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Abstract: The paper describes a simple time-optimal control strategy for a class of second-
order bilinear systems with nonnegative inputs. The structure of the model is motivated by
the task of noncontact manipulation of an object in a planar force field generated by a single
source; such setup constitutes a basic building block for a planar manipulation by an array of
force field sources. The nonnegative-in-control property means that an object (particle) placed
freely in the field can only feel an attractive force towards the source. In this paper we further
restrict the control inputs to a binary signal—the field can be switched on and off. The control
objective is to bring the object to the origin (where the source of the force field is located)
as fast as possible. The optimal switching strategy is proposed using geometric arguments and
verified using numerical simulations and experiments with a laboratory platform for noncontact
magnetic manipulation.

Keywords: Bang-bang control, Bilinear systems, Mechatronic systems, Minimum-time control,
Optimal control.

1. INTRODUCTION

1.1 Motivation—distributed planar manipulation of an
iron ball through an array of coils

Before defining and solving an abstract control-theoretic
problem, the ultimate engineering motivation is explained.
As an alternative way of high-precision manipulation of
objects in the plane, the concept of an actuator array has
been introduced in the early 1990s by Böhringer et al.
(1994). His further elaborations and contributions by his
colleagues and followers were surveyed in Böhringer et al.
(2000). The majority of that work was centered around
open-loop control, intentionally avoiding sensors. Some
later papers such as Luntz et al. (2001) and Murphey
and Burdick (2004) suggested that a combination with
feedback control may be needed in some situations, in
particular when the actuator array is not dense enough.
The authors of the current paper provided a survey in
their paper Hurak and Zemanek (2012).

Unlike most of the above-referenced papers, the setting
here is that although the set of actuators is discrete
(forming a regular array), the resulting force field is
(spatially) continuous. Notable practical instances of such
force fields are electric and magnetic fields. These are often
utilized for manipulation at micro- and nano-scales.
? This research was funded by the Czech Science Foundation within
the project P206/12/G014 (Centre for advanced bioanalytical tech-
nology, www.biocentex.cz) and the research grant No. 17-04682S.

In order to validate the theoretical findings of this paper,
a laboratory experimental platform consisting of an array
of coils was used. Although the platform is capable of
continuous modulation of the currents through the coils,
in the present paper a restriction is made on switching
control—the current is either flowing or not. This is to
investigate one practically important scenario—absence of
electric current controllers would make similar platforms
simpler. The experimental platform is shown in Fig. 1.

Fig. 1. The experimental platform consisting of a 4 ×
4 array of coils with an iron core. A steel ball is
placed on a resistive touch foil for real-time position
measurement.



1.2 One-dimensional nonlinear model

A one-dimensional abstract scenario for the problem stud-
ied in this paper is in Fig.2.
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Fig. 2. One-dimensional restriction of the problem of
manipulation by shaping a potential field through a
single actuator.

Bell shape potential and the derived force field Force
acting on the object is considered to be derived from the
scalar potential that has an inverse bell shape. This is
a practically reasonable assumption for actuators having
spatially localized influence (e.g. electrodes, coils, etc.) As
a simple example, we can consider a potential (magnetic
pressure) of a magnetic monopole

φ(x) =
c

2(x2 + h2)2
, (1)

where c comprises several physical parameters including
the strength of the magnetic monopole and h is the vertical
distance of the monopole from the horizontal plane of
manipulation. The exerted force is then

Fφ(x) = −∂φ(x)

∂x
=

cx

(x2 + h2)3
. (2)

Both the potential and the derived force (field) are shown
in Fig.3 and they serve as a reasonable approximation
for the application setup mentioned above, as we will
demonstrate later in the paper. Besides, the inverse bell
shape potential (namely Gaussian function) can be used to
model a lateral force induced on a microparticle in a laser
beam; a phenomenon exploited to create optical tweezers
Gorman and Shapiro (2012). In fact, an extension of the
proposed analysis into a plane, which would cover the
domain of distributed planar manipulation, is the ultimate
motivation for the research described in this paper.
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Fig. 3. The potential (magnetic pressure) and the force
derived from it for a (virtual) magnetic monopole.

