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Abstract

In the Mine Countermeasures (MCM) context, the use of robotic underwater platforms
is increasing. However, some constraints are inherently linked with Mine Countermea-
sures (MCM) such as the necessity of covert operations or the potential lack of knowl-
edge of the working area. Those constraints can make the navigation of robotic platforms
harder. Moreover, MCM is phase based since it is defined around a set of stages including
detection, classification, identification and neutralisation. At the moment, used platforms
are specialized in a peculiar phase. As a result, a reacquisition of the target must be done
between each phase by different robots. Due to those reacquisition, the mission perfor-
mance is directly dependent on the accuracy of the navigation and pose estimation.

In the following report, two methods aimed at improving the robot navigation will be
dealt with: Terrain Based Navigation (TBN) and Scan Matching. Both methods are feature
based. Contrary to the former method which needs an a priori knowledge of the environ-
ment, the latter uses two successive overlapping measures to compute a local fix. The
aim of this report is to determine to what extend the a priori knowledge can be degraded
for the Terrain Based Navigation (TBN) and what is the minimum overlapping percent-
age of successive measure for Scan Matching to be able to provide a fix. In addition, the
confidence of the methods will be analyzed.



Résume

Dans un contexte de guerre des mines, 1'utilisation de plateformes sous-marines au-
tonomes est de plus en plus commun. Or, certaines contraintes inhérentes a la guerre des
mines comme l'impossibilité de faire surface ou le peu de connaissances des zones d’em-
ploi peuvent compliquer la localisation de ces robots. Qui plus est, la guerre des mines
est généralement divisée en trois phases (détection, identification et neutralisation) alors
que les plateformes utilisées sont spécialisées uniquement pour 'une de ces phases. En
conséquence, une réacquisition de la cible est effectuée entre chaque phase. De ce fait, la
précision de la navigation est un facteur déterminant pour la réussite des opérations de
déminage.

Dans ce rapport, deux méthodes d’amélioration de la localisation seront donc consi-
dérées : le Terrain Based Navigation (TBN) et le Scan Matching. Ces deux méthodes sont
basées sur la corrélation de caractéristiques localement uniques. La premiere nécessite des
connaissances a priori de ’environnement tandis que la seconde tente de trouver des si-
militudes dans le chevauchement de deux mesures successives. Le but de I’analyse a venir
est de déterminer dans quelle mesure la carte a priori peut étre détériorer dans le cas de
la Terrain Based Navigation (TBN), et du pourcentage de chevauchement minimal pour le
Scan Matching. De plus, nous tacherons également de fournir une métrique permettant
d’attribuer une confiance aux résultats.
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Introduction

With the increase in reliability and capability of robotic underwater platforms, the
applications of these systems in military, archeology, oil and gas monitoring, and search
and recovery roles have been increasing at a considerable rate. One of the common ap-
plications of unmanned underwater vehicles is the MCM, involving the detection, classi-
fication and localisation of underwater mines. In these cases, the mission performance is
directly dependent on the accuracy of the navigation and pose estimation. MCM is phase
based, in that it is defined around a set of stages including detection, classification, identi-
fication and neutralisation. In contrast to existing ship-based platforms, no single robotic
platform is currently capable of completing all phases of MCM. To accomplish this, col-
laborating platforms are employed which are optimized for the specific MCM phase.

The success of this collaboration depends on accurate navigation. For example, dur-
ing the detection phase, pose and localisation errors will be reflected in the positioning
of detected objects. This localisation error could result in the need for higher effort in
reacquiring the detected object by a new platform, requiring a search of the area again,
or possibly never reacquiring the object. Therefore, accurate navigation and localisation,
specifically in challenging seafloor environments where multiple mine-like objects may
exist is key. In cases where the variance on the navigation error is unbounded, this may
only be achievable with a considerable amount of overlap in the effort applied in each
MCM phase, thereby increasing mission time and resource usage.

In contrast to aerial, surface and terrestrial robotic platforms, UUVs navigation is chal-
lenged by the environment in which the vehicle is operating. Above water systems have
the option of leveraging Global Navigation Satellite System (GNSS) such as DGPS which
provide stable navigation estimates and corrections. Due to high levels of attenuation,
this capability is not available underwater. In this environment, navigation and position-
ing is mainly provided by simple dead reckoning [1], acoustic localisation such as Short
Baseline (SBL) and Long Baseline (LBL) [2], and/or through the use of Inertial Navigation
System (INS) [3]. Through-the-sensors methods are also being developed to require less
infrastructure or reduce drifting. Those methods include, among others, Terrain Based
Navigation (TBN) [4], [5], Simultaneous Localization and Mapping (SLAM) [6] or Scan
Matching(7], [8].

