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CHAPTER 1

Résumé

Au cours de ce stage de recherche, 'objectif était d’améliorer les prévisions de la
vitesse et de la température de surface de I'océan a 'aide de techniques d’assimilation
de données et d’apprentissage automatique. Grace a l'assimilation des données, nous
sommes donc en mesure d’obtenir une bonne ébauche pour les prévisions a court terme.
Cependant, étant donné la difficulté de prendre en compte tous les termes non linéaires
par les méthodes numériques conventionnelles, nous avons dégradé le modéle physique
initial en un modéle physique linéaire calculé par assimilation de données et un modele
non linéaire obtenu en utilisant notre algorithme d’apprentissage machine.

La premiere partie du stage visait a réaliser un état de l'art de 'assimilation de
données, du machine learning ainsi que de la combinaison des données.

La seconde partie du stage consistait donc en I'implémentation et la validation d'un
algorithme d’assimilation de données avec le modéle physique complet, issu de la littéra-
ture.

Une fois ce modéle validé et ayant produit des résultats jugés acceptables, nous avons
tenté de dégrader le modéle initial en une partie linéaire et une partie non-linéaire. Notre
objectif était donc de rechercher et de valider un algorithme de machine learning perme-
ttant de prédire la partie non-linéaire du modéle afin de pouvoir utiliser notre algorithme
d’assimilation de données sur la partie linéaire du modele, calculée numériquement, et la
partie non-linéaire, prédite par I’algorithme de machine learning.






CHAPTER 2

Abstract

During this research internship, the objective was to improve predictions of ocean
surface speed and temperature using data assimilation and automatic learning techniques.
By assimilating the data, we are therefore able to obtain a good draft for short-term
forecasts. However, given the difficulty of taking into account all non-linear terms by
conventional numerical methods, we have degraded the initial physical model into a linear
physical model calculated by data assimilation and a non-linear model obtained using our
machine learning algorithm.

The first part of the internship aimed to achieve a state of the art in data assimilation,
machine learning and data combination.

The second part of the internship consisted of the implementation and validation of
a data assimilation algorithm with the complete physical model from the literature.

Once this model was validated and produced acceptable results, we tried to degrade
the initial model into a linear and a non-linear part. Our objective was therefore to
research and validate a machine learning algorithm to predict the non-linear part of the
model in order to be able to use our data assimilation algorithm on the linear part of the
model, calculated numerically, and the non-linear part, predicted by the machine learning
algorithm.






Introduction

Predicting the evolution of the atmosphere is a complicated problem that requires the
most accurate initial conditions to obtain an accurate estimate of the atmospheric state
variables at a given time and point. The data from sensors is often partial, distorted or
too inaccurate. That is why data assimilation is a mathematical discipline that corrects
the state of the atmosphere thanks to observations at different times and points in space.
This technique consists in linking sensor data with a physical model of the atmosphere
allowing to find an error on the background, correcting the initial conditions, and an
error on the model allowing to find the missing part of the dynamics. We are therefore
trying to optimize the whole trajectory from our initial state to our final state. However,
this approach is based only model-driven. Therefore, knowledge of the data is not wisely
used. This is why we seek to combine data assimilation and deep learning, which makes
it possible to predict and understand complex spatio-temporal phenomena, sometimes in
an optimal way compared to traditional data assimilation approaches. The combination
of the two should enable us to obtain much better results by taking advantage of the
purely physical approach through data assimilation, useful for finding the linear parts of
our model, and the purely given approach through machine learning, useful for taking
advantage of observations and for finding the non-linear parts of the model.






CHAPTER 3

Overview of the LIP6

LIP6 is a research laboratory under the supervision of Sorbonne University and the
CNRS1. Its name comes from the acronym of the historical name, the Laboratoire
d’Informatique de Paris 6. With 220 permanent researchers and 199 doctoral candidates,
LIPG6 is the largest computer science research laboratory in France.

The laboratory covers a wide spectrum of activities grouped into 5 departments:
Scientific computing; Decision, Intelligent Systems and Operational Research; Data and
Artificial Learning; Networks and Distributed Systems; System On Chip.

During this internship, my team, PEQUAN, was attached to the Scientific Computing
Department. The Scientific Computing department groups together activities concerning
symbolic or numerical calculation. The main objective is to establish and implement
efficient algorithms that provide guaranteed results. Some important contributions of this
project concern applied sciences such as cryptography, code error correction, robotics or
signal theory.

Within the PEQUAN team, researchers are working closely with LOCEAN to predict
large-scale oceanographic movements. As part of the internship, work had already been
done on predictions of ocean speed fields and surface temperatures. The internship is
therefore a continuation of this work.






CHAPTER 4

Data Assimilation Process

4.1 Data Assimilation

Data assimilation is a method of combining a physical model with observations. It
can be used for multiple purposes. DA can be used to estimate the optimal state of a
model, to estimate the initial state of a system in order to use it to predict the future
state of the system. The most known use of data assimilation is predicting the state of
the atmosphere using meteorological data.

Numerical prediction of atmospheric evolution is critically dependent on the initial
conditions provided to it. However, it is difficult to determine due to the chaotic nature
of the environment even with a good understanding of the physical laws that drive it
the state of the atmosphere at any point of our spatio-temporal domain, i.e. all the
atmospheric variables (pressure, temperature, humidity, etc.) over the entire volume,
with good resolution and accuracy.

