountered technical challenges.

1.1 Review of prior laboratory research

One of the initial tasks during this project was to analyze previous work conducted by lab-
oratory members on RL applied to underwater vehicles, encompassing both simulation and
real-world experiments. The research of T. Chaffre [1], K. Lagattu [23], and Y. Sola [24] laid
the foundation employing a modular simulation framework based on ROS middleware, the
Gazebo physics simulator extended with the uuv_simulator package, and Python-based
control and experimentation layers, illustrated in Figure 2.1. ROS facilitates communi-
cation through independent nodes that exchange data through publish/subscribe topics
and synchronous services. This modularity ensures that control algorithms developed in

19
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simulation are seamlessly transferred to physical platforms.

The Gazebo simulator manages hydrodynamic effects and rigid-body dynamics consis-
tent with Fossen’s 6-DoF marine vehicle models, with wuv_simulator providing underwater-
specific extensions such as configurable thruster layouts, ocean current modeling, realistic
sensor emulations, and fault injection. Python scripts orchestrate high-level experiment
control and interact readily with machine learning libraries for RL training loops.

This hardware-in-the-loop capability architecture allowed Chaffre to transfer SAC-
based controllers from simulation to a RexROV2-like platform, and Lagattu to port DRL-
based fault-tolerant control policies from simulated BlueROV2 heavy models to real un-
derwater tank tests.

ROS
Simulation structure Communication between each component
Pytorch Gazebo
i Graphical engine
GPU computations e ’ Matlab
. . . Rigid body dynamics
Machine learning algorithms o .
Aerodynamics Statistical analysis
N Generation of figures
Other tools ULV Sim after the training
Numpy : CPU computations Hydrodynamics physics
AUV models
Matplotlib : Generation of figures §
during the training Control algorithm

Figure 2.1: Simulation architecture adapted from Y. Sola [24].

Figure 2.2: Gazebo with UUV Simulator environments: RexRov by T. Chaffre (left) and
BlueROV Heavy by K. Lagattu (right).

1.2 Technological advances and framework adaptation

Given the four-year gap since these previous studies, significant changes in the software
ecosystem have occurred, including the advent of ROS 2, which is incompatible with
Ubuntu versions older than 22.04. Contemporary systems predominantly employ Ubuntu
24.04 or later, necessitating updates to simulation architectures.
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An initial approach using Docker containers to preserve legacy ROS and Ubuntu en-
vironments encountered practical difficulties due to complex dependency resolution and
limited access to external resources. Consequently, this project prioritized adapting the
simulation framework to the modern Ubuntu and ROS 2 versions for sustainable develop-
ment.

1.3 Comparative evaluation of contemporary robotics simulators

To select an optimal simulator compatible with my hardware and research objectives, train-
ing an analogous AUV to the BlueROV2 with RL, I reviewed the leading robotic simulators
(Table 2.1). Since BlueROV2 real-world control is based on ROS topics, maintaining ROS 2
integration was crucial.

Industry consultations identified Isaac Sim as the prevalent RL simulator for its NVIDIA
GPU acceleration, but its transition to the RL-focused Genesis platform lacks underwater
simulation capabilities. MarineGym offers underwater RL environments but is not yet
available.

Therefore, I selected Gazebo Harmonic, compatible with Ubuntu 24.04 and ROS 2
Jazzy, as the best compromise, despite its lack of native underwater modules, relying
instead on plugin-based extensions.



Simulator Hydrodynamics / Underwater Capa- | ROS 2 Compat- | Notes
bilities ibility
MarineGym /| MarineGym offers dedicated marine and | Partial; evolving | RL-focused underwater simulators with

(Genesis

underwater RL simulation with explicit

via custom ROS 2

small but growing communities; ecosys-

MarineGym  (ac- | hydrodynamics and thruster modeling. | bridges tems are less mature than Gazebo.
tive  2023-2025), | Genesis is related research software sup-
Genesis v0.1+ | porting marine robotics but lacks clear
(2023) native underwater hydrodynamics simula-
tion features.
Unity (Unity | No native hydrodynamics; can be added | Yes, via Unity | High visual realism and flexible envi-
Robotics) via third-party plugins or custom physics; | Robotics Hub ronment creation; ideal for vision-based

Unity 2024.1 LTS

underwater scenes possible with extended
modelling

robotics; underwater use requires exter-
nal assets.

Isaac Sim / Isaac | PhysX 5 supports rigid-body dynamics | Possible via | GPU-accelerated for manipulation and
Gym and basic fluids; lacks specialized under- | ROS 2 bridge / | navigation; marine scenarios require
Isaac Sim 2024.1 water hydrodynamic models Isaac ROS heavy customization.