In this report we will show the results of an analysis of performance of Terrain Based



Navigation (TBN) based algorithms with potentially sparse a priori data sets and of Scan
Matching. This report is structured as follows: Chapter 2 will examine the current meth-
ods being used for underwater navigation. Chapter 3 will introduce both models used
here, including a description of the data representation, and feature selection as well as
the experimental setup. Chapter 4 will outline experimental results and conclusions to
the analysis, as well as outlining future work.



Chapter 1

Context of the internship

This work was done during an internship in collaboration with Defence Research
and Development Canada Atlantic Research Centre (DRDC) within the Mine Warfare
group. DRDC is currently conducting a research programme into GNSS-denied navi-
gation, specifically for Unmanned Underwater Vehicle (UUV) in MCM. One focus of this
programme is the localization of a UUV performing a mission in a poorly known environ-
ment.

1.1 Research centre

Defence Research and Development Canada (DRDC) is an agency of Canada’s De-
partment of National Defence (DND). DRDC provides DND, the Canadian Armed Forces
(CAF) and other government departments with the scientific and technological advan-
tages they need to defend and protect Canada’s interests. DRDC is comprised of 8 research
center across Canada conducting research in cover a wide spectrum across all domains of
concern to the CAF.

The DRDC - Atlantic Research Center (ARC) was first established in 1944. It was one
of the originating organizations that came together in 1947 to form the Defense Research
Board which later became DRDC. Located in Halifax, Nova Scotia, this research centre
conducts research and development activities mainly related to the maritime defence such
as:

— Antisubmarine warfare

— Mine and torpedo defence

— Shipboard command and control
— Naval platform technology

— Emerging materials

— Signature management

— Maritime information and knowledge management

7



— Virtual platforms and virtual combat systems

This internship is highly related to the mine defense, commonly referred to as Mine
Countermeasures (MCM). The aim is to provide better navigation accuracy to deal with
the issue presented in the next section.

1.2 Mine Countermeasures

The origin of naval mines is not completely known. Some have dated the first use back
as far to the Ming dynasty [9] while others assert they only appeared during the American
War of Independence. However, the application of mines has increased during the two last
World Wars and more recently during the Gulf War. As a result, countermeasures have
improved considerably in the last century. While it was mainly done through minesweep-
ing using mine countermeasures vessels at first, it evolved into minehunting. Recently,
UUV have been adopted for use in MCM. The mission of the UUV is to detect, classify,
identify and neutralize naval mines. To do so, sonars are being used to try to detect the
presence of suspicious items either on the seafloor or in the water column. Due to the
specialization of the platform, one peculiar UUV is not able to fulfill all these goals. Col-
laboration between specialised robotic platforms is thus required. Consequently, accurate
navigation is mandatory in order for each platform to be able to provide trustworthy data
or to go to a precise location.

Eq. 1.1 aims to give a probabilistic point of view to the performance ofMCM, consid-
ering each phase of the process. Table 1.1 explains the terms used.

Table 1.1 — Equation 1.1 Terminology

Preacq + Probability to reacquire a given object
P;. : Probability to detect and to classify the naval mine
P;p : Probability to identify the naval mine
Py : Probability to successfully neutralize the naval mine

P:Pdc*Preacq*PID*Preacq*PN (1-1)

For collaborating AUVs, each phase and reacquisition probability must be considered
in the overall performance. However, on a ship-based platform P, is commonly con-
sidered as equal to 1 whereas when using UUV this assumption cannot be made. Fur-
thermore, MCM planning requires an understanding of the navigation error to allow for
track placement which minimize gaps in the data due to navigation error. This is not pos-
sible for AUVs where GNSS is not available, as this distribution can grow without bound.
The improvement of GNSS-denied navigation accuracy is thus really important for MCM
since it could provide a stable distribution of navigation error. As a result, the planning
of MCM missions would be much simpler.



