On the relevance of edge-conditioned convolution for GNN-based semantic image segmentation using spatial relationships

Patty Coupeau¹ Jean-Baptiste Fasquel¹ Mickaël Dinomais^{1,2}

¹University of Angers, LARIS - Systems Engineering Research laboratory

²Department of Physical Medicine and Rehabilitation - University Hospital of Angers

Séminaire des doctorants - 12 Mai 2022

Overview of my thesis

3 Method

Experiments

Summary

Overview of my thesis

Context

3 Method

4 Experiments

5 Conclusion and perspectives

Overview of my thesis ○●○	Context	Method 00000	Experiments	Conclusion and perspectives
Medical context				

- Cerebral palsy is the leading cause of motor disability in children in France ^a
- Permanent motor disorder related to a non-progressive brain injury
- No existing treatment to "repair" the brain injury
- Pre-clinical trials using mesenchymal stem cells (MSCs)

\rightarrow Characterize the impact of early brain injury on brain development and the effects of MSCs

^ahttps://www.fondationparalysiecerebrale.org/

Overview of my thesis ○○●	Context	Method 00000	Experiments	Conclusion and perspectives
Medical context				

Pre-clinical study → animal model = piglet (similarity with the neonatal brain) Macroscopic analysis → Magnetic Resonance Imaging

How to automate the MRI analysis pipeline in piglets? At different stages? Atlas-free

Basal ganglia (thalamus, putamen, caudate, pallidum): volume, structural organisation \rightarrow place of interest in brain development \rightarrow need for accurate segmentation

1 Overview of my thesis

3 Method

4 Experiments

5 Conclusion and perspectives

Overview of my thesis	Context	Method	Experiments	Conclusion and perspectives
000	0000	00000	00000	0000
Computer vision & structural information				

- Computer vision: many situations → convolutional neural network (CNN)
- Often ignored : relationships between entities \rightarrow structural information
 - Spatial, photometric, geometric...

- O. Duchenne et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011
- J. Zhou et al., Journal of Visual Communication and Image Representation, 2015
- J.B. Fasquel et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019
- I. Bloch, Fuzzy sets for image processing and understanding, Fuzzy Sets and Systems, 2015

A. Garcia-Garcia, A survey on deep learning techniques for image and video semantic segmentation, Applied Soft Computing, 2018

 Overview of my thesis
 Context
 Method
 Experiments
 Conclusion and perspectives

 000
 0000
 00000
 00000
 00000
 0000

 Computer vision & structural information

Preliminary semantic segmentation + structural information = refined segmentation

How to exploit structural information ?

Combinatorial optimization tools (constraint satisfaction, quadratic assignment problem)

J. Chopin, J.B. Fasquel, H. Mouchere, R. Dahyot, and I. Bloch, 10th International Conference on Image Processing Theory, Tools and Applications, 2020

- J. Maciel and J.P.Costeira, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003
- M. C. Vanegas, I. Bloch and J. Inglada, Fuzzy Sets and Systems, 2016

Séminaire des doctorants - 05/2022

Overview of my thesis	Context ○○○●	Method 00000	Experiments	Conclusion and perspectives
Computer vision & structural information				

How to exploit structural information ?

• Graph neural network (GNN)

Constraints:

- Managing graphs of arbitrary size (depends on the CNN output)
- Managing both node and edge attributes

https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

M. Fey, Workshop on Geometry and Machine Learning with Applications to Biomedical Engineering - University College London, 2020

S. Ouyang et al., Remote Sensing, 2021

Q. Diao et al., Remote Sensing, 2022

Séminaire des doctorants - 05/2022

Overview of my thesis

Context

3 Method

4 Experiments

5 Conclusion and perspectives

Overview of my thesis	Context	Method ○●○○○	Experiments	Conclusion and perspectives
Overview				

Segmentation map: $S \in R^{P \times C}$ from CNN

 $S(p, c) \in [0, 1]$: probability of pixel p of belonging to class c

R: set of all resulting connected components

From *R*, construction of graph G = (V, E, X, L)

- V: set of nodes (each v ∈ V corresponds to a region R_v ∈ R)
- E: set of edges
- X : V → R^c: node attribute assignment function (average membership probability vector over the set of pixels p ∈ R_v)
- L: E → R^s: edge attribute assignment function (depends on the considered spatial relationships)

Overview of my thesis	Context	Method ○○○●○	Experiments	Conclusion and perspectives
Graph neural network				