Gazebo (Igni- | Supports underwater vehicle simu- | Fully supported | ROS 2-native successor to Gazebo Clas-
tion &  Har- | lation via external plugins such as | via the ros_gz | sic; modular architecture; LTS stability in
monic) uuv_simulator. Compatibility matures | bridge Harmonic. The Underwater features are
Harmonic (2025 | on Fortress/Garden; Harmonic requires plugin-based.

LTS), Garden | plugin adaptation.

(2024),  Fortress

(2023)

Webots Basic hydrodynamics; limited underwater | Yes, via dedicated | User-friendly with fast setup; suited for

R2024a (2024)

support without extensions

ROS 2 interface

education and rapid prototyping; limited
marine physics fidelity.

(e

Table 2.1: Comparison of widely used robotic simulators for scientific research (2025), focusing on hydrodynam-
ics/underwater capabilities and ROS 2 integration.

uornyejyuows[duwil Jojemuls ‘g Jojdey)
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1.4 Development of a blueROV2 underwater simulation model

Given that Gazebo Harmonic lacks a native BlueROV2 model, I adapted an open-source
ROS 2-integrated BlueROV2 environment [25] developed by Centrale Nantes. Although
this implementation employs an earlier ROS 2 architecture and models the BlueROV2 Clas-
sic, our laboratory’s BlueROV2 Heavy differs by its eight-thrust configuration, increased
stability, greater payload capacity and reinforced frame, affecting dynamics and control.

However, this repository provided a functional simulation environment (Figure 2.3)
with comprehensive actuator control, forming a suitable base for extension to the Heavy
platform.

Figure 2.3: Gazebo Harmonic BlueROV2 underwater simulation environment.

1.5 System integration and technical challenges

Truth pose Truth pose
gz _topic ( ) ros2 _topic (
Gazebo ( ) ROS2 ( ) Python
(Simulation) (Middleware) (RL Environment)
Thruster Command J Thruster command U
(gz__topic) (ros2_topic)

Figure 2.4: Architecture linking Gazebo Harmonic, ROS 2, and RL control.

Integrating Gazebo Harmonic, ROS 2 middle ware, and Python-based RL frameworks
was a primary challenge (Figure 2.4). The ros_gz_bridge package enables bidirectional
communication between Gazebo and ROS 2 topics, while Python algorithms interact with
ROS 2 via publishers and subscribers. Ground-truth pose data derives from a ROS 2 node
adapted from the Centrale Nantes repository [25]; Location in the real world is based on
inertial sensors.

Two implementation challenges arose. Initially lacking a robust reset service, I imple-
mented a PID controller to return the robot to its starting position after each RL episode,
which proved inefficient due to RL’s computational demands. Subsequently, I developed a



24 Chapter 2. Simulator implementation

ros_gz_bridge extension for Gazebo services, enabling a reliable and efficient reset func-
tion.

Furthermore, integrating the asynchronous ROS 2 architecture with the synchronous
RL training loop (e.g., with Stable Baselines 3) required abandoning the conventional
continuous ROS control node. Instead, ROS 2 publishers and subscribers are instantiated
and invoked on demand from Python scripts, which ignore the multithread benefit of ROS,
but provides a practical solution for robot RL control in Gazebo Harmonic.

2 Reinforcement learning simulation framework

Building on the foundations of high-fidelity physics simulation and system integration, this
section details the design and configuration of the reinforcement learning (RL) environment
specifically developed for autonomous underwater vehicle control.

2.1 Development and implementation of the blueROV2 RL envi-
ronment

2.1.1 Core environment design

The RL environment simulates the underwater context in which BlueROV2 operates and
interacts. It defines the state space, including the robot’s position, orientation, and sensor
feedback, the continuous action space consisting of thruster command inputs, and the
reward function guiding the learning process. Through iterative interactions comprising
observation, action execution, and reward feedback, the agent progressively refines its
control policy. Precise modeling of underwater dynamics and sensor characteristics within
this environment is essential to develop robust controllers transferable to real vehicles.

The environment is implemented as a Gym compatible interface by subclassing Gym. Env,
following the requirements of the Stable Baselines3 framework. This implementation in-
volves specifying the observation and action spaces, the step function for environment
transition, the reset function for episode initialization, and the reward calculation mech-
anism. The continuous action space corresponds to six thruster commands:

A={u; for iell,6]}

The observation space is derived from Y. Sola’s work [24| optimized for waypoint track-
ing tasks:

St = {we7 Xe, utfl}

where 1), denotes the tracking error of the yaw angle, x, is the positional error vector
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between the current and target positions, and u;_; represents the action vector of the
previous step.

The step function applies thruster commands, allows the robot dynamics to act, then
obtains updated states from Gazebo’s truth pose node, outputting the new observations,
reward, termination status, and diagnostic information. The reset function re-initializes
the robot pose at the start of the episode. Reward and termination criteria are tailored to
mission specifications.