Chapter 2

Underwater navigation

The following chapter focuses on the techniques used in localization of UUVs. This is
one of the key issues regarding underwater robotics. Indeed, some constraints are inher-
ently linked with the subsea context :

— No GNSS localization - Due to high electromagnetic attenuation, GNSS services are
unavailable once the UUV dive a few meters beneath the surface.

— Computational cost - When considering small vehicles, computational cost can im-
pact not only range but also cost. The more energy-friendly the embedded systems
are, the longer is the range. Low computational cost in navigation methods means
that powerful processors are unnecessary, or allow processing capacity for other sys-
tems such as autonomy.

— Noisy sensors - The water is a challenging environment for sensing. While typically
sonars are used, they suffer from environmental features.

— Sparse maps - As soon as your working area is not in an important harbour, maps
can be sparse. This is particularly relevant concerning terrain-based navigation.

In this section, we will consider dead reckoning, Underwater Acoustic Positioning Sys-
tems (UAPS) and INS will be reviewed before focusing on Through The Sensors (TTS)
methods.

2.1 Dead Reckoning

Typically applied to low-cost UUVs, dead reckoning approaches use a measurement
of distance traveled and heading. These measurements are integrated based on a known
start position, resulting in a position and pose estimate. Dead reckoning can be combined
with velocity sensors such as a Doppler Velocity Log (DVL) and/or inertial sensors to
increase accuracy. Although dead reckoning is a simple and low cost solution, the accu-
mulation of errors in the navigation solution can continue without bound, and therefore
is not applicable to underwater search where a high level of precision is required without
some other method of error correction.



2.2 Underwater Acoustic Positioning Systems

The UAPS have the constraint of requiring the placement of additional infrastructure
for localisation. This infrastructure is typically a set of buoys which need to be deployed
before the mission. These buoys, equipped with either a fixed position or a GPS, can
provide positioning updates through transmission and reception of acoustic pulses and
time of flight measurements to determine a localisation solution. UAPS can be divided
into three main methods :

— Long Baseline (LBL) - In the LBL case, transponders are placed on the seafloor far
one from each other - usually on each corner on the working area. No device is
subsequently on surface but it means that those transponders had to be accurately
installed before the mission.

— Short Baseline (SBL) - Transponders are on a surface vehicle which have access to
its global position over time. Since the transponders are much closer and that the
ship is potentially moving, this solution is less accurate than with LBL and requires
to have a vehicle on surface. However, no a priori installation is needed and if the
working area dynamically evolves, the ship is able to follow the robot.

— Ultra-Short Baseline (USBL) - It basically is a lot the same than SBL except there
is only one transponder. In order to compute the bearing, the robot must thus relies
on the phase shift. It is even less accurate than SBL but is also less expensive and
can be mounted on smaller ships.

Figure 2.1 — Acoustic positioning through baseline methods. Reproduced from [10]
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Fig 2.1 demonstrates the differences between these techniques. However, the infras-
tructure requirement can pose a challenge for MCM as it may not be feasible to deploy a
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series of transponders or a ship to aid in underwater navigation due to hazards, traffic, ice
coverage or a need to be covert. Moreover, UAPS is highly dependant on the environment
such as the speed of sound and the bathymetry, therefore consideration must be given
when placing infrastructure.

2.3 Inertial Navigation System

INS provides a method for underwater navigation which does not require additional
infrastructure such as buoys. INS determines and maintains a navigation solution through
the integration of measurements from heading sensors such as a ring laser gyro and ac-
celerometers. These systems can further be aided through external sensors such as DGPS
when available, and Acoustic Doppler Current Profiler (ADCP). Although INS based sys-
tems provide a considerable improvement in positioning accuracy over dead reckoning,
these systems still contain sources of error on the accelerometers, heading measurement
and aiding sensors. This error is composed of both drift and bias [3]. The bias can be mea-
sured and accommodated through calibration whereas the drift cannot. Although limited
in comparison to unaided dead reckoning, the result of the accumulation of this error is a
potentially unbounded growth of positioning uncertainty.

Fig 2.2 gives the main idea of the integration of sensors data in order to estimate the
state vector. The fusion of measurements is commonly made thanks to Bayesian filters
such as Kalman Filter (KF) - or its non-linear counterpart Extended Kalman Filter (EKF)
- or Particle Filter.