The information available at any given time is meteorological observations of various
kinds (radio soundings, weather stations, ocean buoys, etc.). But this information is
not enough to fully describe the conditions of the model not to mention the fact that the
observations may contain errors. Indeed, the atmospheric model requires about 107 values
(for all physical fields considered, at all points of the model). However, the observations
are in the order of 10°. A simple interpolation is not enough under these conditions that
is when data assimilation can be applied.

Data assimilation is a "prediction/correction" method. A forecast, calculated at the
previous time step and valid at the time considered, is used as a predictor. The available
observations allow this first guess to be corrected to best estimate the actual state of the
atmosphere.
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In practice, there are two main numerical methods for data assimilation:

e The Kalman filter which is based on stochastic data assimilation methods using
BLUE and K gain matrix calculations. Its application requires that both the model
and observation operators be linear.

e The 4D-Var algorithm based on variational data assimilation methods by mini-
mizing a cost function using optimization and adjoint calculation methods. The
observation model or operations need not be linear.

It is on this second method that we will focus in the rest of this report.
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4.2 Study of the internship

4.2.1 Mathemical overview of 4DVar

u(z,t)
We suppose having X = FIU((?:)) ] = |v(x,t) | , the state vector of the system depend-
’ I(x,t)

ing on the space coordinates = and time coordinates t. X is defined on space A = Qx[0, T,
where () represents the spatial domain and [0, 7’| represents the temporal domain. The
state equation of the vector X is as follows:

O )+ MX)(a, 1) = En, 1) (4.1)

With:

e M, the evolutionary model, supposedly differentiable. A 2D Lagrangian model is
used for computing the velocity field. M consists of a known linear part, M;, and a
non-linear part, partially known, but considered unknown in our frame, M,,;.

e ¢,,, the model error used to translate observational errors or errors in model knowl-
edge.

In more detail, the equation 4.1 is written: [4]

dw(z,t)  Ow(w,t)
o ot

+ Vw.aw(x,t) = E,(x,t) (4.2)
In the case of a perfect model, &,(z,t) = 0.

Ol (z,t)

5 +w(z, t)VI(z,t) =0 (4.3)

With:

e w(zx,t), the velocity field at any point x and at any time t;

e u(z,t), the horizontal component of the velocity field at any point x and at any
time t;

e v(z,t), the vertical component of the velocity field at any point x and at any time
t;

e [(x,t), the passive temperature tracer at any point x and at any time t;

e &,(z,t), the model error.
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We also assume that we have the initial condition of the state vector at ¢ = 0:

X(2.0) = Xp(z) + &E(x) (4.4)

With:

e X,, the initial draft or state vector

e &, the error on the background with covariance matrix B

The equation on observations Y (x,t) is written:

Y (z,t) = H(X)(z,t) + Eo(x,t) (4.5)
With:

e H, the observation operator;

e co(x,t), the error on the model at any point and the measurement errors with
covariance matrix R.

We are therefore trying to optimize the following cost function:

1 1 tfinal
1) = SIX =X+ 5 [ X - YOl =17 +3° (49

tinitial

With :
e H, the observation operator;

In Appendix C, the trajectory optimized by the 4dvar algorithm is presented.
Thus, we will use the following 4D Var algorithm:
For Motion Estimation by Data Assimilation, we will use the 4D-Var algorithm [4] :

4.2.2 Problems of the internship

As part of the observation of ocean data, we wish to obtain information on the state
of the atmosphere which represents an N-dimensional space with observations that are
contained in a P-dimensional space (where N > P. Generally, N is in the range of 107
to 10! values while P is in the range of 10° to 10'* values [7]). In our case, we will use
ocean surface temperature images as shown in Figure 4.1.

We therefore have as input F images of ocean surface temperature 10 to I2, as
mentioned in section 4.2. From these observations, we can estimate the velocity field
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Algorithm 1 4D-Var

4D-VAR inputs : MaxzlIter, Il(il_>N0, M, function BFGS,

covariance matrix R for £, covariance matrix B for &g

Read the observation images I° for | ranging from 1 to N°
Xb (—(0 0 I?)T

k<0
while t!= T; do

Compute the model M and compute J* (Forward)
Compute the adjoint model for obtaining the gradient and compute VJ*
(Backward)
while |VJ*| > & and k < MazIter do
( X(0)*1 a*Y) «— BEGS(X(0)kHL aktL) JF V)
Compute the model M and J**!
Compute the model assistant and V.J¥*!
k«—Fk+1
end while
k«—Fk—-1
end while
return X (0)* for each time ¢

Figure 4.1: Satellite images of sea surface temperature[4]

u(z,t)
v(x,t)
correct our model when searching for w. In order to optimize w, we will optimize a cost
function, solutions of the equations 4.1, 4.4 and 4.5, using the BFGS optimizer as seen
in appendix A.

w(z,t) such that w(x,t) = [ } thanks to a physical model M. We will then try to

We are analyzing ocean surface temperature images, 4.1, taken by different satellites
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©On considére N acquisitions dimages satellites de la température de surface des oceans a des temps
différents sur une fenétre tempaorelle [0.T). Dans le méme temps, & chaque t, les traceurs passifs du vecteur
d'état X sont recalculés au moyen de la dynamique M etdu champ des vitesses estima.

ID.;] =g Iy I2 ID-I =z ION =IF

Ic'i

Y

Traceurs passifs ‘

Observations ‘ ‘ ‘ ‘ ‘ ‘
l; ‘

/| \
N \

tg=0 t ta t3 tF=T

Figure 4.2: Diagram explaining the distribution of passive tracers and acquisitions in the
time window

at different times in order to estimate a velocity field that reflects the dynamics of tem-
perature evolution over time. This phase will be called the Motion Estimation phase,
described by the 4D Var algorithm, 1.