2.1.2 Mission-specific environment setup

The mission replicates the waypoint tracking scenario described by Y. Sola [24]. Although
AUVs serve multiple purposes, such as path planning, obstacles avoidance, and station
keeping, this study focuses on tracking waypoint within simulation due to testing oppor-
tunities in a limited real world

Each episode requires the vehicle to reach a randomly assigned 3D waypoint within
a bounded region. Episodes are limited to 1000 time steps to ensure practical training
duration.

Initialization sets the AUV position to x = [0,0, —20] meters in the Gazebo frame,
with the yaw randomly sampled from [0, 360°], and roll and pitch set to zero. The target
waypoint is uniformly sampled within a 3D box centered on the initial position:

e Vertical bounds: [—60, —1] meters.

e Horizontal bounds (X, Y): [—20, 20] meters.

Episodes end successfully when the AUV reaches within 3 meters of the waypoint with-
out breaching vertical limits. Violations of vertical boundaries or exceedance of timestep
limits count as failures (collision or timeout).

To mimic real-world noise, sensor readings are perturbed by uniform noise in the
[0.05,0.1] range, while thruster commands are similarly affected by noise in [0.01,0.05].

The reward function 4, inspired by Y. Sola [24] and [26], incorporates position-based
criteria:

Twaypoint it dp < € (success)
Teollision  if 2 € [Zmin, Zmax] (collision)

Tt = (2].)
Ttoward if dt < dt—l

\ "'backward if dt Z dtfl
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where d; is the distance to the waypoint and the vertical limits and threshold are
Zmin — _60m, Zmax — —1 m, € = 3m.

Components of the reward function include:

® Tyaypoint = 000: Positive reward for reaching the waypoint and ending the episode
successfully.

® Ieomision = —9HH0: Negative reward for breaching vertical bounds, which ends the
episode with failure.

® Tioward = K, X exp(—d;/20): Variable positive reward for decreasing distance, en-
couraging progress.

® Thackward = —10: Negative reward for stagnation or moving away from the waypoint.

This reward structure incentivizes efficient and safe navigation toward the target while
penalizing undesirable behaviors such as boundary violations or regression.

Figure 2.5 illustrates the detailed flow of the reinforcement learning cycle used for
BlueROV2, highlighting key steps such as environment reset, action selection, state up-
dates, reward calculation, and episode termination.

2.2 Reinforcement learning simulation phases

Training phase The RL agent is trained on episodes that replicate the waypoint tracking
task (Section 2.1.2), each with a randomly located target waypoint. Training continues
until one million time steps are completed and is managed via Stable Baselines3 interface
with the custom environment. To ensure reproducibility in the stochastic nature of RL, a
fixed random seed of 42 is used, standardizing task sequences between runs.

Testing phase Following training, models are evaluated in a 500 episodes testing phase,
where the neural network parameters remain fixed. The testing loop is custom-implemented
to allow fine control over the evaluation flow. A different fixed seed of 123 ensures varied
yet reproducible scenarios. This phase assesses the agent’s ability to generalize the policies
learned beyond the training distribution.

Training utilizes automated library routines, whereas testing employs a manually de-
fined control loop. Due to inertial and thruster dynamics of the underwater field, com-
putational timing directly affects robot responsiveness; timing differences between phases
may influence agent performance. Furthermore, distinct seeds for each phase balance re-
producibility with diverse environmental exposure.
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Figure 2.5: Enhanced Reinforcement Learning Task Flow Diagram for BlueROV2
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During both training and testing phases, observation and reward normalization are con-
sistently applied to improve learning stability and performance. Normalizing observations
standardizes diverse sensory inputs to a uniform scale, enhancing numerical stability and
enabling faster, more reliable convergence. Reward normalization maintains a consistent
feedback magnitude, preventing extreme values from destabilizing training and improving
sample efficiency. Together, these normalizations mitigate environmental noise and scal-
ing discrepancies, ensuring robust policy learning and better generalization across varied
underwater scenarios.

Integrated Pipeline: Gazebo Simulation, ROS 2 Bridging, and RL Training for
BlueROV2

The diagram 2.6 on the following page presents the complete simulation chain developed
during this project. It brings together both the conceptual understanding and the practical
implementation work carried out, while clearly illustrating the links between the different
components of the chain. To enhance readability, the diagram is enriched with annotated
screenshots, showing key code segments, the simulation rendering, and representative plots
obtained from the experiments.
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Chapter 3

Experimentation

This chapter focuses on deepening the understanding of reinforcement learning (RL) al-
gorithms beyond the implementation of the RL environment by investigating how various
theoretical and simulation-related factors impact training efficiency and performance, par-
ticularly in underwater robotics. A key objective is to foster critical discussions on RL
efficiency and to highlight important considerations that must be approached with caution.
Although much of the literature introduces novel RL algorithms with advanced mathemati-
cal frameworks evaluated in predefined environments, practical applications frequently rely
on common algorithms without a clear understanding of their limitations.