Figure 2.2 — Exemple of the integration process commonly applied to INS navigation
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Propagation of errors is an important part of the state estimation. [11] gives a good
overview of noise models. It is composed of a constant bias, a white noise and a correlated
random walk. Due to this noise model, one should note that the uncertainty growth is
unbounded. As a result, this method alone is unsuitable for long missions.
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2.4 Through-the-sensor methods

One recent technique for navigation and visual odometry which has gained widespread
use is through-the-sensor (TTS) approaches. In these approaches, the vehicle will em-
ploy sensors to gather data which can be used to localise the vehicle and provide naviga-
tion updates. Those methods can be feature based or coherent methods which leverage
Synthetic Aperture Sonar (SAS) [12], [13]. Two of the most common and related tech-
niques are Terrain Based Navigation (TBN) [4] and Simultaneous Localization and Map-
ping (SLAM) [14]. While these techniques have been shown to be effective for navigation
and pose prediction, they are dependent on a sufficient set of seafloor features to develop
a positioning estimate. This set of unique features is one of the primary challenges for
incoherent TTS methods which use image based correlation. Ideally, high fidelity maps
would be provided to the UUV for image correlation, however in practice this data may
be dated, sparse or of low fidelity. Determining the minimum feature set which is re-
quired to effectively navigate, as well as how the positioning capability will degrade with
sparse maps is key to understanding the performance of the algorithm and assigning a
confidence value to a positioning estimate.

2.4.1 Simultaneous Localisation And Mapping

Localizing landmarks to improve navigation is bit of a cause and effect dilemma. Nev-
ertheless, it is at the root of numerous SLAM implementations. Indeed, SLAM aims at
building a map of an unknown environment while concurrently using this same map to
localize a vehicle. Using SLAM, a robot must create a map of an unknown area and use
the generated map to localize itself. It usually relies on multiple observation of features
or landmarks (assumed to be time invariant) to decrease position uncertainty of both the
vehicle and the feature. It basically does an intersection of previously estimated uncer-
tainty area with the currently computed one. Thus, it allows periodic compensation for
the natural drift of an INS [15].

The main drawback of this technique is the increasing dimensionality of the state vec-
tor. Generally speaking, SLAM algorithms have a computational complexity in O(n?) [6]
or in O(nlogn) [16]. As a result, full SLAM implementation on tiny robots is challeng-
ing due to computational load, however lighter implementations begin to appear such as
uFastSLAM [17].

Regarding the features, one part of designing a SLAM method will be to find a way to
properly characterize those features. This characterization must be precise enough for the
feature not to be mistaken with another, without being too constraining to recognize the
feature later from a different point of view.
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2.4.2 Terrain Based Navigation

Terrain Based Navigation (TBN) [4], [5], technique consists in using a priori knowledge
of an environment. It thus requires both sufficient knowledge over the mission area and
a sufficient variability of the data to allow for unique matches. Correlation between the
currently visible characteristics and known features is then used to reduce uncertainty.
To do so, the correlation usually provides the most coherent matches between the known
characteristics and the sensed features. Thus, this method is not only able to bound the
drift but can even improve the accuracy. The main difficulty of this method is to find a
well known data set with enough variations and which could be measured in situ with
enough precision. Those data must then be represented efficiently not to lose information
keeping in mind computation power must be saved. In most of the cases, magnetic field
maps [18] or depth maps [5] are chosen.

This method was being used before the widespread use of GNSS services. Indeed, it
was first developed in the 60’s to be employed in cruise missiles [19]. This version of
TBN was called Terrain Contour Matching (TERCOM) since it was relying on correlating
given contour maps with the sensed contour features. However, this needed the missile
to fly a stable path. Although this method is still used nowadays, some others implemen-
tations have emerged such as the Sandia Inertial Terrain-Aided Navigation (SITAN) [20],
Terrain Profile Matching (TERPROM) [21] or Digitized Scene-Mapping Area Correlator
(DSMAC) [22].