In another part, we will try to inject this dynamic to the last known observation in
order to predict the future evolution of the temperature. This phase will be called the
Forecast phase.

4.2.3 Working hypothesis

We will therefore try to use Data Assimilation techniques to correct, using observa-
tions, the state of the atmosphere of a weather forecast. At each time, the passive tracers
I of our state vector X are computed using the current dynamics and velocity field. The
purpose of data assimilation will therefore be to minimize the cost function J, 4.7, by
calculating VJ compared to X (ty), with constraints on B, R, H, X}, M data. [4]

Even if we cannot have complete confidence in our observations, because they can be
noisy because of the sensors, we do not modify these observations. This is the hypothesis
of the field truth (which is false, but essential to performing our calculations).
The following assumptions should also be considered:

T
J(x,t) = ||€B|H2B+/O IRdt + al[Vw(to)|]* + Blldiv(w(to))]|* (4.7)

& J(x,t) = "X(tO)_Xbl‘ZB+/O Y (, ) = H(a, 1) ||| Rdt +al| |V (to)||*+ B[ div(w(to)) [
(4.8)

We must also considers the following hypothesis:

e It is assumed that eg(z,t) and ep(z) are independent, Gaussian and unbiased
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« is the term of regularization on the velocity gradient
[ is the term of regularization on the rotational speed
a and 3 are of the same order of magnitude as X,, that is 107 10,

In the initial state ty, we will note:

- Wy, the initial velocity field, initialized to 0, because we assume that before our
observations are launched (i.e. ty), nothing happens. Although this assertion is
false, we may use it as we assume there is a ground truth through our observations,
moreover, we are working on a limited space-time domain. That is why we will
have a edge-effect that we will have to take into account. Nevertheless it does not
hinder our predictions, because we are trying to find out what is happening within
our study area and not on the edges.

- I, our background or initial passive tracer to which observation is generally as-
signed at tg.

The covariance matrix B models the uncertainty on X, and is defined as :

o[ 5

B,

(4.9)

0 0
< Bx)=]10 B, 0 (4.10)
0 0 By
The uncertainty on matrix B actually depends only on B;(X). This is why, since
this uncertainty is equal to the opposite of the uncertainty on the acquisition sensors
of the observations, we will set B; to 108.

Since it is impossible to quantify the uncertainty of speed, because we have no
information about speed, we will set B, to 0.

The matrix R models the uncertainty on the dynamics and is directly related to
Xp. Usually R(z,t) takes the same value as By(X)

4.2.4 Working basis

In the beginning of the internship, we had an efficient 4DVar code in C++. This code
allows the motion estimation and forecast phases to be carried out. Our first goal was
therefore to study this code and analyze it in order to then translate it to Python under
the PyTorch library, see paragraph 5.1.1.

In this figure, the blank spaces correspond to a lack of sea-surface data i.e, they are
landmasses.

We work with NetCDF data (satellite images of temperature, velocities and other
state variables taken daily over several years) which a Those are sets that include images
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300 400

Figure 4.3: NetCDF raw data

of the surface temperature of the Atlantic Ocean, as well as many other state variables
at any point in this image, see 4.3. Each data is taken at the same time, every day from
satellites. In our study, our space steps dz and dy were set for images of shape 32x32, so,
we only keep the data in areas that present a significant sea-surface velocities otherwise,
the data assimilation algorithm won’t perform well to avoid any numerical problems when
computing our algorithm.

When we apply 4DVar (1), we initialize our background X, = where [ represents

0
0 Iy
the temperature map at the initial time. Since we don’t have prior knowledge of the
motion field, it is initialized to 0. This assumption is false, but will be corrected through
the optimization process. The optimizer takes as input the background error Eg(x,to)
and the model errors Ey/(z,t). These two errors are initialized as zero. It will then be up

to the BFGS optimizer to update them for each run of our 4DVar algorithm.

Firstly, we do not remove the linear part, partially known thanks to the term non-
linear advection in the equation of state, 4.1.

In order to compute X(t) from X(t-1), for t ranging from 1 to 7, we use the state
equations 4.1. These state equations are numerically computed using a first-order Go-
dunov scheme for the non-linear part of the velocity, a first-order Upwind scheme for the
linear part of the velocity and a first-order centered scheme for the passive tracer, which
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is only composed of a linear part. Numerically, those numerical schemes are written as
in Appendix B.

For avoiding any edge effects, we set the edge-value of the matrix of U and V as 0
and we duplicate the value of the borders for the matrix I.

During the optimization, the BFGS optimizer is used. It is an iterative algorithm for
solving non-linear optimization problems without constraints or with weak constraints as
in our case. It is a quasi-Newtonian optimizer, based on the computing of the gradient
of the cost function and the gradient descent direction in order to update the parameters
to be optimized, £z and &,;. It is therefore necessary to compute the gradient of the cost
function 4.7 where the state model M and the observation model H are not linear and
not necessarily inversible. In the code initially provided, it is necessary to calculate the
model adjoint using automatic differentiation methods.