By linking theoretical insights with simulation experiments in an underwater robot
context, this work identifies key parameters influencing training, establishes a systematic
evaluation framework, and develops analysis tools to visualize and interpret results. Such
efforts aim to provide deeper insights into RL dynamics in complex domains and guide
future algorithmic and practical improvements.

1 Design of experimental evaluation framework

1.1 Selection and hypothesized impact of key influencing factors

As outlined in the planning section of the introduction, several factors that could influence
reinforcement learning (RL) performance were identified through ongoing discussions with
my tutors and consideration of practical challenges encountered during the internship. The
differences in RL algorithms used by the laboratory compared to those with which I was
familiar led us to hypothesize that distinct behaviors and performances might emerge when
these algorithms are applied in our underwater simulation environment.
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Algorithm selection: potential challenges in practical settings While previous
comparative studies such as [19] and [21] provide theoretical and empirical insights on RL
algorithms, these are often based on idealized settings. In contrast, the complexities of
realistic underwater simulations may introduce nuances that alter algorithm performance,
suggesting that the choice of RL algorithm could present unique challenges or unexpected
outcomes in this context. Consequently, this work explores the benchmarking of two com-
monly used algorithms in robotics: PPO and SAC, with the aim of uncovering potential
differences and pitfalls specific to the underwater domain.

Normalization and scaling effects in reward function design The adopted re-
ward function (Equation 2.1)—originally implemented without modification—was later
used with reward normalization. Despite this, it is hypothesized that the proportional co-
efficient K, in the ryowarq term could still strongly affect learning dynamics. Specifically, if
the robot fails to reach the waypoint, the cumulative progress reward might reduce the rel-
ative impact of actually reaching the waypoint (7waypoint), €ven after normalization. These
considerations highlight that, while normalization helps address scale disparities, a careful
balance between reward components (and particularly the choice of K,) could be crucial
for effective learning. This remains an open question warranting systematic exploration in
the context of underwater RL.

1.2 Parameter exploration and comparative methodology

To analyze the identified factors, the experimental approach was structured in two main
parts. The first part focuses on investigating the influence of specific parameters—namely,
step duration and reward coefficient—within the context of the SAC algorithm. The second
part extends the analysis to a comparative study between algorithms. All possible combi-
nations of step duration and reward coefficient were tested using SAC, and the results were
ranked and visualized according to metrics such as reward coefficient and step duration.
Subsequently, the best-performing SAC and the initial configuration was compared against
the PPO algorithm using the same parameter settings.

Although this methodology is not entirely optimal—since the best configuration for
SAC may not correspond to the optimal settings for PPO—it facilitates a clear compari-
son of behavioral differences between the two algorithms. This approach is also pragmatic,
substantially reducing computational demands, which was necessary due to internship time
constraints. Given that individual training runs could last up to 30 hours and each evalu-
ation phase approximately 15 hours, only a limited number of tests could be conducted.

Time limitations meant that it was not possible to fully complete the experimental
framework or to obtain comprehensive results. Nevertheless, this process significantly
enhanced understanding of RL simulation and highlighted several valuable observations
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that merit further discussion and exploration.

Parameter selection for the initial configuration was inspired by the work of Y. Sola,
with the baseline configuration SAC, = (K, = 40, fr, = 25Hz). Here, fry = 25Hz
corresponds to the average computation frequency achievable on the utilized PC. When I
dedicated solely to simulation tasks, without graphical rendering frequencies up to 55Hz
could be achieved, which also aligns with typical computational rates for PPO. The value
10Hz was chosen to encapsulate the lower end of average operational frequencies. Similarly,
coefficients for the reward parameter (K,) were selected to explore a range around the initial
value of 40, hence the values 1 and 100 were also tested.

This experimentation matrix resulted in a total of nine unique simulations, each com-
bining different step durations and reward coefficients (see Table 3.1). This design enables
the isolation of the effect of each parameter by holding others constant. The notation
SAC; references the specific SAC agent corresponding to the i-th configuration within the
experimental framework.

K 1 40 100

55 SAC, | SACy | SACs
25 SACy | SAC, | SACs
10 SACs | SAC; | SACs

frL

Table 3.1: Parameters Experimentation Framework

2 Development and application of analysis tools

In order to systematically assess the influence of different parameters and to perform com-
parative analyses among various SAC agent configurations as well as between SAC and
PPO algorithms, it was necessary to establish robust criteria and dedicated tools for eval-
uating algorithm efficiency. To this end, a suite of analysis tools was developed, enabling
comprehensive examination of both the training and testing phases for each agent. Some
of these tools were custom-developed in Python, while others leverage established log-
ging utilities such as Tensorboard, integrated via the Stable Baselines3 framework. These
tools facilitate the collection of both statistical metrics and quantitative data essential for
effective evaluation.