2.4.3 Scan matching

Given the sparsity of underwater maps, a self-contained localization method which
would not need any a priori data is interesting. SLAM fulfills this criteria but can be
limiting due to high computational requirements. Scan matching could thus be an alter-
native. The idea is to use successive overlapping measures to compute the displacement
between those measures. Hence it uses two successive measures, environment data such
as the speed of sound can be considered constant. This independence from such parame-
ters is really interesting since it removes some source of uncertainty. [7] and [8] give good
illustrations of this method. However, one limitation of scan matching lies in its ability to
decrease only the uncertainty accumulated since the last fix. Indeed, it is not able to give
any hint of a global localization but only local fixes.
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Chapter 3

Experimental setup

The following chapter will present the simulation setup and the TBN and Scan Match-
ing implementations used in this work. The aim of the experiment is to simulate the
output of two navigation methods, Terrain Based Navigation (TBN) and Scan Matching.
To do so, the following section will use real bathymetry data from the Bedford Basin, INS
trajectories will be simulated using a simple INS noise model inspired from [11]. The
actual planned tracks degraded through the noise model described in [11].

3.1 Methods implementation

Although their application is not the same, Scan Matching and TBN are similar in the
method in which they can be implemented. On both cases, a feature correlation method
has to be selected. In our case, we leverage computer vision algorithms for doing so.
Considering [23], Scale-Invariant Feature Transform (SIFT) [24] and Speeded Up Robust
Features (SURF) [25] are commonly used algorithms for TBN. Indeed, seven algorithms
are compared in [23] by asking them to find matches in different tiles. SIFT and SURF are
the most balanced algorithms as they successfully provide good matches in most cases.
In our application, since SURF is faster than SIFT, it was used as the matching algorithm.
Methods not relying on vision algorithms, such as Iterative Closest Point (ICP), can be
found (7], [8].

As we employ vision algorithms, sensed data will have to be represented in an effi-
cient way. Moreover, as the results will not be always significant due to potential high
uncertainty, a metric to weight the output confidence is crucial.

Finally, the difference between TBN and Scan Matching is that the former performs
the correlation between a known map and current measures while the latter correlates
between two successive overlapping measures.

Fig 3.1 gives an example of TBN correlation while Fig 3.2 gives an example of Scan
matching correlation.
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Figure 3.1 — Correlation of features between the scanned image and the a priori map as is
used in TBN showing estimated position in the map

Figure 3.2 — Correlation between two sonar measures as is used in Scan Matching
showing estimated displacement between the two measures

3.2 Choice of relevant data

First of all, we must choose which features will be considered relevant. Ideally, cho-
sen feature must be detailed to allow matches and varying enough to allow unique or
locally unique correlations. As high fidelity bathymetric maps will be used in the incom-
ing simulations, features will be extracted from depth related information. The depth is
the most obvious feature given by bathymetric sonars. However, it is not necessarily the
most reliable. Indeed, bathymetric sonars can give depth relative to the robot depth. To
determine global depth, the robot depth must be precisely known which could theoret-
ically be done thanks to a depth sensor and knowing the tide level. Through this sum
of uncertainty, depth is not completely trustworthy, as same measurement noise will be
observed. A depth invariant data would thus be really useful. Thanks to the relative
depth map, we can compute an absolute gradient map. While a given depth would nearly

15



always be present in different place, a given couple of depth and gradient is much more
unique. Moreover, two data can be extracted from gradient, its norm and its direction.

3.3 Data representation

By splitting the gradient map into a norm map and a direction map, we end up with
three different data. Given those, an image can easily be made. The choice of the color
model (e.g. Red Green Blue (RGB) and Hue Saturation Value (HSV)) is at the discretion
of the reader. Initially, we used HSV since the H layer is represented through an angle
which is related to the gradient direction. However the implementation of the data rep-
resentation uses the OpenCV library which relies on a 8 bit encoding for its image. As a
result, the hue values were bounded into [0,180]. As a result, the representation is less
accurate as more values will be concatenated in the same resulting hue value, therefore
losing fidelity in the feature. Thus the RGB color model was chosen to encode the features
and one feature value was attributed to each layer. The example of such an image is 3.3.

Figure 3.3 — Resultant image of a given area

3.4 Correlation method

Given two images, feature matching is then done thanks to nearest neighbors algo-
rithms. To do so, we used the Fast Library for Approximate Nearest Neighbors (FLANN)
and k-d trees to reduce the computational time [26]. This matching provides the two best
solutions for each SURF descriptors. Thanks to those two matches, correct ones are kept
based on the Lowe’s ratio [24] which provides a threshold for when the probability of a
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false match became greater than the probability of a true match. Even if this ratio was
given for SIFT, SURF is drawn from SIFT so this limit is still relevant. One could also sup-
pose there is a correlation between the number of good matches and the final precision.
Consequently, finding this underlying ratio can be interesting to characterize the output
confidence. Based on this described method, the algorithm detailed in Algorithm 1 will
be used.