Until the number of iterations does not reach MaxzIter or until the cost function does
not have a norm below a certain threshold or as long as the gradient norm is not below
a certain threshold, the algorithm does not stopped. But, the numeric schemes, ref here,
must ensure that the CFL conditions are met. Otherwise, the algorithm stopped with an
€error.

|u(z, t)| * 3—t <1 (4.11)
x

dt
v(z,t)|x— <1 4.12
o, 0)) * - (4.12)

Numerically, we set the parameters dx, dy and dt in such a way that the CFL condition
is as close as possible to 1 without exceeding it to respect the CFL condition to avoid
any problem of explosion of the velocity field, therefore of the gradient as well as to avoid
any numerical problem related to too low speeds. Therefore, we do not take dx, dy, dt
neither too small nor too large.

However, in order to compute the adjoint of the model, to obtain the gradient of the
cost function, 4.7, it was necessary to use automatic differentiation techniques to com-
pute this adjoint. This automatic differentiation was achieved thanks to Tapenade, an
INRIA software, which allows automatic differentiation. It allows to compute numeri-
cally derivatives of complex functions by decomposing them into basics functions whose
derivatives are perfectly known. Nevertheless, this technique remains expensive in terms
of memory space and not very flexible, as it does not permit the use of more complex
models.
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4.3 Literature review

4.3.1 Data-driven and model-driven approaches

Thanks to the improvement of satellite image sequences, it is possible to visualize
the ocean surfaces as well as the dynamics induced by these images. Successfully using
these images to predict weather phenomena is a complex project that is of interest to
the scientific community. In their work on the Black Sea, D. BEREZIAT and I. HERLIN
demonstrated that from the velocity advection equations and the surface temperature
equation from Navier Stokes’ equations, it was possible to use a data assimilation method
from a cost function that minimized the difference between satellite observations and
model values. [3]

In a second method, a variational approach, the 4D Var, was used. The acquisitions
are placed temporally on a sliding window. From the model mentioned above and the
observations, it is possible to determine the physical forces applied to the system based
on a background vector. This background will initially be a first guess on the velocity
and temperature fields, then through the iterative process of data assimilation, it will be
improved to allow accurate prediction of model values from it. [4]

In a purely machine learning approach, R. FABLET has succeeded in demonstrating
that it is possible to model dynamic systems using residual bilinear neural networks. In
this context, his approach solved Lorenz’s equations using several Runge-Kutta schemes
of order 4. Instead of directly using this numerical scheme, the approach was to model a
multi-layered neural network based on this scheme. The conclusive results of this study
show that it is possible to model dynamic systems using machine learning and physical
models. [9]

In an approach similar to ours, J. BRAJARD proposed a methodology to produce
a hybrid model combining a known physical model and a neural model driven from
observations. In this approach, the model used is a shallow-water model where the terms
forcing, dissipation and diffusion are unknown. The study shows that it is possible to
obtain very good results from this approach. [7]

4.3.2 Goal

Our final goal was therefore to adapt these 4DVar C++ codes to Python. One of
the first objectives was to free ourselves from Tapenade by using only the automatic
differentiation of Pytorch via the autograd module, then, after having validated our code
by means of different twin experiments, we integrated machine learning into this code.
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Works during the internship

5.1 Translating 4DVar Code to Python

One of the first objectives of this internship was to translate the 4DVar code from
C-++ to Python. The Python language was chosen for its flexibility and its many machine
learning libraries that are rather simple to use. Indeed, in the long term, we would like to
set up a proof of concept to demonstrate that it is possible to combine data assimilation
with deep learning.

5.1.1 Pytorch

To translate the C code to Python, the Pytorch module was chosen. Pytorch is an
imperative langage module compared to Keras or Tensorflow which are symbolic program-
ming module. In comparison with Keras or Tensorflow, Pytorch dynamically computes
its graph. In case of neural network training, this means that the size of neural network
does not require to be fixed. In case of data assimilisation, this means that it is not
required to know forehand the number of iterations of running the 4DVar Algorithm.
Also, with Pytorch, we can use our custom loss function.They have to be coded like in
NumPy and one simply call the .backward function for retropropagating the gradient on
this loss function. Thus, Pytorch uses Tensor which are similar to numpy arrays. That
is another reason why we choose Pytorch as it makes easier to translate the numerical
schemes from C to Python.

It allows us to completely free ourselves from the calculation of the adjoint model
thanks to its autograd module which automatically calculates the function gradient from
a graph of the calculation operations which allows us to retropropagate the gradient on

19



Chapter 5. Works during the internship

Figure 5.1: Graphe de calcul d'un 4DVar sous Pytorch

a tensor by using the .backward function.

The backward function allows the autograd module to record any operations made
on variables for which we want to compute the gradient. As seen in the graph figure 5.1,
every computational operations have been recorded in this graph. That is how Pytorch

efficiently compute the gradient of J according the background error £z of the model
errors &)y.
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5.2 Evaluating the model

5.2.1 Testing the perfect model

To ensure the validity of our model, we carried out various tests to justify the veracity
of the results obtained. We therefore first ensured that the data values generated using
our perfect numerical scheme were of the same order of magnitude as those generated
with the initial C code.

As part of this experiment, we chose a netCDF data size 32x32. We will integrate this
data over a number of iterations V; that we set at 31. We will then compare these data
generated in Python with data generated in C, with the same netCDF data and with the
numerical scheme in C++.

From these two data sets, a histogram of the average error on U, V| I is drawn.

Time steps

o 5 o 15 20 25 30 o 5 w 13 20 23 0 Error

Figure 5.2: Generated image from the C++ Code (left), from the Python code (right)
and the histogram of average errors on the whole set

The average RMSE error between the two sets is around 10~!7 which is equal to the
computer precision.