Equation of motion The equation of motion of a single
object of mass m in the force field is

mẍ(t) = Fφ(x, t)− Ffriction(ẋ). (3)

Apparently, an object initially located out of the origin
will finally settle at the origin, but this settling process can
be rather long and oscillatory if the friction is weak. This
gives an incentive for finding a control scheme which steers
the object to the origin faster. In the considered setup the
friction is very small and ultimately will be neglected.

1.3 Bilinear model

Although the complete solution to the control problem
must consider the full nonlinear model, the presented
profile for the potential and force suggest that linear
approximation is feasible in vicinity of the origin

mẍ(t) = −kx(t)u(t)− bẋ(t), u(t) ∈ {0, 1}, (4)

where k represents a stiffness coefficient and b param-
eterizes the linear model of friction. The corresponding
linear(ized) state-space model is

[
ẋ(t)
v̇(t)

]
=

[
0 1
0 −b/m

] [
x(t)
v(t)

]
+

[
0 0

−k/m 0

] [
x(t)
v(t)

]
u(t),

u(t) ∈ {0, 1}.
(5)

This is an instance of a bilinear second-order model

ẋ(t) = Ax(t) + Bx(t)u(t), u(t) ∈ {0, 1}. (6)

To make the structure of the model as transparent as
possible, we introduce new real constants χ, ψ > 0 and
rewrite the state space model as

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −χ

] [
x1(t)
x2(t)

]
+

[
0 0
−ψ 0

] [
x1(t)
x2(t)

]
u(t),

u(t) ∈ {0, 1}.
(7)

For this model, a (switching) control will be designed.
Finally, it is always possible to transform the system with
ψ 6= 1 into a new one with ψ = 1 by introducing a new
state and a time variable

x̃1(t̃) = x1(t), x̃2(t̃) =
x2(t)√
ψ
, t̃ = t

√
ψ. (8)

2. CONTROL STRATEGY

Our aim is to bring the object to the position x1(t) = 0
with the velocity x2(t) = 0 in the shortest time.

2.1 Indirect approach to optimal control

It is well known that the time-optimal control for con-
strained linear systems enforces the bang-bang control
strategy, that is, the control signal is switched between
two extreme values. Perhaps something similar can be



expected here and in our first attempt to solve the problem
we ignore the discrete-valued (in fact, binary) character of
the control signal and pretend that it can assume any real
value within some bounds.

First, we consider the task of designing a control u(t) that
regulates the second-order nonlinear system. Hence the
assignment is: bring the system described by

ẋ(t) = Ax(t) + F(x)u(t), u(t) ∈ [0, 1] (9)

from any initial state to the state (x1(T ), x2(T )) = (0, 0)
as fast as possible, that is, minimizing T .

The Hamiltonian (using the control-theoretic convention)
for the minimum-time problem is

H(x, u, λ) = 1 + λT(t) [Ax(t) + F(x)u(t)] . (10)

Realizing that matrix F(x) is zero at the origin because
there is no force exerted on the object there, that is,

F(0) = 0, (11)

we observe that one of the necessary conditions of the
minimum-time optimality, namely

H(T ) = 0 (12)

(see, for instance, Lewis and Syrmos (1995)) is impossible
to satisfy because

H(T ) = 1 + λT(T )F(0)u(T )︸ ︷︷ ︸
=0

= 1 6= 0. (13)

Obviously, the problem here is that the system is not
controllable in the origin.

What to do then? We could possibly relax the requirement
that x(T ) = 0 and penalize the deviation of the state x
from 0 by including the ϕ(x(T )) term penalizing the final
state in the cost function. A common choice is ϕ(x) =
sx2(T ). The boundary condition (12) will be replaced by
the general condition

(∇xϕ− λ)
T
∣∣∣
T

dx(T ) + H|T dT = 0. (14)

Now what? The final state x(T ) and the final time T (and
hence their differentials) are independent anyway in this
particular situation and therefore we can easily consider
two independent conditions and we are back in the same
troubles as before.

Note that approximating the nonlinear term F(x) in the
vicinity of x = 0 by a linear term Bx does not make
the problem better approachable. Even here, pursuing the
indirect approach apparently calls for some more advanced
concepts from the domain of bilinear systems. These have
been investigated, see Elliott (2009), for example. But the
results are far from trivial. We have not pursued it any
further in this work.