Algorithm 1: Algorithm used for correlation and estimation of displacement in
the following report
Data:
Current Measure : My,
SUREF descriptors of previous measure (SM) or known map (TBN) :
SURF_Descriptorsipowiedge

Result:

Rigid transformation rotation : R
Rigid transformation translation : T
Confidence in the outputs : I’

Lyeasure = DataRepresentation(My)
SURF_Descriptors,easure = SURF(Lyeasure)
Matches = knnMatcher(SURF_Descriptorsiuowledges SURF_Descriptors,easure)

GoodMatches =[]
foreach BestMatch,, BestMatch, in Matches do

if BestMatch, and BestMatch, satisfy Lowe’s ratio then
| Add BestMatch; to GoodMatches

I' = TrustworthinessRatio(Good Matches)
R, T = EstimateRigidTransform(Good Matches)

3.5 Considered areas

All the areas considered are extracted from a bathymetric map of the Bedford Basin in
Halifax, Nova Scotia. This map was provided by the Canadian Hydrographic Service and
is 2 meters precise. Three areas were extracted from this map for their potential features
concentration which means their gradient and depth variability. Using the encoding tech-
nique representation described in Section 3.3, they are represented in Fig. 3.4. To be able
to observe the influence of the precision of a priori knowledge, less precise maps were cre-
ated by decimating the map and interpolating across samples using an implementation of
bi-cubic interpolation.
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Figure 3.4 — Areas used in the simulations

(a) Area 1 - Medium (b) Area 2 - Low (c) Area 3 - High
concentration of features concentration of features

concentration of features

3.6 Given mission

The missions given to the robot were lawn mower trajectories. This kind of trajectory
is commonly used when searching an area for mines. Moreover, it often provides overlap-

ping measures when the lines are close enough one to another. Fig. 3.5 gives an example
of such a simulated trajectory.

Figure 3.5 — Simulated mission showing the lawn mower trajectory of the robot over one
the selected area
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3.7 Framework

In order to have a coherent simulation easily reconfigurable, a custom framework has
been developed in Python. The purpose of this framework was to allow an easy compari-
son between the ground truth trajectory of a mission and estimated trajectories computed
by various estimators. Since series of simulations were required in order to have rele-
vant statistics, a special attention was given to compute once for all constant data. As we
required vision algorithms, OpenCV was chosen which binds directly with Python.

Some improvements are still to be made to this framework. A physical engine would
for instance be of great help to simulate a more realistic behavior for the sensors.

3.8 INS estimator

The navigation error estimator which was implemented is a INS one. It uses gener-
ated Inertial Measurement Unit (IMU) measures and Kalman filters to provide coherent
estimation. The IMU measures are degraded according to the models given in [11]. Sim-
ilarly to their simulator, only constant bias, white noise and correlated random walk was
considered in this simulator. As a result there is an unbounded drift of the uncertainty.
However, since the constant bias can be dealt with through calibration, no noise of this
kind was used.

Fig 3.7 and Fig 3.6 aim to help understand the behavior of this simulator by presenting
noisy measures and the resulting integration on each axis. For both figures, the IMU does
not move during the simulation. Thus the output highlights the induced drift. For this
simulation, a constant bias was applied on the x axis, a white noise on the y axis and a
random walk on the z axis.
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Figure 3.6 — Integration of measures along each axis showing the drift induced by each
kind of noise

(a) Constant bias influence on x axis (b) White noise influence on y axis
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Figure 3.7 — Linear accelerations output showing the behavior of noises
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Finally, when used to estimate a trajectory, the output is coherent with a natural INS
behavior as shown in Fig 3.8.

Figure 3.8 — INS trajectory example with linear accelerations noises showing the drift
and uncertainty induced by the noise model
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3.9 Simulation

Two aspects were considered during those simulations. First, the evolution of the pre-
cision related to the number of good matches and the Lowe’s ratio of those matches is
dealt with. Then in a second serie of simulations, the improvement obtained thanks to
TBN and Scan Matching is highlighted. For this second part, the results presented in the
next section were obtained as followed. For each couple of area and precision of the grid,
1000 iterations were completed. For each iteration, the noise interfering with the INS was
randomly generated following the model given in [11]. Scan Matching and TBN estima-
tors were then asked to try to improve the navigation. Consequently, each data in the
following curves correspond to the mean of 1000 results.
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Chapter 4

Results

4.1 Trustworthiness ratio

Two data are at our disposal in order to try to find a kind of trustworthiness ratio
regarding the output of the algorithm ??. Those data are the number of good matches and
the Lowe’s ratio [24] of each one of those good matches. A lot of correlation such as the
one presented in Fig. 3.1 were done knowing the exact position of the small picture in the
second one. Thus, by comparing the position given by the algorithm and the true one the
accuracy was computable.