5.2.2 Gradient residue test

In order to validate our optimization with the Pytorch LBFGS, we performed a gra-
dient test. This test ensures that the gradient is correctly calculated, in addition to
ensuring that the same cost function value is obtained for iteration 0 between code C and
code Pytorch. However, since gradient backpropagation is not done in the same way in
C, where part of the gradient is not differentiated by the Tapenade tool, as in Python,
where the gradient is automatically calculated by the Pytorch automatic differentiation
module, we do not obtain exactly the same cost function values at the end of our opti-
mization. As a result, we do not get strictly similar model errors and background error
between C++ code and code under Python.

To validate the gradient computing, the gradient residue test can be performed. The
approach consists in choosing an alpha disturbance coefficient greather than 0 as well as
a delta disturbance, generated as a Gaussian matrix of the same size as the inputs of the
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cost function, here, £5. We wish to evaluate the residual difference between the gradient
of the cost function relative to £ and the gradient of the cost function relative to £g +
a *A. Through first order limited development of Taylor, the equation 5.1 gives :

J(Ep+axA)=J(Ep) +ax < A, grad[J(Ep)] > +0(a?) (5.1)

If we compute the logarithm of the residue of the quantities 5.2, we then obtain the
following equation:

log(R(c)) = log(J(Ep+axA))—log(J(Ep))—log(a)—log(< A, grad[I(Eg)] >) ~ 2xlog(a)+C
(5.2)

Where:
e (C is a constant offset.
e « ranges between 0 and 2.

e A was generated using a random normalized law of an unitary standard deviation
and a null mean.

We are therefore trying to compute the slope of log(R(«)) as a function of log(c). The-
oretically, the slope of this function should be in the order of 2 to an offset, otherwise:

e If we choose an alpha that is too small, numerically, the computing will be wrong
and the slope should tend towards 1.

e If you choose an alpha that is too large, numerically, the value of the slope will
diverge.

e If our gradient is wrong, we will also get a slope of 1

We therefore performed this test with our Python code and our C code, in order to
validate the calculation of the two gradients. In both cases, we obtain a correct gradient

as shown in the figure:
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Figure 5.3: Graph of the residue of the gradient
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5.2.3 Twin experiments

After validating our field truth and gradient computing, we wanted to make sure that
we were able to do twin experiments. The latter consisted in generating a field truth
from the perfect model. This field truth therefore contains N velocity and temperature
data generated over a fixed time step. From these data, only the temperature map is
kept. We then train our iterative algorithm of the 4DVar on these data, first in a perfect
model, then with the imperfect model. The goal is therefore to know if we are able to
find the velocity field in error on the background for the perfect model, and to find the
velocity field missing for each time in the errors on the model in a second time. The
purpose of these experiments is to ensure that our 4DVar is able to find the missing part
of the dynamics for incomplete data. Once all these steps had been validated, it was then
possible for us to move on to the important experience of this internship.

From the perfect model, introduced previously, we generate N, = 41 velocity field and
temperature map data to get our field truth. These data are tensors of size 3x32x32x32.
The first plane corresponds to the hotizontal velocity U, the second plane to the vertical
velocity V and the last plane corresponds to the temperature value. We take as no time
dt = 8640, which means that each observation is spaced 10 time t steps or 1 day between
each observation. We will take as no spaces dx=dy=10000, which means that each pixel
corresponds to a surface of 100 km?.

We thus obtain a state tensor Xy, of size 41x3x32x32x32 (Nt,3, Nz, Ny) where:

e t represents the time step
e Nx = 32 represents the size of the tensors according to the direction x
o Ny = 32 represents the size of the tensors according to the direction y

e Nt = 41 represents the number of time steps for each assimilation window.

We also obtain a tensor of observations I2,,, of size 4x3x32x32 where the 4 obser-
vations retained are derived from data previously generated so that the observations are

spaced 10 time steps apart ( 1 observation per day).

Then the covariance matrices R and B are fixed at 1. We set the regularization
parameters « and 3 to 107 and to 10°. Those two parameters are part of the cost
function to be optimized by the LBFGS algorithm:

T = ||X(t0)_Xb||2B+/O 1Y (2, ¢) = H(x, t)|[7dt + ol [Vw(to)||* + Bl|div(w(te))[|* (5.3)

The more « is important, the more the velocity field will tend towards a translational
movement. On the other hand, the more [ will be important, the more the field of the
tendencies will tend towards a rotational movement. These parameters must be set by the
user through a battery of tests or a grid search in order to find the optimal parameters.
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In this case, we used the alpha and beta parameters chosen in the 4DVar algorithm of
the C code.

To optimize our cost function, we will use the 4DVar algorithm, 1. This algorithm
uses the Pytorch LBFGS optimizer which requires the following parameters to be set:

e the maximal number of iterations, MaxIter. It will be set to 800. This means that
the optimizer will not make more than this maximal number. If the optimization
ends reaching MaxIter, the optimizer will return a value that might be close to a
local minimum.

e the tolerance change. It will be set to 107* * Nz * Ny * 3. If the difference of two
successive values of the cost function is less than this value, the optimization stops.

e the accuracy of the optimizer, accuracy. This optimization parameter allows the
user to define what precision he wants to obtain on the value of the minimum that
the optimizer will return. Generally, in the literature, the values for this precision
are as follows:

1. 10 for excellent accuracy
2. 107 for medium accuracy
3. 10'% for low accuracy
e the tolerance on the gradient, pgtol. It will be set to accuracy * (machine com-

puting precision). It is a termination tolerance on the norm of the gradient. When
gradJe < pgtol, the optimization stops.