Only 2 layers:

- convolution: aggregating neighborhood information related to each node (message passing)
- single layer perceptron (SLP): $\mathbf{R}^{d^{l+1}} \longrightarrow \mathbf{R}^{C}$, providing a class membership probability vector to each node of the graph

Overview of my thesis	Context	Method ○○○○●	Experiments	Conclusion and perspectives
Edge-conditioned convolution: ECConv				

$$X^{l+1}(i) = \frac{1}{|N(i)|} \sum_{j \in N(i)} F^{l+1}(L(j,i)) X^{l}(j) + b^{l+1}$$

= $\frac{1}{|N(i)|} \sum_{j \in N(i)} \Theta_{ji}^{l+1} X^{l}(j) + b^{l+1}$ (1)

 F^{l+1} : $\mathbf{R}^s \longrightarrow \mathbf{R}^{d^{l+1} \times d^l}$ mapping function (a multi-layer perceptron in our case) X^{l+1} is computed using the average operator (permutation invariant operator)

M. Simonovsky et al., IEEE Conference on Computer Vision and Pattern Recognition, 2017

Overview of my thesis

2 Context

3 Method

Experiments

Overview of my thesis	Context	Method 00000	Experiments	Conclusion and perspectives
Dataset - From image to graph				

FASSEG-Instances

8 classes + background - 70 human faces CNN: U-Net (splitting: 20/10/40) Influence of dataset size (100% / 75%)

- Nodes: connected components \geq 30 pixels
- Node attributes: membership probability vector of the region *R_i*

• Edge attributes: $L(i,j) = [d_{min}^{R_i,R_j}, d_{max}^{R_i,R_j}]$

https://github.com/Jeremy-Chopin/FASSEG-instances

J. Chopin et al., 10th International Conference on Image Processing Theory, Tools and Applications, 2020

O. Ronneberger et al., Medical Image Computing and Computer-Assisted Intervention, 2015

Overview of my thesis	Context	Method 00000	Experiments	Conclusion and perspectives
Coarsening				

Impact of the size of the neighborhood

Coarsened graph based on edge properties L(i, j) $G_c = (V, E_c, X, L)$, where $E_c \subseteq E$ Hyperparameter radius ρ : limit distance between regions

D. Bacciu et al., Neural Networks, 2020

Overview of my thesis	Context	Method	Experiments	Conclusion and perspectives
			00000	
Results				

Table: Graphs parameters for synthetic dataset and FASSEG. Values indicated are a mean over all images of the test dataset. Number of classes (C), of nodes (|V|) and of edges $(|E| \text{ and } |E_c|)$, where $|E_c|$ is the number of edges after coarsening

Dataset	С	<i>V</i>	<i>E</i>	$ E_c $
FASSEG 100%	9	12 (max: 26)	172 (max: 650)	33 (max: 134)
FASSEG 75%	9	17 (max: 86)	378 (max: 3867)	99 (max: 728)

Overview of my thesis	Context	Method 00000	Experiments ○○○○●	Conclusion and perspectives
Results: FASSEG				

Table: Segmentation results on FASSEG with CNN only and CNN followed by GNN (using ECConv or GCNConv). Complete graphs and coarsened ones are compared.

		75%		100%				
Method	DSC	B-DSC	HD	DSC	B-DSC	HD		
CNN	0.798	0.675	54.40	0.845	0.745	27.20		
ECConv	0.798	0.728	33.53	0.845	0.769	19.76		
ECConv (G _c)	0.804	0.731	32.00	0.845	0.759	22.80		
GCNConv* (G _c)	0.537	0.470	124.87	0.599	0.516	100.95		

*GCNConv: does not consider edge attributes

T. Kipf et al., International Conference on Learning Representations, 2017

Séminaire des doctorants - 05/2022

Overview of my thesis

2 Context

3 Method

Experiments

Conclusion and perspectives

Overview of my thesis	Context	Method 00000	Experiments	Conclusion and perspectives
Conclusion				

- Coupling structural information and GNN : improves CNN-based semantic segmentation
- Relevance of ECConv i.e. consideration of both node (CNN output) and edge (spatial relationships) attributes
- Graph coarsening : improves robustness
- Simple architecture Computation time : fast inference (≤ 5s)

Preliminary experiments to be improved (larger datasets, GNN-architecture, etc.)