2.2 Direct approach—numerical optimal control

Rather than handling the boundary value problem gen-
erated by the first-order conditions of optimality as de-
scribed in the previous section, the direct approaches are
based on discretizing the time axis and reformulating
the optimal control problem as an instance of nonlinear
programming. Among the popular references are Betts

(2009), Diehl (2011) and Hargraves and Paris (1987).
These numerical approaches provide an optimal trajectory
as their outcome. It is then necessary to design a feedback
controller that will steer the system along the trajectory.
We have not pursued the approach here.

2.3 Geometric approach—Two switching lines, one aligned
with the vertical axis

Since the control signal is constrained to assume one of
two values (switched on and switched off), the techniques
from the discipline of switching control might be invoked.
Although there is a formal and rigorous framework for
control of switched systems Liberzon (2003), Sun (2005),
in this paper, we resort to simple and intuitive geometric
arguments to arrive at a time-optimal solution.

There are two assumptions for the following development,
though. We assume that the friction is negligible. With
a steel ball rolling on a hard surface this seems to be
a fair assumption as the damping is almost unnoticeable
(frankly speaking, one does observe some damping during
an operation, but it is of electromagnetic origin—eddy
currents in the steel ball as it moves through the magnetic
field). The second assumption or restriction is that we only
consider regulation in the vicinity of the origin, where a
bilinear model of the system applies. Making the controller
work for a wider range, it seems inevitable to resort to
some numerical optimal control methods.

The two state portraits for the switched-on and switched-
off are shown in Fig.4; both portraits were generated for
χ = 0 and ψ = 1. The state portrait in Fig. 4(a) confirms

a single invariant direction (eigenvector of

[
0 1
0 0

]
), namely

v = [1 0]
T

corresponding to λ = 0. The state portrait
in Fig. 4(b) confirms that there is no invariant direction

for the state matrix

[
0 1
−1 0

]
(no real eigenvector) and

the state trajectory for the force field switched on keeps
orbiting around the origin; obviously, without any control
the force field will never steer the system asymptotically
to the origin. The following control strategy is proposed.
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Fig. 4. State portraits for the field switched on and off. (a)
State portrait for u(t) = 0. Single real eigenvector
(corresponding to the zero eigenvalue) showed. (b)
State portrait for u(t) = 1. No real eigenvector.

Two switching curves are used: a line with a (descending)
slope given by a constant parameter γ > 0, that is



x2 = −γx1, and the vertical axis, that is x1 = 0. The
justification for fixing the latter to the vertical axis will
be given later. These two lines split the plane into four
segments. The proposed controller switches the force field
off and on when the state vector is in the upper right and
lower left segment, since this is the only opportunity to
bring the system closer to the origin. Invoking the concept
of a switching function, the control is given analytically as

u(t) =


1 if γx2

1(t) + x1(t)x2(t)︸ ︷︷ ︸
s(t)

> 0,

0 else,

(15)

where the switching function s(t) is indicated. The inequal-
ity s(t) > 0 is just a compact expression for

x2(t) > −γx1(t) if x1(t) > 0 or

x2(t) < −γx1(t) if x1(t) < 0.
(16)

To get some initial insight, we will arbitrarily choose
γ = tan(π/6) ≈ 0.5774, that is, the switching line is
at the angle of π/6 with the horizontal axis. For this
particular value sin(π/6) = 1/2, the norm ‖x‖2 of the
error is halved at every switching cycle, which makes
the convergence analysis convenient. The analysis will be
even more convenient while looking at the state portrait
with the switching control in Fig. 5. Apparently, the
state trajectory consists of a sequence of circular arcs and
horizontal linear segments. It is possible to find an upper
bound on the time needed to halve the initial velocity.
Such time interval is given by three components

τ1/2 =
π

2
+ π/6 +

√
3, (17)

where the first component is the time needed to travel
through the upper right quadrant with the force field
switched on; hence it constitutes an upper bound on the
time needed to get from an initial state somewhere in the
upper right quadrant to reach the horizontal axis. The
second component is exactly the time required to travel
along the circular arc of π/6 from the horizontal axis to
the switching line. The last component is the time needed
to travel along the horizontal line in the absence of force
field. It comes from the observation that the length of the
segment is d cos(π/6) and the constant velocity is d/2. It
can also be written as cot(π/6).