For evaluating our model, we use the average relative norm errors and the average
angular errors on the velocity field. The goal of the experiment is to get lower errors
values than the C code.

In the case of the perfect model, at the end of the optimization, we obtain the following
results:

Code Average Angular Error | Average Relative Norm Error
Python 24.8899 0.1775
C 29.2903 0.1936

Figure 5.4: Results for the perfect model
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Figure 5.5: Results for the perfect model. Colorized velocity field. For each observations,
on the right, the last velocity field computed by Python, on the middle, the last velocity
field computed by C and on the left, the difference of those two velocities field
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In the case of the imperfect model, the regularization parameter v should be examined
too. In our case, it has been set to 10® The cost function becomes:

JZ\IX(to)—XbII%+/O HY(%t)—]H(x,t)lI?zdtwl!Vw(to)|\2+ﬁ|Idiv(w(to))HQM/0 VEu(t)dt
(5.4)

And, at the end of the optimization, we obtain the following results:

Code Average Angular Error | Average Relative Norm Error
Python 24.2402 0.1522
C 33.1865 0.2366

Figure 5.6: Results for the imperfect model

oe= a

De= 1

DES z

Figure 5.7: Results for the imperfect model. Colorized velocity field. For each observa-
tions, on the right, the last velocity field computed by Python, on the middle, the last
velocity field computed by C and on the left, the difference of those two velocities field
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5.3 Experiments

Firstly, from a NetCDF data (I, U, V), we had to generate a field truth by integrating
it with the numerical scheme of the perfect model. We therefore made a forward on N,
= 31 time steps by taking a time step dt of 8640, which corresponds to 3 observations
at times t = 10, 20, 30 or one observation per day as shown in Figure 5.9. The original
data was not kept in the observations, see Figure 5.8.
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Figure 5.8: Initial sea surface temperature and initial motion field to be retrieved by data

assimilation
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Figure 5.9: Observations of sea surface temperature at t = 10, 20 , 30

Second, for these 31 vectors generated, we masked the velocity field data (U and V),
then, using the perfect 4D-Var, we tuned alpha and beta in order to reconstruct the
background error as best we could. By using the same metrics as in section 5.2.3, we
obtain a quite small norm and angular error. We have therefore validated this second

step.

Average Angular Error

Average Relative Norm Error

79.915

0.1206

Figure 5.10: Results for the second step of the experiments
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Figure 5.11: Results for the second step of the experiments. On the right, the colorized
velocity field obtained by data assimilation. On the middle, the colorized background
velocity field. On the left, the difference between those two velocity fields.

Thirdly, we degraded the integration scheme by removing the non-linear parts of the
speed. By using the imperfect 4D Var, we tried to find the missing terms of the dynamics.
We find a field of similar speeds with a small error in angle, but a significant error in
standard norm. However, this may be explained by the chaotic nature of the data to be
retrieved and their relatively low initial standard value. We already know that the 4DVar
perform bad when trying to retrieve small velocity field due to the vanishing gradient
problem. The main purpose of this experiment was to get the right background error for
correcting the first guess and to get the non-linear part of the speed in model errors.

Average Angular Error | Average Relative Norm Error

80.1837 0.1150

Figure 5.12: Results for the third step of the experiments on the background error £
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Figure 5.13: Results for the third step of the experiments on the background error €.
On the right, the colorized velocity field obtained by data assimilation. On the middle,
the colorized background velocity field. On the left, the difference between those two
velocity fields.
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Average Angular Error | Average Relative Norm Error
89.9273 0.4373

Figure 5.14: Results for the third step of the experiments on the model errors &,
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Figure 5.15: Results for the second step of the experiments on the model errors £,;. For
t = 20, on the left, the expected model errors. On the right, the model error computed
by data assimilation

This third step was not successful. Indeed, we are getting strong relative errors on
the velocity field standard. This is due to the low absolute value of the model errors
we want to discover. This therefore confirms that it is not possible to estimate all the
non-linearities of the model from data assimilation alone. It is necessary to use other
processes, that is why we will try to find its non-linearities by means of deep learning.

The goal of the fourth step was to parameterize the model error in a neural network
so that the neural network could learn this error in order to combine the 4DVar model,
based on physical knowledge, and the neural network, based on the data.

In the later part of this report, the model will refer to the partial model containing
only velocities U and V. Indeed, in the initial model, the tracer I has no non-linear
dependencies, so it is not useful to integrate it into our databases.

This step is subdivided into 4 points:

e Create 6 synthetic training databases of size 10000 each where the inputs and
outputs are as follows:

1. Dataset 1 - X = Complete model at t-1 and Y = Non-linear part of the model
at t;
2. Dataset 2 - X = Complete model at t-1 and Y = Complete model at t;

3. Dataset 3 - X = Complete model at t-1 with the linear part of the t and Y
model = Non-linear part of the t model ;

4. Dataset 4 - X = Complete model at t-1 with the linear part of the model at t
and Y = Complete model at t;

5. Dataset 5 - X = Linear part of the t and Y model = Non-linear part of the t
model ;
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6. Dataset 6 - X = Linear part of the t and Y model = Complete model at t;
datasets.
e Create a neural network model capable of learning about these different databases.

e Recode the perfect (then imperfect) 4D Var algorithm to include the neural net-
work driven on the non-linear parts of the dynamics in the physical model of the
integration scheme.

