
Qualification of the reliability of electronic components for implantable medical devices, case study: chip resistors

Fatima-Ezahra INDMESKINE Director : Abdessamad KOBI

Supervisor : Laurent SAINTIS

Index

- I. Context
- II. State of the art
- III. Design of Accelerated life tests
- IV. Conclusion

AIMDs

Context

• Growth in the market for Active Implantable Medical Devices (AIMDs).

State-of-the-art

• Trend towards embedded electronics in AIMDs vs. gaps in reliability assessment of electro-medical devices.

Tests

OUEST VALORISATION

• **<u>Objective</u>**: define a methodology for qualification electronic components relevant to the environment of AIMDs.

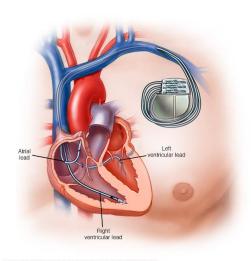


Figure 1 : Example of AIMD: pacemaker.

Conclusion

Figure 2: Annual trend in scientific publications worldwide since 2000 on active implantable medical devices (AIMDs) incorporating electronics.

TAME-COMPONENT

State-of-the-art

Tests

FMMEA

- <u>Relevant technological characteristics</u>:
 - 1. Film material: thin or thick,
 - 2. Size (01005 1206),

Context

- 3. Resistance value $(0,01\Omega 100k\Omega)$,
- 4. Manufacturer.
- <u>Standards & guides</u>:
 - FIDES
 - CECC EN 140401-801 & CECC EN 140401-802
 - MIL-STD-883 Method 1031
 - IEC 60115-1

Table 1: A summary table of the FMMEA for chip film resistors based on state-of-the-art analysis.

-				
Environmental factor	Failure mechanism	Failure mode		
	Solder crack	Drift; Open		
Thermal stress	Soluel Clack	circuit		
Thermal suess	Flactrada constation	Drift; Open		
	Electrode separation	circuit		
	ESD	Drift; Open		
	ESD	circuit		
Power overload	Damage to resistive	Drift; Open		
rower overloau	element	circuit		
	Deterioration of resistive	Drift		
	element	Dint		
	Corrosion	Drift; Open		
Humidity + Current	Corrosion	circuit		
fiumulty + Current	ECM	Drift; Short		
	ECM	circuit		
Humidity + Current +	Sulfurization	Drift; Open		
Sulfuric components	Sununzation	circuit		
Mechanical stress	Electrode separation	Drift; Open		
Meenanical Sti CSS	Lietu due Separation	circuit		

State-of-the-art

Tests

Conclusion

Overview of methodology

Predictive Reliability Guide

- Draw inspiration from reliability models established for electronic components based on feedback from experience.
- > Have failure-related information to complete.

Physics of Failure

- Draw up an analysis of failure mechanisms and modes, their effects and criticality (FMMEA).
- > To identify factors influencing and/or accelerating failure.

Accelerated Life Tests

- Dimension designs of experiments and test plans by integrating the mission profile.
- > To extract usable reliability data using statistical inference methods.

Qualification test plan

Context

1. Extract and detail the **mission profile** of AIMDs.

State-of-the-art

- 2. Through an **FMMEA**, determine the **critical failure mechanisms** of concern for chip resistors within the context of AIMDs' mission profile.
- 3. Calculate the **acceleration factors** corresponding to significant environmental stressors based on available literature on the physics of failure of chip resistors as well as the **FIDES models' parameters**.
- 4. Subsequently, determine the **reliability test metrics** such as stress duration and sample size depending on the mission profile and calculated acceleration factors.

Tests

Conclusion

Tests

Table 2: Extract of Taguchi design of experiments

Design of Experiments

• Taguchi factorial design: 4 factors with different levels.

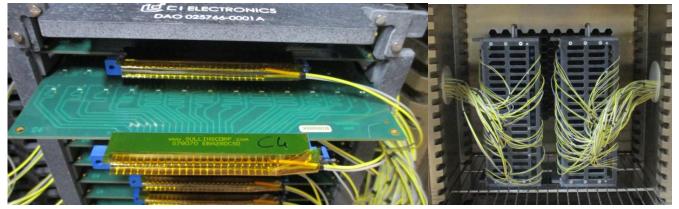
State-of-the-art

- <u>Analysis</u>:
 - Signal / Noise ratio.

Context

• Case where the optimum is a minimum, minimize the loss function: $L = K.Y^2$.