For an arbitrary switching angle α (to which the controller
parameter γ corresponds), an estimate of the upper bound
of the time needed to reduce the norm of the regulation
error to a given amount, say, to one half, possibly by taking
multiple rounds (oscillation periods), is

τ1/2 =

(
π
2 + α+ cot(α)

)
log1/2(sin(α))

= ln(1/2)

(
π
2 + α+ cot(α)

)
ln(sin(α))

.

(18)

The dependence of the time needed to halve the regulation
error on the switching angle is in Fig. 6, including the
optimal angle of 0.2433.
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Fig. 5. x1(t) versus x2(t) in response to x1(0) = 1/4
and x2(0) = 1/2 for γ = tan(π/6) ≈ 0.5774 and
no friction. The red segments of the state trajectory
correspond to the field switched off. The two green
lines are the switching curves.
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Fig. 6. Time to halve the initial norm of the error as a
function of the switching angle α.

It is worth emphasizing that the above-given estimate is
only approximate because the reduction of the error is only
achieved during a portion of each cycle. This may be more
pronounced if the needed number of cycles is small, which
is actually the case in our application. This constitutes a
challenge to be addressed in future.

A response of the system with an optimal controller to
some nonzero initial conditions is in Fig. 7. The threshold
δ mentioned in the figure will be addressed below.

2.4 Steady-state error analysis

Observe in Fig. 7 that u(t) stops assuming the value 0 after
some time, the field remains switched on. This is purely
determined by the threshold parameter −δ substituted for
zero on the right-hand side of the inequality in (15). The
particular setting in Fig. 7 was δ = 10−6.

To get some insight into the constraint

γx2
1(t) + x1(t)x2(t) > −δ, (19)

consider δ = 10−1 and plot the approximate switching
curve in Fig. 8. It is given by
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1/4 and x2(0) = 1/2 for the optimal controller
parameter γ ≈ 0.2493 and the threshold δ = 10−6.

x2(t) =
−δ
x1(t)

− γx1(t). (20)

The curve is denoted approximate because the switching
angles are not constant; the closer the system is to the
origin, the more they move away from the optimal values.
Finding the point on the curve closest to the origin we get
the bound on the norm of the error

‖x‖2 <
√√√√ 2 δ2√

δ2

γ2+1

− 2 δ γ. (21)

With δ = 10−1 and γ = 1/2, the bound on the steady
state error is 0.18, as evidenced in Fig. 8.
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Fig. 8. Approximations (blue) of the switching curves
(green) for the threshold δ = 10−1.

2.5 Can we improve on the regulation time by changing
the switching angles from cycle to cycle?

The times needed for traveling along the arcs are indepen-
dent of the radius, they only depend on the angle—Both
the traveled distance and the velocity are proportional to
the radius. The same holds for the horizontal paths. Hence,

the above computed optimal angle indeed guarantees op-
timality for the proposed switching scheme.

2.6 Can relaxing the condition on alignment of one of
the switching lines with the vertical axis help improve the
regulation time?

The control strategy introduced in the previous section
was derived by fixing the controller structure (the number
of switching curves set to two, one of them aligned to
the vertical axis) first and then by optimizing over the
single switching angle γ. It is not obvious, however, if
by restricting to this particular controller structure, the
optimal control strategy (among all possible switching
control strategies) has been found. This section and the
next gives an analysis. We address the question of relaxing
the alignment of one of the two switching lines to the
vertical axis first. Apparently, it only makes sense to switch
the force field on and off in the upper left and bottom right
quadrants in order to achieve a reduction in the regulation
error. Due to symmetry, we will only conduct the analysis
for the bottom right quadrant.

Consider an elementary reduction step as in Fig. 9. It is
parameterized by the start angle α, which determines the
instance the field is switched off, and the final angle β,
which determines when the field is switched on again.

x1

x2

α

β

rα
rβ

dαβ

Fig. 9. Geometry of the elementary step towards reduction
of the norm of the regulation error (distance from the
origin, radius).