e Find a way to drive the neural network while optimizing the model with 4DVar

The three last points will be discussed in the following sections.
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5.4 Retrieving non linear part of the speed thanks to

deep learning only

5.4.1 Generating the database

To generate the database, the initial data were extracted from the NetCDF data. To
remove any bias, we integrated these images with the perfect integration scheme. These
new data will constitute the model at t-1. Then, we reintegrate those data in order to
have the data at t. We extract the data that are useful to us (either the complete data to
have the complete model, or just the linear or non-linear part...). The Figure 5.16 show
some samples of the dataset 2:

Figure 5.16: Samples of the dataset 2 - X = Complete model at t-1 and Y = Complete
model at t

5.4.2 Learning the complete model

Our first goal was therefore to guess the complete model from t from different combi-
nations of the complete or partial state vector X at t and t-1. To do this, we used dataset
1, 3 and 5. The first model we tested, based on the article [1], was the following:

To carry out the training, we chose to test our models on reduced sets, then to extend
them to our complete database. We have therefore made the following choices:
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‘ Layer type ‘ Output Shape
Batch Normalization | (BATCH SIZE, 2, 32, 32) or (BATCH _SIZE, 4, 32, 32) for dataset 3
Conv2D (BATCH _SIZE, 32, 32, 32) or (BATCH _SIZE, 32, 32, 32) for dataset 3
Conv2D (BATCH_SIZE, 2, 32, 32) or (BATCH_SIZE, 2, 32, 32) for dataset 3

Figure 5.17: Model proposed for learning the complete model
e For the reduced train set, the size of the set is 960 data. For the whole train set,
the size was set at 6400 data.

e For the reduced validation set, the size of the set is 320 data. For the whole
validation set, the size was set at 2300 data.

e For the reduced test set, the size of the set is 320 data. For the whole test set, the
size was set at 2300 data.

The metric chosen to evaluate the error of our model was the MSE as written in the
equation 5.5. The cost function of the model is therefore written:

MSE = %Z( ) (5.5)

With:

e N represents the number of data in our test set. This is N = 320.
e 0, represents the estimated output of our network for the i-th data.

e y; represents the expected output of our network for the i-th data.

In addition, we plotted the scatter plot of our input/output model to determine if
our network was performing properly. The closer the slope of this scatter plot is to 1,
the better our network is. The red line has an unit-slope. Therefore, the neural network
performs well.

- plot des prédictions en fonction des targets pour le modele BrajardCharantc Loss du modele BrajardCharantonisCNN
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Figure 5.18: Left, scatter plot of the model on the reduced test set. Right, training and
validation loss of the model
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Figure 5.19: For each image, on the left is the expected output, on the right, the result
of the model on the test set.
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5.4.3 Learning the non-linear part only

After ensuring that it was possible to compute the complete model from t from the
model at t-1 and/or its linear part at t, we tried to estimate the non-linear part of the
model from the same inputs. Our second goal was therefore to guess the non-linear part
of the model from t from different combinations of the complete or partial state vector
X at t and t-1. To do this, we used the datasets 2, 4 and 6.

Firstly, we tried the 5.17 model, used to predict the complete model X(¢). Because
of the lack of sophistication of this model, it does not learn correctly the non-linear parts
of the model. We have therefore set up a more complex model :

‘ Layer type ‘ Output Shape
Batch Normalization | (BATCH_SIZE, 2, 32, 32) or (BATCH _SIZE, 4, 32, 32) for dataset 4
Conv2D (BATCH _SIZE, 32, 32, 32) or (BATCH _SIZE, 32, 32, 32) for dataset 4
Conv2D (BATCH_SIZE, 32, 32, 32) or (BATCH_SIZE, 32, 32, 32) for dataset 4
Conv2D (BATCH _SIZE, 8, 32, 32) or (BATCH _SIZE, 8, 32, 32) for dataset 4
Conv2D (BATCH_SIZE , 2, 32, 32) or (BATCH _SIZE, 2, 32, 32) for dataset 4

Figure 5.20: Model proposed for learning the non-linear part of model

With the same cost function (5.5) as in section 5.4.2, we plotted the training and
validation loss of the model 5.20. As shown in the Figures 5.21 and 5.22, our network
does not perform well. That is why it is necessary to optimize the hyperparameters of
our training process to achieve better results.
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Figure 5.21: Training and validation loss of the model
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Figure 5.22: Estimating the non-linear part of model. For each image, on the left is the
expected output, on the right, the result of the model on the test set.
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5.4.4 Hyperparameter search

We were willing to know if it was possible to get better results by searching the
hyperparameters of our neural network. The hyperparameters of the neural network are
all parameters set by the user before training this network, to be distinguished from the
parameters of the neural network which are the weights adjusted by this neural network.
In these hyperparameters, we find those of the model as well as those of the optimizer
used to compute the weights of the neural network. In our case, after testing different
optimizers like the stochastic gradient descent, Adagrad, Adadelta and Adam, we kept
the Adam optimizer. Although the network training with the latter is slower than with
other optimizers, it guarantees stability in the search for optimal parameters as well as the
path of the entire cost function with which our network is trained. The hyperparameters
sought are therefore the following:

e The learning rate

e The maximal number of epochs (maximal number of iterations of optimization)
e The number of filter for each convolutional layer

e The size of the filter window

e The number of layers. In our case, a layer is composed of a 2D-convolutional layer,
a ReLU activation and a Dropout layer

e The momentum of the batch normalization layer (first layer)

e The epsilon precision of the batch normalization layer. It is used for avoiding zero-
division.

e The learning rate of the optimizer
e The betas of the Adam optimizer
e The L2-regularization or weight decay of the optimizer

e The L1-regularization or dropout for each layer.