Fig. 4.1a highlights the distribution of the accuracy depending on the mean square of
the Lowe’s ratio while Fig. 4.1b shows the same repartition of accuracy but in regard of
the number of good matches.

Figure 4.1 — Correlation between accuracy and Lowe’s ratio or number of good matches
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Considering those results, it seems that the trustworthiness ratio can be built regarding
the number of good matches and the inverse of the Lowe’s ratio. Moreover, to discriminate
more clearly the results, we will not take the mean of Lowe’s ratio but the mean square.
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Taking the mean square rather than the mean allows to weight more the Lowe’s ratio,
as a result fewer matches of high probability to be good are preferred to many lower
probability matches. The chosen ratio is thus:

: Number of good matches
Ratio =

4.1
Mean square of Lowe’s ratios of the good matches (A1)

Thanks to Eq. 4.1, we obtain the results shown in Fig. 4.2.

Figure 4.2 — Trustworthiness ratio showing the evolution of error depending on the
trustworthiness ratio
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One can observe that the ratio defined in Eq. 4.1 seems to provide a good output dis-
crimination. Although the mean error appears to be constant regardless of the ratio, the
standard deviation is clearly improving with it. As a result, a good precision allows one
to define a confidence for the outputs. It is precisely this confidence which is important
to properly merge observations in a Bayesian filter. It should be noted in Fig. 4.2 that an
ambiguity is still present when the score is low, some improvements could probably be
made.

However, when looking at the distribution of those observations as displayed in Fig. 4.3,
it appears that a low score on this ratio is common. One should thus really consider chang-
ing the confidence given to output rather than simply rejecting some observations. Even
when the score is low, most observations have a accuracy error below 5 meters which is
far from being irrelevant considering the map surface is 1 kilometer square.
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Figure 4.3 — Observations distribution regarding trustworthiness ratio showing that most
observations obtain a low score and thus are in the ambiguity zone
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4.2 Precision improvement

All the following results will be presented according to three data. First, the improve-
ment percentage compared to the INS navigation. 0% will correspond to no improvement
at all, 100% is a perfect navigation and a negative percentage corresponds to worsen-
ing the navigation. After that, the time taken to compute one observation on average is
considered. These times are highly dependent on the computer however the general evo-
lution is important. And finally a weighting of the precision gain by the time. Calling this
variable G and given that MSE, and ¢, corresponds respectively to the mean square error
and the time linked to a certain method x, the computation is done as follows:

— MSEINS _MSEmethod

tmethod

G

(4.2)
Thus, we obtain a value representing the precision gained compared to the INS alone
by time spent on computation.

For the improvement percentage and the time taken, errors bars are displayed and
represent the standard deviation (10) of the results. It roughly means that two thirds of
the occurrences are within this interval.
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4.2.1 Terrain Based Navigation

During the navigation simulations, the precision of the known map was degraded it-
eratively from a 2 meters precision to a 10 meters precision. The aim was to find the
evolution of the navigation accuracy and also the time required for processing the solu-
tion. Indeed, as the precision of the map decrease the SURF algorithm will be faster.

In the figure 4.4a, we observe a substantial growth of the uncertainty as the precision of
the grid decreases. Moreover, this figure highlights that past a certain degradation of the
map, the standard deviation shows that the method could in fact degrades the navigation.
However, we can also see that the computational time is increasing with the precision,
caused by the increasing dimension of the a priori map.