2.1 Training phase: diagnostic logging and visualization strategies

During the training phase, logging was primarily managed using Tensorboard through the
Stable Baselines3 library. Tensorboard generates a variety of plots indexed by training
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time steps, as illustrated in diagram page 29. For each algorithm, metrics such as the
mean episode length and mean episode reward are visualized as functions of the training
step count. In addition, algorithm-specific metrics are provided to better align with the
internals of each method; for example, SAC logs include the evolution of actor and critic
losses as well as the entropy coefficient, while PPO is accompanied by its own method-
relevant diagnostic plots.

2.2 Testing phase: quantitative evaluation metrics
2.2.1 Establishing quantitative performance indicators

To quantitatively evaluate agent performance, a set of metrics inspired by the work of Y.
Sola [24] was employed. These metrics encompass both training performance and testing
evaluation. For assessment, each controller (PID and SAC) was subjected to 500 test
episodes, with the following metrics calculated:

e Success rate: The proportion of episodes in which the waypoint is reached within
predefined boundaries and time limits.

e Collision rate: The percentage of episodes ending in collision (specifically, AUV
crossing vertical bounds [—60, —1] on the Z-axis).

e Timeout failure rate: The fraction of episodes terminated by exceeding a 1,000-
step limit.

e Mean and standard deviation of dd: Measures of deviation from the ideal
straight-line trajectory, with mean indicating accuracy and standard deviation in-
dicating trajectory stability.

e Mean of |ju||: Average thruster effort, computed as

ul| = \/u% + uj 4+ uj + ui + ui + ug,
providing an estimate of control intensity.

e Mean number of steps: The average duration of episodes, contributing to the
interpretation of trajectory following and efficiency.

e Mean of }_ |lu]|: The average total thruster usage per episode, reflecting the overall
energy consumption.

Taken together, these quantitative metrics enable meaningful comparison between con-
trollers with respect to reliability, tracking accuracy, and energy efficiency.



3. Results and Analysis 35

2.2.2 Three-dimensional trajectory visualization for behavioral assessment

To qualitatively observe agent behavior, three-dimensional trajectory plots were generated
for individual episodes, as shown in the diagram page 29. These plots facilitate direct
visual comparison of the spatial behavior of different agent configurations within the same
environmental sequence.

2.3 Supplementary visualization and comparative tools

Additional logging utilities were implemented to complement the standard Tensorboard
output. These custom logs present the evolution of final episode distance, episode rewards,
and episode length throughout both training and testing phases, with all metrics plotted
against episodes rather than time steps. Such representations provide a more intuitive view
of the agent’s learning dynamics and allow for side-by-side visualization of multiple agents
with differing configurations, as illustrated in diagram page 29. This comprehensive set of
tools thus supports robust analysis and transparent presentation of experimental results.

3 Results and Analysis

3.1 Investigating the Influence of Specific Parameters on the SAC
Algorithm

In RL, evaluating both training and testing phases is crucial: training assesses whether the
agent learns a satisfactory policy, while testing examines its generalization ability.

3.1.1 Training Phase

During training, performance convergence indicates that the agent has reached optimal or
near-optimal behavior. First, we monitor the mean episode length and the mean episode
reward as functions of training timesteps (Figure 3.1).

The episode length curve is a direct indicator of task success: decreasing trends reflect
growing ability to reach the goal, while values fixed at 1000 timesteps indicate persistent
failure. In Figure 3.1, the agents SAC1, SAC2, and SAC3 remain close to this maximum,
showing no convergence. In contrast, SAC6 and SAC7 converge to shorter episodes ( 500
steps), and other agents also exhibit decreasing trajectories.

Reward curves confirm this observation: except for SAC1-3, most agents follow an in-
verted exponential trend with a transient increase before stabilizing. SAC1-3 correspond
to an update frequency of 55 Hz, supporting the hypothesis that excessively high update
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Figure 3.1: Tensorboard logs: mean episode length and mean episode reward
over timesteps.

frequencies hinder adaptation by restricting the agent’s interaction time with the environ-
ment.

Comparisons between agents with identical reward coefficients but different update
frequencies (e.g., SACO vs. SAC7, SAC4 vs. SAC6) show that lower update frequencies
promote faster convergence, as longer interaction windows enhance exploration and goal-
reaching ability.

The role of the reward coefficient is more nuanced. Although larger coefficients yield
higher episode rewards, the effect on training is not straightforward: for example, despite
the SAC5 coefficient of 100, it does not outperform lower-coefficient configurations. Among
agents with the same update frequency (SACO0, SAC4, SAC5), SAC4 manage to reach
the goal faster, suggesting that very high trajectory rewards may bias the agent towards
maintaining its trajectory rather than reaching the goal.