Following the style of analysis in the fixed β = π
2 case, the

relative reduction of the radius (error) rαβ during one step
(cycle) of reduction can be obtained as

rαβ :=
rβ
rα

=
sin(α)

sin(β)
. (22)

The constant-velocity part dαβ of the trajectory traveled
by the object is

dαβ = rα cos(α)− rβ cos(β). (23)

Thus the time tαβ needed for traveling along this constant-
velocity segment is

tαβ =
dαβ

rα sin(α)
= cot(α)− cot(β). (24)

The total time needed to reduce the regulation error to
1/2 of the original value is given by



τ1/2 =
π
2 + α+ cot(α)− cot(β) + (π2 − β)

log1/2

(
sin
(
α
β

))
= ln(1/2)

π + α+ cot(α)− cot(β)− β

ln
(

sin
(
α
β

)) .

(25)

The above is a nonlinear function of two variables α and
β, which are constrained as 0 ≤ α ≤ β ≤ π

2 . Graph of the
function for a subset of the domain is in Fig. 10.

Fig. 10. Time to halve the regulation error as a function
of the switching angles α and β.

By inspecting the graph, it can be seen that for a given α,
the optimal β is on the boundary, that is, βoptimal = π

2 .

2.7 Can multiple switching within one cycle improve the
performance?

An analysis can go on to check if by allowing for switching
on and off multiple times leads towards further reduction
of the regulation time. Here we conjecture that the optimal
strategy requires switching on and off exactly once in each
cycle but a full proof will only be included in the extended
version of the paper.

3. EXPERIMENTS

3.1 Platform

Experimental investigation of the performance of the pre-
sented control scheme was done using our custom-made
laboratory apparatus for magnetic manipulation (Mag-
Man). This magnetic platform consists of an array of 4×4
coils (grid 25 mm). Each coil is individually controlled—
both the polarity and the amplitude of the current can be
controlled. Therefore, it is possible to shape the magnetic
field above the coils and use it for controlled manipulation
with a magnetic object. In this case, a steel ball (radius
15 mm) for ball bearings serves as an object for manipu-
lation. Although this platform allows proportional control
of all coils, in the experiments conducted to support the
theoretical findings of this paper, only on-off control of a
single coil is used.

Commands are sent from the computer to the platform
and the position of the ball is measured using a resistive
touch foil (used typically for handheld devices with touch
screens). The foil consists of two separated resistive flexible
films which can be locally short-circuited at the point of

touch. This allows for measurement of voltage drop along
the x and y directions. This, in turn, allows for calculation
of the position of the ball. The foil is connected to the
computer using a standard data-acquisition card. The
computational power needed to estimate the position is
negligible compared to the more popular computer vision
based solution. Therefore, a high sampling rate can be
easily achieved—in our case the controller runs at 1 kHz.

The platform was presented and awarded the first place
in 2013 Matlab and Simulink design challenge http://
youtu.be/AhS_2gU1qW0.

3.2 Mathematical model

The magnetic field created by the single coil in the hor-
izontal plane above the coils can be in our case approxi-
mated by the magnetic field created by a simple magnetic
monopole. Then the magnetophoretic force exerted on the
ball can be expressed as

F (x) =
cx

(x2 + h2)3
, (26)

where c and h are parameters of the platform. c comprises
several physical parameters and h is the vertical distance
between the virtual monopole and the horizontal plane of
manipulation. These parameters were obtained by experi-
mental identification when the force and the position were
measured at the same time (to measure the force, a digital
force gauge was used). The measured dataset was used
afterwards to find the least square fit to the function (26)
and the final prescription is

F (x) =
−1.823x

(x2 + 14.372)3
106, (27)

where x is measured in millimeters and value of F (x) is in
newtons. You may notice that the value of b is close to the
radius of the ball.
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Fig. 11. Evolution of the magnetic force along the x-axis
exerted on the 30 mm steel ball.

The force profile is depicted in Fig. 11. Besides this
nonlinear model, the original measured data and the
linearization of the force in the vicinity of the origin
(F (x) = −kx, k = 0.270) are plotted here. It appears
that the linearization approximates the force enough to
distance around 5 mm from the center of the coil.