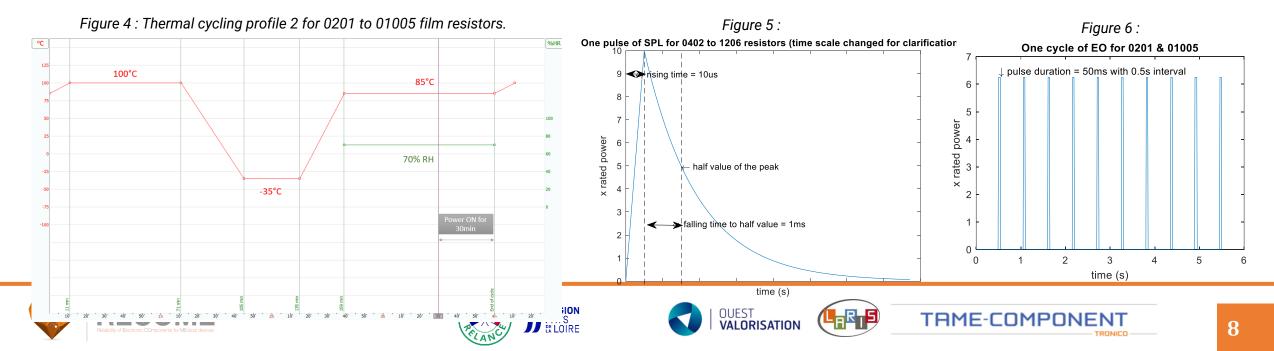
DoE combination	Material	Size	Resistance value	Manuf acturer	
Colonne1 💌	Colonn 🔻	Coloni 🔻	Colonne4 👻	Color -	
RUN N°33	Thick	0201	10Ω	1	
Run N°34	Thick	0201	10ΚΩ	1	
Run N°35	Thick	0201	100ΚΩ	1	
Run N°36	Thick	0201	10Ω	2	
Run N°37	Thick	0201	10ΚΩ	2	
Run N°38	Thick	0201	100ΚΩ	2	
Run N°39	Thick	0201	10Ω	3	
Run N°40	Thick	0201	10ΚΩ	3	
Run N°41	Thick	0201	100ΚΩ	3	
RUN N°48	Thick	01005	10Ω	1	
Run N°49	Thick	01005	10ΚΩ	1	
Run N°50	Thick	01005	100ΚΩ	1	
Run N°51	Thick	01005	100Ω	2	
Run N°52	Thick	01005	10KΩ	2	
Run N°53	Thick	01005	100ΚΩ	2	
Run N°54	Thick	01005	10Ω	3	
Run N°55	Thick	01005	10KΩ	3	
Run N°56	Thick	01005	100ΚΩ	3	


Tests implementation

State-of-the-art

- Types of ALTs:
 - 1. Thermal Cycling (TC).

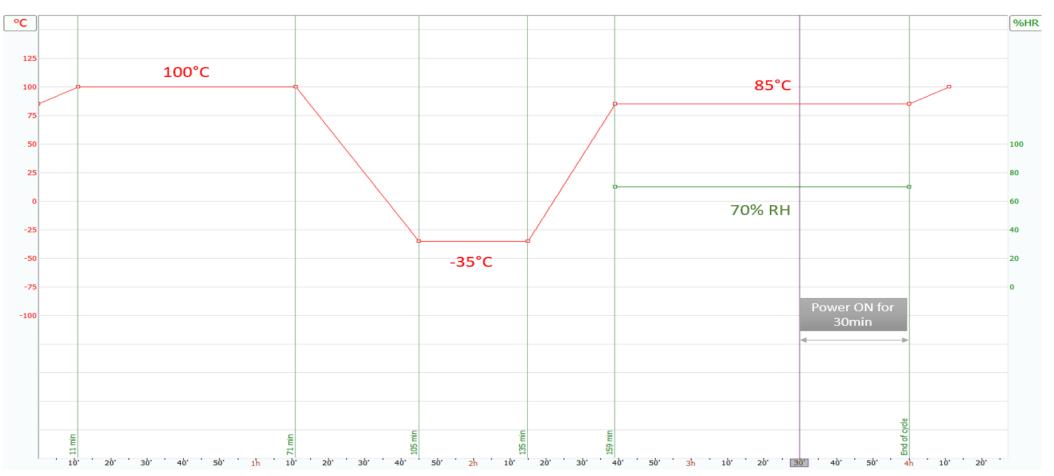
Context


- 2. Single Pulse Load (SPL).
- 3. Electrical Overload (EO).
- Failure criteria: Drift of resistance (% depends on component).