Reward curves also suggest that higher coefficients can accelerate convergence (e.g.,
SAC5 vs. SAC4, SACT vs. SAC6), but excessively large values (SAC5, coefficient 100) may
instead slow learning compared to moderate values (SACO, coefficient 40). In particular,
comparisons with agents that do not converge (SAC1-3) are not conclusive for analyzing
reward effects.

Figure 3.2 provides further insight into reward coefficients by showing reward distribu-
tions per episode and success proportions over 100-episode windows. For small coefficients,
maximum rewards coincide with successful episodes, whereas for higher coefficients, maxi-
mum rewards increasingly correspond to failures. This supports the hypothesis that exces-
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Figure 3.2: Episode reward evolution: SACO (violet), SAC4 (cyan), SAC5 (green), SAC6
(blue), SACT (gray).

sive reward scaling causes the agent to maximize reward without achieving the intended
task.

For example, SAC4 achieves higher success rates than SAC0O or SAC5 despite its smaller
coefficient. Similarly, SAC6 outperforms SAC7, whose success rate decreases during train-
ing even as its mean reward increases. This decoupling of reward maximization from
task success confirms that excessive reward values can produce misleading learning signals,
reducing real performance.

During training, certain configurations clearly outperform others. First, it is crucial to
avoid excessively high update frequencies, as they prevent the agent from converging toward
stable values. Second, careful tuning of the reward coefficient is necessary to ensure that
reward maximization aligns with task success, rather than merely producing high terminal
rewards without achieving the goal.
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Based on these observations, SAC4 (K, = 1, fr, = 25 Hz) and SAC6 (K, = 1, frr, = 10
Hz) emerge as the most effective configurations according to the training metrics. How-
ever, computational efficiency must also be considered: SAC4 completes training in ap-
proximately 11h44, whereas SAC6 requires about 20h. Consequently, from a practical
standpoint, the SAC4 configuration is preferred.

3.1.2 Test Phase

After analyzing the training phase, we now evaluate the agents’ performance during testing,
using a new dataset and fixing the update frequency at 10 Hz to allow the robot to evolve
naturally in the environment. Table 3.3 summarizes the evaluation metrics across 200 test
episodes.

Metric SAC 0 SAC 1 SAC 2 SAC 3 SAC 4 SAC 5 SAC 6 SAC7

Success Rate (%) 98.0 54.5 98.2 924.0 100.0 97.0 90.5 86.0

Collision Rate (%) 0.5 pLEE] 0.0 5 0.0 0.5 0.0 LA

Timeout Rate (%) 15 44.0 18 4.5 0.0 a3 9.5 125

IMean Number Of Steps 330.14 600.58 351.85 350.69 282.19 384.9 543.11 489.69

Mean Of D_Delta 2.669258 3.250245 2971181 2636701 2.618003 2.691143 2.208843 2.751402

Std Of D_Delta 1.434752 1417536 1.728377 1.312608 1.43048 1.245472 1.245472 0.991807

Mean Of Norm_U 33.35 32.95 35.97 37.01 36.57 34.89 34.67 29.23

lean Of Sum Of Norm _| 11009.2 19786.81 12654.93 12979.35 10320.23 13429.88 18832.15 14313.92

Figure 3.3: Comparison of test metrics after 200 episodes

This table highlights several key results. SAC1 obtained the lowest success rate, which
can be explained by its lack of convergence during training. Surprisingly, SAC2 and SAC3,
despite not converging in training, achieved high success rates in testing. Conversely, SAC6
and SAC7—promising during training—performed worse in testing, which indicates a gap
between training convergence and generalization. Moreover, the tendency observed during
training persists: lower reward coefficients generally correspond to higher success rates.

Figure 3.4 presents the evolution of cumulative mean values for final distance, episode
reward, and number of steps. Interestingly, the number of steps shows that SAC6 and
SACT7, although efficient during training, are not the fastest in testing. Instead, SAC2
and SAC3 significantly reduce episode length, outperforming expectations based on their
training results.

To deepen the analysis, Figure 3.5 compares the number of steps with the average
deviation from the ideal straight-line trajectory (Initial-Goal). Results show no direct
correlation between trajectory straightness and step count: SAC4 achieves the lowest step
number, while SAC6 follows the most trajectory-aligned path. This implies that SAC6
takes more steps despite staying closer to the ideal trajectory, whereas SAC4 is more
efficient overall.
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Figure 3.6 illustrates representative test trajectories (episode 2). While subtle differ-
ences make it difficult to declare an optimal trajectory visually, interesting trends emerge
regarding the influence of the reward coefficient. For instance, SAC5 (highest K, = 100)
tends to hover around the goal boundary, maximizing trajectory-related rewards rather
than prioritizing success. SAC7 shows a similar pattern. On the contrary, SAC1’s trajec-
tory indicates awareness of the goal location but without identifying an efficient approach,
leading to circular movements around the goal until the episode reward is reached. These
examples illustrate how excessively large reward coefficients can bias behavior, while mod-
erate coefficients encourage more goal-directed trajectories.