The dynamics of the ball is modelled using second New-
ton’s law

ẍ =
F (x)

meff
103, meff =

7

5
m, (28)

where meff is the effective mass which also includes influ-
ence of moment of inertia of the ball. The mass of the ball
m is 110 g and x is in millimeters. Therefore, if the coil is
turned on, the linearized system is described as a bilinear
system

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0 0
−ψ 0

] [
x1(t)
x2(t)

]
u(t),

u(t) ∈ {0, 1},

ψ =
k

meff
103 = 1.344 · 103.

(29)

3.3 Controller implementation

A few implementation issues will be discussed here. Al-
though these are not central to the key control design idea
presented in the paper, they were important for a success
of the experiments. First, a velocity observer needed to be
designed since the direct measurement of velocity is not
available and the measurement of position is rather noisy
(standard deviation of 0.7 mm). Standard Kalman filter
was used to accomplish this task. We incorporated the
knowledge of the dependence of force on the position as a
nonlinearity at the input of the filter. Needless to empha-
size here that the filter is crucial for the good performance
of the controller because the control law relies on the ratio
between the velocity and the position; if one of them is
not estimated accurately enough, the controller will not
operate correctly.

The second implementation issue is that the theoretical
results derived in this paper hold for the normalized model
(ψ = 1). Therefore unscaling needs to be done by dividing
the velocity by

√
ψ = 36.7.

The controller was implemented in Matlab/Simulink and
run in External Mode utilizing Real-Time Windows Tar-
get. The sampling rate was set to 1 kHz.

3.4 Results and discussion

The experimental scenario was such that the ball was
at the beginning accelerated to some reference velocity
(specifically, 150 mm/s) by another controller (designed
ad hoc) and when it reached the origin (x = 0 mm), the
switching controller proposed in this paper was activated.
It means that the initial condition for the experiments
was zero position and some non-zero velocity. Examples of
recorded variables (namely measured position, estimated
position, estimated velocity, and control signal) are in Fig.
12.

You can compare the variables measured on the platform
with the variables obtained by the simulation on the linear
model. These values, which have been already presented,
were transformed to match the not-normalized system. It
means simulated velocity had to be multiplied by

√
ψ =

36.7 and the simulation time was divided by this factor.
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Fig. 12. Comparison of the measured values obtained with
the platform and simulated with the linear model.

It is noticeable that the simulated and the measured
control signal are quite similar at the beginning, but later
they diverge. This difference can be partially caused by
the fact that the linearized model does not match the
real system with increasing distance of the ball from the
coil. Namely braking at the beginning is less intensive
than it is supposed to be and that is why the real system
reaches further position. Nevertheless, first three pulses of
the measured and the modelled control signal are quite
similar. Other pulses of the control signal during the
experiment are not relevant because fluctuation of the
estimated position is too high to get the ball to absolute
rest.

Fig. 13 provides a comparison of evolutions of the ball po-
sitions during several experiments (Video from the experi-
ment is available at http://youtu.be/5r4IdUrz6Sg. It is
possible to see that at the beginning they are very similar
whereas later they start differing. Also clearly visible is the
(natural) fact that the response of the uncontrolled system
has much longer settling time. The mathematical model
considered in the paper contains no damping (friction), but
in reality there is one—eddy currents (Foucault currents)
in the ball; the rolling friction is negligible.
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Fig. 13. Comparison of evolutions of estimated position
(for several runs, just in order to assess the repeata-
bility).

.



4. CONCLUSIONS

An extension of the proposed control strategy into a 2D
spatial domain (plane) is straightforward. Another exten-
sion that is planned for this work is to include another
source(s) of force, which can be easily realized by adding
another coil(s) in the experimental magnetic setup. The
resulting force field will be then composed of two or more
local contributions since the zones of influence of the
sources (coils) are overlapping. Laboratory experiments
with a magnetic manipulation platform based on a planar
rectangular array of coils and an iron ball rolling on top
of them will be conducted, see more on Distributed ma-
nipulation by shaping magnetic field (MagMan platform)
at http://aa4cc.dce.fel.cvut.cz in the corresponding
section.
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Böhringer, K.F., Donald, B., Mihailovich, R., and Mac-
Donald, N. (1994). A theory of manipulation and control
for microfabricated actuator arrays. In Micro Elec-
tro Mechanical Systems, 1994, MEMS ’94, Proceedings,
IEEE Workshop on, 102–107. doi:10.1109/MEMSYS.
1994.555606.
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