To achieve this optimization, the scikit-learn module is used, which offers several
methods for optimizing hyperparameters. In our case, we chose to use the Random Hy-
perparameter Optimization Search. Traditionally, hyperparameter optimization is per-
fomed by grid search which is an exhaustive search through an hyperparameter space
defined by the user. This method tends to be time-costing if there is a lot of parameters
to be tested. Another technique is the random search which randomly selects some values
from the hyperparameter space. The metric for selected the best set of hyperparameters
is specified by user. In our case, we will use MSE.

As an input to this method, the weights of the network to be optimized are given as
well as several lists of values for the hyperparameters to be optimized. The search stops
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when all combinations of values have been scanned or the maximum number of searches
has been reached. The method then returns the optimal hyperparameters to us to obtain
the lowest possible cost function value.
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After the internship

6.1 Combining deep learning with Data Assimilation

To combine data assimilation and machine learning, we choose to proceed in different
steps.

First, we use a neural network, pre-trained in the previous step and we optimize our
error on the background and our errors on the model as in the section 4 where the model
would be written:

M(X(t)) = Mlinear(X(t_1))+Mnon—linear(X(t_1)+Mlinear(X(t)) - Mlin@aT‘l’NN(X(t_1)+Mlinear(X‘
(6.1)

Once this step is achieved, we use our network with randomly initialized weights. We
will perform some data assimilation cycles with the state model 4.1 in order not to start
from errors on the draft and with a null neural network model.

In data assimilation, first guess errors are rarely zero, because it is very difficult
and time consuming to compute these errors from scratch. Once a certain number of
assimilation cycles have been performed, it will then be possible to proceed to the data
assimilation training cycle with the machine learning.

At each iteration, we generate a training database for our neural network based on
300 observations generated by our data assimilation model. We are training our network
as in the section 5.4.3. So we get a network with new weights that will constitute our
new M,,on_tinear- We then proceed with the 4DVar optimization with the model 6.1.

In the future, the goal is to write a cost function to carry out both the data assimilation
process and the training of the neural network. This part will be the subject of my fellow

39
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intern’s thesis which will continue in thesis on a subject similar to that of the internship
and with the same team.




Conclusion et perspectives

During this research internship, the aim was to improve ocean surface velocity and
temperature predictions using data assimilation and machine learning techniques. With
data assimilation, we are therefore able to obtain a great background for short-term
predictions. However, given the difficulty of taking into account all non-linear terms by
conventional numerical methods, we degraded the initial physical model into a linear
physical model calculated by data assimilation and a non-linear model obtained using
our machine learning algorithm.

To validate the code, we performed various validation tests to ensure that the results
obtained by the programmed numerical methods were correct.

As a continuation of this internship, a thesis will be carried out by Arthur FILOCHE,
which should lead to the creation of a model that combines the optimization of the data
assimilation and machine learning process.

Finally, this internship gave me the opportunity to do a research internship at LIP6
while having the opportunity to work in a field that interested me a lot: artificial intelli-
gence. I would have learned the methodology used in the research world, which gives me
one more experience for my professional career that is very different from my previous
ones.
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APPENDIX A

BFGS

The BFGS algorithm is an iterative quasi-newtonian optimization method that con-
sists in :

e 1 - Generating an initial guess xy and an approximate inverse Hessian Matrix By = [
e 2 - Compute a search direction p, at step k by evaluting:
Bipr = =V f(zy) (A.1)
Where V f(x) is the gradient of the evaluated function f for the point xy

e 3 - Perform a line search to find an acceptable step size aj in the direction p; and
update:
Tyl = Tp + QxPg (A.2)
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APPENDIX B

Numerical methods

B.1 First order Upwind Scheme

In computational physics, upwind schemes are a type of numerical discretization
method used for approximating first order derivate thanks to finite difference compu-
tation. This scheme is generally used for linear advection term like in equation ?7.

ou ou
- — =0 B.1
ot + a@a: (B.1)
Numerically, it writes:
For a > 0: )
Tl e ulr —ul
1 (A 1 11— — O B.2
Ar AL (B2)
For a < 0:
u?+1 B u:l + uzn-i-l - ul O (B 3)
At A '

B.2 First order Godunov Scheme

The Godunov Scheme is a numerical method developped for computing a numerical
solution for shallow water equation. Those equations contains non-linear term as they
contains a product between a variable x and its partial first-order derivatives.

A
Q= Q= (9@, Q1) — Q1 Q1) (B.4)
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Where f and g are given is our case. In both Upwind and Godunov scheme, a
Courant—Friedrichs—Lewy condition must be satisfied to ensure the numerical stability
of the schemes. It is written:

B.3 First order Centered scheme

The first order centered scheme is a numerical method based on a first order Euler
scheme where the derivatives is approximated by :

Oulf](x) = f(x + 0.5h) — f(z — 0.5h) (B.6)
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Trajectory optimized
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Appendix C. Trajectory optimized
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Figure C.1: Trajectory optimized through the 4DVAr Algorihtm



APPENDIX D

Gantt Chart

A Gantt chart is not necessarily appropriate, as [ have completed a research internship.
In accordance with the guidelines of ENSTA Bretagne, this document will therefore have
a Gantt diagram that is not to be compared with an industrial Gantt diagram, but rather
to be considered as a research plan for the internship.
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Appendix D. Gantt Chart
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Figure D.1: Gantt Chart of the project
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