The importance of a compromise clearly appears when using the previously explained
ratio. In the figure 4.5, one can observe that the optimal choice is more than twice more
effective than by simply taking the most accurate case.
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Figure 4.4 — TBN results

Figure 4.5 — Weighting of accuracy improvement by the time spent on computation
showing potential most efficient cases
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4.2.2 Scan Matching

In this case, the overlapping area between two successive measures was becoming
smaller between each simulation. The percentage on the x-axis represents the percent-
age of overlapping between two measures. Obviously, an useful overlap means a more
precise navigation. But again there is a limit where the method can in fact degrade the
navigation, as by decreasing the overlap the uncertainty of the output will grow. More-
over, one can observe that the time required for each iteration is much lower than com-
pared with the TBN method. However, the average gain is lower than with the previous
method since it is unable to reduce uncertainty more than the error accumulation since

the last scan matching observation. Still, there is a notable improvement compared with
the INS alone.
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Figure 4.6 — Scan Matching results

Figure 4.7 — Weighting of accuracy improvement by the time spent on computation
showing potential most efficient cases
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4.3 Discussion

Both methods are highly dependent on the concentration of potential features. Those
features can be depth-related like the one used in this report or other features as long as
locally unique correlations are possible. Additionally, they demonstrate the same behav-
ior regarding degradation of the data. The trend on accuracy is similar with a sudden
drop on accuracy which lead to an inaccurate output since the standard deviation of the
error becomes too high.

Considering the dependence on the environment properties, TBN is far more depen-
dent than Scan Matching. Indeed for better results TBN must know the speed of sound as
well as the tide levels. Without those data, the estimation of the depth will be degraded.
Scan Matching does not require this knowledge since correlation are made between two
successive measures. As a result, both measures will have undergone the same degrada-
tion of depth estimation.

From a computational power requirements point of view, both methods complexities
is O(n?) due to the SURF algorithm. However, one should take into account that Scan
Matching correlates two subsequent pings or images which are in theory smaller than an
a priori map. As a result, Scan Matching is faster than TBN.

To conclude, those two methods should be considered as complementary. Indeed, their
main purpose is not the same. Whereas scan matching provides local fixes to limit the
uncertainty growth, TBN gives global fixes to decrease it. Thus, even the values obtained
through the equation 4.2 are not comparable. Indeed, one could think that Scan Matching
is far more efficient than TBN since the maximum value of the ratio is around 40 m/s for
the former and around 16 m/s for the latter. But if we look to the average improvement
percentage of the navigation, TBN is more effective. Table 4.1 sums up those results.

Table 4.1 — Sum up of the differences between TBN and Scan Matching

TBN Scan Matching
Fixes Global Local
Feature requirements | Locally unique correlation
Environment Dependent | Independent
Computational time . Both O(r’)
Bign | Small n

27



Conclusion

The goal of this internship was to assess the ability of Terrain Based Navigation (TBN)
and Scan Matching to improve navigation for Mine Countermeasures (MCM) missions.
Those methods were implemented using the Speeded Up Robust Features (SURF) algo-
rithm and the kD Nearest Neighbors matching method. Having different aims, Terrain
Based Navigation (TBN) and Scan Matching can really be used as complementary meth-
ods. Whereas the former provides global fixes and is thus able to decreases uncertainty
since the beginning of the run, the latter can slow down the growth of this uncertainty.
TBN is highly dependent on the environment characteristics since it must have a good
knowledge of the feature map, the speed of sound and the tide levels. On the contrary,
Scan Matching have the advantage not to require any a priori knowledge nor any environ-
ment parameters. Based on the results presented in this report, both methods appears to
provide good improvements as long as available data are precise enough.

The trustworthiness ratio can most certainly be improved to better discriminate good
estimates from bad ones. Indeed, if this discrimination is improved both methods will be
more precise. As a result, it would be possible to decrease the uncertainty of the observa-
tions which would result in smaller standard deviation of the precision. Consequently, it
would not only improve the precision but also allow TBN methods to use more degraded
data.

Considering the TBN implementation, one idea could be to correlate the sensed data
not to the entire map but to a part of a map where the probability for the robot to be
present is highest. It would not only decrease the time of computation but also potentially
decrease the number of wrong matches.

Finally, regarding the Scan Matching, testing its viability with a forward looking sonar
would be interesting. Indeed, a forward looking sonar would provide huge overlapping
between two successive measures.

Generally speaking, an implementation on a real vehicle would be really interesting in
order to determine the real behavior of those methods. Moreover, it would also help cal-
ibrate the confidence given to each correlation. In addition, more studies in feature poor
environments would be interesting in order to see if in this type of environment methods
are useless. New methods or different feature could be used to improve navigation in
those environments.
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