Tests

Conclusion

Figure 3 : Accelerated life tests of SMD resistors – Thermal Cycling.


State-of-the-art

Tests

Conclusion

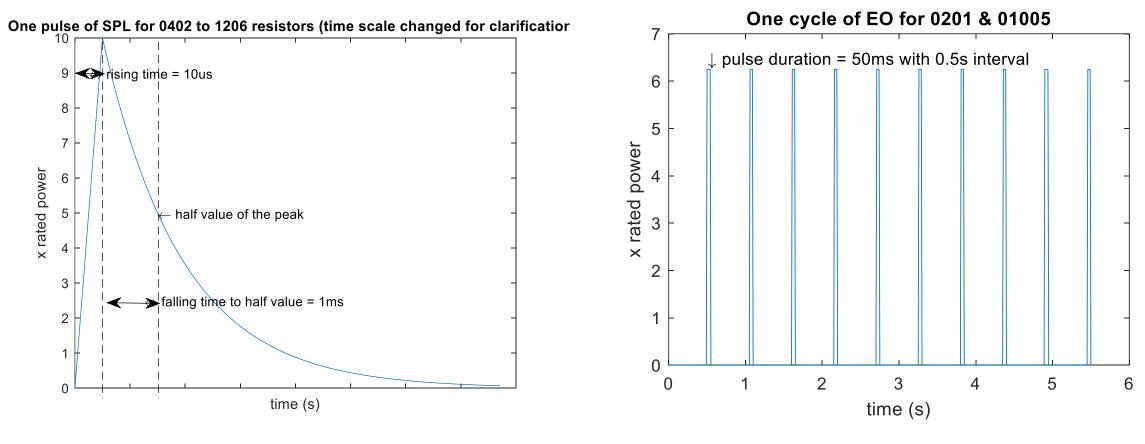
Tests implementation

Figure 4 : Thermal cycling profile 2 for 0201 to 01005 film resistors.

State-of-the-art

Tests

OUEST VALORISATION


TRME-COMPONENT

TRONICO

Figure 6 :

Tests implementation

Figure 5 :

Tests

Conclusion

Results for miniature components

State-of-the-art

Main questions:

- Which combinations of controllable factors display the highest robustness against ALTs?
- Which ALT type yields the greatest effectiveness in identifying potential failures?

Statistical analysis:

Context

- 1. Calculate the signal-to-noise ratio.
- 2. Analyse the effect of each factor on the mean. Calculate the theoretical mean for each combination to determine location effects.
- 3. Repeat the previous step using the variance to identify dispersion effects.

Table 3: Factors are A) Film material, B) Size, C) Resistance value, D) Manufacturer; ALTs are: TC - Thermal Cycling, SPL - Single Pulse Load, EO - Electrical Overload.

DOE COMBINATION	А	в	с	D	NUMBER OF FAILURES		
	``	Б	e	2	TC	SPL	EO
RUN N°33	Thick	0201	10Ω	1	0	0	0
RUN N°34	Thick	0201	10KΩ	1	0	0	0
RUN N°35	Thick	0201	100KΩ	1	0	0	5
RUN N°36	Thick	0201	10Ω	2	0	0	0
RUN N°37	Thick	0201	10KΩ	2	0	0	0
RUN N°38	Thick	0201	100KΩ	2	0	0	0
RUN N°39	Thick	0201	10Ω	3	0	0	0
RUN N°40	Thick	0201	10KΩ	3	0	1	0
RUN N°41	Thick	0201	100KΩ	3	0	0	0
RUN N°42	Thin	0201	$100\Omega/22\Omega$	4	0	0	0
RUN N°43	Thin	0201	10KΩ	4	0	0	0
RUN N°44	Thin	0201	100KΩ	4	0	0	0
RUN N°45	Thin	0201	100Ω	3	0	1	1
RUN Nº46	Thin	0201	10KΩ	3	0	0	0
RUN Nº47	Thin	0201	100KΩ	3	0	0	0
RUN N°48	Thick	01005	10Ω	1	3	0	0
RUN N°49	Thick	01005	10KΩ	1	1	0	1
RUN N°50	Thick	01005	100KΩ	1	0	0	4
RUN N°51	Thick	01005	100Ω	2	0	0	0
RUN N°52	Thick	01005	10KΩ	2	0	0	0
RUN N°53	Thick	01005	100KΩ	2	0	0	0
RUN N°54	Thick	01005	10Ω	3	0	0	0
RUN N°55	Thick	01005	10KΩ	3	1	0	1
RUN N°56	Thick	01005	100KΩ	3	0	0	0

State-of-the-art

Statistical analysis

• Upper bound of confidence interval of probability of failure

Table 4: Results of statistical calculations on the reduced Taguchi design (one-sided confidence bound of the true failed proportion at the 95% confidence level).