Projection XZ

Projection XY ~20 4

0.0 25 5.0 7.5 100 125 150 175
X

Figure 3.6: Episode 2 trajectories of SAC agents: 3D view (left), XY projection (middle),
XZ projection (right)

Conclusion on Test Phase

The test results confirm that both the reward coefficient K, and update frequency fry,
significantly influence generalization. Overall, SAC4 (K, = 1, fry = 25 Hz) performs best,
consistent with the training-phase hypothesis and offering the most balanced behavior.
Unexpectedly, SAC2 (K, = 40, frr, = 55 Hz) achieved the second-highest efficiency, despite
poor convergence during training. This suggests that an agent does not need to fully solve
the task during training to generalize effectively in testing, and that certain parameter
combinations may allow better adaptation during deployment.

While SAC4 represents the most interpretable and stable choice, SAC2’s surprising
performance highlights an interesting direction for further research, particularly regarding
the discrepancy between training convergence and real-world generalization.
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3.2 Comparing the Influence of RL Algorithm Choice: SAC vs
PPO

This section investigates the impact of the reinforcement learning algorithm by comparing
the performance of Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO). To
ensure comparability, equivalent configurations are analyzed using the same numbering
convention as before. Due to time constraints, this analysis is limited to configurations 4,
6, and 7, and some plots are omitted.
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Figure 3.7: Tensorboard logs: mean episode length and mean episode reward over timesteps
for SAC and PPO agents

Figure 3.7 compares the training behaviors of SAC and PPO. Except for configuration
4, both algorithms exhibit similar dynamics with respect to the reward coefficient. For
example, SAC7 and PPO7 as well as SAC6 and PPO6 display nearly identical trends.
However, PPO agents appear more reactive: PPO6 shows a sharper reduction in episode
length than SACG6, and PPOT achieves faster reward maximization than SAC7. Conversely,
PPO4 fails to converge, unlike its SAC counterpart.
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This difference aligns with known theoretical properties: SAC, being an off-policy
method based on maximum entropy reinforcement learning [21], benefits from sample
reuse and tends to exhibit greater stability even under suboptimal configurations. PPO,
by contrast, is an on-policy algorithm [19] that often requires more carefully tuned hyper-
parameters but can adapt quickly in training when the configuration is appropriate.

Overall, PPO6 appears the most efficient during training, although prior observations
suggest that test-phase results can diverge significantly from training performance.

Metric SAC 4 SAC 6 SAC7 PPO 4 PPO 6

Success Rate (%) 100.0 90.5 86.0 285 99.0

Collision Rate (%) 0.0 0.0 5 6.0 1.0

Timeout Rate (%) 0.0 9.5 125 65.5 0.0

Mean Number Of Steps 282.19 543.11 489.69 831.17 316.92

Mean Of D_Delta 2.618003 2208843 2.751402 6.19 3.75

Std Of D_Delta 1.43048 1.245472 0.991807 3.28 3.24

Mean Of Norm_U 36.57 34.67 29.23 S1%75) 39.74

Mean Of Sum Of Norm_U 10320.23 18832.15 14313.92 26390.45 12595.05

Figure 3.8: Comparison of SAC and PPO test metrics after 200 episodes

Table 3.8 summarizes test metrics. As expected, PPO4 confirms its inefficiency, as
already suggested by its training curves. SAC4, in contrast, demonstrates high reliability.
For configuration 6, PPO6 shows superior performance compared to SAC6, suggesting that
PPO benefits strongly when granted sufficient interaction time for exploration.

This observation is consistent with empirical findings in the literature: PPO typically
performs best with moderate update frequencies and larger batch sizes to stabilize learn-
ing, whereas SAC can tolerate higher update frequencies thanks to its off-policy nature and
replay buffer. Indeed, PPO6 and PPO7 achieve success rates of 99% and 95%, respectively,
compared to 90.5% and 86.0% for SAC6 and SACT7. As with SAC, PPO also shows sensi-
tivity to the reward coefficient, as indicated by the 6% performance drop between PPOG6
and PPO7.

Conclusion on SAC vs PPO

The comparison highlights both similarities and differences. SAC and PPO follow compa-
rable trends in how configuration parameters (update frequency, reward coefficient) shape
behavior. However, their optimal configurations diverge: SAC is more robust to high up-
date frequencies due to its off-policy formulation and entropy regularization, which enforce
stability and sustained exploration. PPO, on the other hand, is more efficient when explo-
ration time is sufficient, but requires careful tuning of learning rate and update frequency
to avoid premature convergence.