Overview of my thesis	Context	Method 00000	Experiments	Conclusion and perspectives
Perspectives				

- Comparison with more recent CNN-based method: EfficientNet, CRF, U-Net Transformer
- Application to brain MRI for brain structures segmentation (3D, more complex)
- Improvement of the GNN architecture

Benefit of coarsening: multi-coarsening?

```
\rightarrow Hyperparameter \rho ?
```


A. Hatamizadeh et al., IEEE Winter Conference on Applications of Computer Vision, 2022

B. Bhakti et al., IEEE Conference on Computer Vision and Pattern Recognition, 2020

S. Wang et al., IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, 2019

Overview of my thesis	Context	Method 00000	Experiments	Conclusion and perspectives ○○○●
Acknowledgements				

Thank you for your attention

For node $i \in V$, ECConv computes a new attribute $X^{l+1}(i)$ by combining different information from layer I :

- the attributes of the set N(i) of nodes $(N(i) = \{j | (j, i) \in E\} \cup \{i\})$
- the attributes of the set of related edges $\{L(j,i)|j \in N(i)\}$

M. Simonovsky et al., IEEE Conference on Computer Vision and Pattern Recognition, 2017

$$\begin{aligned} X^{l+1}(i) &= \frac{1}{|N(i)|} \sum_{j \in N(i)} F^{l+1}(L(j,i)) X^{l}(j) + b^{l+1} \\ &= \frac{1}{|N(i)|} \sum_{j \in N(i)} \Theta_{ji}^{l+1} X^{l}(j) + b^{l+1} \end{aligned}$$
(2)

 $F^{l+1}: \mathbf{R}^s \longrightarrow \mathbf{R}^{d^{l+1} \times d^l}$ mapping function (a multi-layer perceptron in our case) X^{l+1} is computed using the average operator (permutation invariant operator) Dimensions of node attributes d^l (l > 0) are hyperparameters Several convolution layers could be cascaded (only one in this study)

Séminaire des doctorants - 05/2022

Nvidia Quadro RTX 3000 GPU - PyTorch libraries (torch_geometric.nn)

- optimizer: Adam
- loss function: negative log likelihood
- initial learning rate $lr_0 = 0.01$, reduction factor $\sigma = 5e 4$

Synthetic

- 250 epochs
- *d*1=6
- train: 70 / test: 30

FASSEG-Instances

- 600 epochs
- d1=7
- train: 30 / test: 40

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

Synthetic

4 classes + background

100 altered images

- Node attributes: membership probability vector of the region R_i
- Edge attributes: distance between barycenters of the connected regions R_i and R_j $(L(i,j) = |b_i - b_j|)$

Séminaire des doctorants - 05/2022

Table: Results of classification of synthetic data with different configurations of graphs and convolution operators.

Method	Accuracy
ECConv (G _c)	1.00
ECConv	0.98
GCNConv (G _c)	0.59
ECConv (no node attributes)	0.20

Table: Segmentation results provided by the CNN only and our proposal. Results are provided for each class (not the background): Hr (hair), Fc (face), L-br (left eyebrow), R-br (right eyebrow), L-eye (left eye), R-eye (right eye), nose and mouth.

	75%						100%					
Method	CNN			Proposal		CNN			Proposal			
Class	DSC	B-DSC	HD	DSC	B-DSC	HD	DSC	B-DSC	HD	DSC	B-DSC	HD
Hr	0.924	0.773	126.26	0.925	0.841	86.15	0.941	0.825	85.18	0.941	0.838	73.54
Fc	0.948	0.917	48.29	0.949	0.960	25.06	0.957	0.955	24.38	0.956	0.965	19.17
L-br	0.681	0.547	65.33	0.686	0.617	30.19	0.751	0.679	11.41	0.751	0.678	11.41
R-br	0.667	0.537	65.77	0.652	0.599	42.44	0.744	0.584	42.50	0.745	0.653	21.10
L-eye	0.783	0.670	36.47	0.804	0.707	23.06	0.865	0.740	19.88	0.865	0.782	10.11
R-eye	0.783	0.643	36.97	0.783	0.681	29.30	0.837	0.718	14.29	0.837	0.750	8.27
Nose	0.742	0.559	41.41	0.771	0.662	10.14	0.797	0.684	8.47	0.797	0.697	7.18
Mouth	0.859	0.752	14.69	0.858	0.779	9.42	0.867	0.770	11.46	0.867	0.791	7.31