DoE combination	Material	Size	Resistance value	Manuf acturer			Mean of p_sup		Variance of p_sup	Mean_theo	Standard_ deviation	
combination			Value	acturer				p_sup	or p_sup		_theo	
Colonne1 💌	Colonn 🔻	Coloni 🔻	Colonne4 🔻	Color 🔻	TC2 🔽	SPL3 💌	EO4 🔻	S/N 🔻	Coloni 🔻	Colonne 💌	Colonne92 💌	Colonne 🔻
RUN N°33	Thick	0201	10Ω	1	0,14	0,14	0,14	25,96	0,14	0,000	0,17	0,07
Run N°34	Thick	0201	10ΚΩ	1	0,14	0,14	0,14	25,96	0,14	0,000	0,18	0,07
Run N°35	Thick	0201	100ΚΩ	1	0,14	0,14	0,42	20,41	0,24	0,017	0,19	0,09
Run N°36	Thick	0201	10Ω	2	0,14	0,14	0,14	25,96	0,14	0,000	0,13	0,03
Run N°37	Thick	0201	10ΚΩ	2	0,14	0,14	0,14	25,96	0,14	0,000	0,14	0,04
Run N°38	Thick	0201	100ΚΩ	2	0,14	0,14	0,14	25,96	0,14	0,000	0,15	0,05
Run N°39	Thick	0201	10Ω	3	0,14	0,14	0,14	25,96	0,14	0,000	0,14	0,03
Run N°40	Thick	0201	10ΚΩ	3	0,14	0,21	0,14	24,50	0,17	0,001	0,15	0,04
Run N°41	Thick	0201	100ΚΩ	3	0,14	0,14	0,14	25,96	0,14	0,000	0,16	0,05
RUN N°48	Thick	01005	10Ω	1	0,32	0,14	0,14	22,18	0,20	0,007	0,19	0,07
Run N°49	Thick	01005	10ΚΩ	1	0,21	0,14	0,21	23,41	0,19	0,001	0,19	0,07
Run N°50	Thick	01005	100ΚΩ	1	0,14	0,14	0,37	21,24	0,22	0,012	0,20	0,10
Run N°51	Thick	01005	100Ω	2	0,14	0,14	0,14	25,96	0,14	0,000	0,14	0,03
Run N°52	Thick	01005	10ΚΩ	2	0,14	0,14	0,14	25,96	0,14	0,000	0,15	0,04
Run N°53	Thick	01005	100ΚΩ	2	0,14	0,14	0,14	25,96	0,14	0,000	0,16	0,05
Run N°54	Thick	01005	10Ω	3	0,14	0,14	0,14	25,96	0,14	0,000	0,15	0,02
Run N°55	Thick	01005	10ΚΩ	3	0,21	0,14	0,21	23,41	0,19	0,001	0,16	0,03
Run N°56	Thick	01005	100ΚΩ	3	0,14	0,14	0,14	25,96	0,14	0,000	0,17	0,06
				S/N	16,83	17,89	15,41	Mean	0,16	0,002		

Given

Tests

$$\sum_{k=0}^{N_d} \binom{n}{k} p_U^k (1-p_U)^{n-k} = \alpha$$

- p_U: the upper 100(1-α)% limit,
- N_d: number of defects recorded.

<u>Conclusions</u>:

RRT

• n: sample size,

- ➤Chip resistors with the lowest resistance value seem to exhibit higher robustness to the relevant environmental factors.
- Electrical overload ALT appears to enhance the identification of failure.

Takeaways

Context

- Definition of accelerated life test should be based on the unique mission profile of AIMDs.
- A detailed test protocol aligned with test objectives must be established: detecting defects for chip resistors.
- Identification of defects or ageing is linked to the quantity of thermal cycles the components undergo.
- Definition of test metrics is based on the physics of failure of chip resistors.

State-of-the-art

• Application of design of experiments for accelerated testing (input on quantities to be observed and interpretation).

Tests

Conclusion

Thank you for your attention !