In summary, SAC provides greater robustness across a wider range of configurations,
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while PPO, when properly tuned, can achieve higher success rates in fewer episodes. This
trade-off reflects the underlying algorithmic differences: entropy-maximizing off-policy up-
dates versus policy-regularized on-policy updates. These results reinforce the idea, well-
supported in the RL literature, that algorithm choice and hyperparameter tuning are
strongly interdependent and problem-specific. Further experiments would be needed for
a more comprehensive comparison, but the results already confirm that algorithm choice
and parameter tuning are strongly interdependent.






Chapter 4

Conclusion et perspectives

This thesis has explored the application and critical evaluation of deep reinforcement learn-
ing (DRL) algorithms—specifically Soft Actor-Critic (SAC) and Proximal Policy Optimiza-
tion (PPO)—within the challenging domain of autonomous underwater vehicle (AUV) con-
trol. The core objective was to bridge theoretical insights and practical implementations
by developing a high-fidelity simulation framework and conducting systematic experimen-
tation designed to elucidate the impact of key algorithmic and environmental parameters
on learning performance, robustness, and generalization.

A key contribution is the design and implementation of a fully integrated simulation
pipeline combining Gazebo Harmonic, ROS2 middleware, and a customized RL environ-
ment interfaced via Stable Baselines3. This architecture supports reproducible training
and testing of DRL algorithms under realistic underwater dynamics and sensor noise con-
ditions, thus addressing a critical gap between algorithmic advancement and practical
robotics deployment.

The extensive experimental analysis revealed several important findings. Firstly, up-
date frequency and reward function scaling critically influence training convergence and
test-phase generalization. FExcessively high update rates restrict the agent’s ability to
sufficiently explore the environment, while overly large reward coefficients can decouple
reward maximization from true task success, leading to suboptimal policies. Moderately
tuned configurations—especially with lower update frequencies and well-balanced reward
parameters—yield the most robust and efficient controllers.

Secondly, comparative benchmarking of SAC and PPO highlighted their complementary
strengths. SAC’s off-policy maximum entropy framework confers greater stability and
robustness across a wider range of hyperparameters, making it more tolerant to changes
in update frequency and facilitating sustained exploration. PPO, as an on-policy method,
requires more careful tuning but can deliver superior performance when allotted sufficient
exploration time, achieving higher success rates within fewer episodes. These observations

45
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underscore the necessity of algorithm-specific parameter optimization rather than one-size-
fits-all solutions.

Additionally, the thesis uncovered intriguing phenomena such as cases where agents
lacking full convergence during training nevertheless generalized well during testing, sug-
gesting that factors beyond nominal convergence influence real-world applicability. These
findings invite further investigation into the complex dynamics of RL policy learning under
uncertain and nonlinear environmental conditions.

In conclusion, this work advances understanding of how state-of-the-art DRL meth-
ods can be effectively applied to autonomous underwater vehicle control. By integrating
theoretical foundations, modern simulation tools, and rigorous experiments, it provides
actionable insights into algorithm selection, configuration, and evaluation within realistic
robotic contexts. The developed framework and analysis tools lay a solid foundation for
future research aiming to enhance the adaptability, safety, and efficiency of underwater
autonomous systems leveraging reinforcement learning.

Future directions include extending the current study to incorporate model-based meth-
ods, hybrid Al-classical control architectures, real-world hardware validation, and multi-
agent coordination scenarios. Moreover, deeper exploration into reward function engineer-
ing and adaptive hyperparameter tuning will be crucial to further close the gap between
simulation and deployment in highly dynamic and uncertain underwater environments.
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Résumé —

This thesis investigates the application of deep reinforcement learning (DRL) algo-
rithms, Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO), for autonomous
control of the BlueROV2 underwater vehicle. A high-fidelity simulation framework com-
bining Gazebo Harmonic, ROS 2, and Stable Baselines3 supports reproducible training
and evaluation under realistic underwater conditions.

Experimental analysis examines the influence of update frequency and reward scaling
on training convergence and policy robustness. The results show that moderate update
rates and balanced reward parameters improve performance, with SAC displaying greater
stability and tolerance to hyperparameter variations, while PPO achieves high success rates
when carefully tuned.

Fortunately, some agents with incomplete training convergence still generalized well
during testing, highlighting complexities in the development of reinforcement learning pol-
icy. This work bridges the gap between DRL theory and practical deployment in under-
water robotics by providing an integrated pipeline and systematic evaluation.

The thesis contributes valuable insights into algorithm selection, tuning, and evaluation
for underwater autonomous vehicles and lays groundwork for future research in model-
based control, hybrid architectures, real-world validation, and multi-agent systems. Fur-
ther studies on reward engineering and adaptive hyperparameter tuning will enhance the
autonomy of AUV and safety.

Mots clés : Artificial intelligence, Reinforcement learning, Autonomous Underwater
Vehicle, Proximal Policy Optimization algorithm, Soft Actor-Critic algorithm
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