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IЈЎЌЉϾЏϽЎЃЉЈ

Introduction and problem addressed

We always attribute happiness and wealth to health care as Mahatma Gandhi once said: “It

is health that is real wealth and not pieces of gold and silver”. But we tend to forget that a

good health care system comes with a big price tag. This can be seen clearly in the recent

study of the Direction of research, study, and evaluation of statistics in France (DREES 2016)

which states that the expenses in the French health care system are evaluated to be equal to

194.6 billion euros, which is equal to 8.9% of the national Gross Domestic Product (GDP). In

addition, these costs are expected to increase in the future due to the population ageing and

population explosion, the scarcity of resources and the increasing demand for a better health

care. Therefore, hospitals are rapidly paying more and more attention to the importance of

costs saving methods.

One of the most expensive and complex functional units within the hospital is the op-

erating theatre [Denton et al., 2007, Association et al., 2003]. It has been recognized as a

main source of income as it generates around two thirds of hospital revenues [Jackson, 2002],

while also counting for around 40% of hospital costs [Macario et al., 1995] throughout the use

of facilities (operating rooms, intensive care beds, etc.) and the personnel costs (surgeons,

nurses, anaesthetists, etc.). In addition, the operating theatre provides services for many spe-

cialities which makes it a possible bottleneck. Thus, it introduces a need for careful resource

planning. In this context, hospitals face an increasing pressure for high quality care and cost

effectiveness.

Recent studies have shown that most of the costs of surgical procedures consist of per-

sonnel, infrastructure, equipment, logistics and administrative support expenses [Roland et al.,

2006] which have driven the need for efficient resource usage. At the same time, Operating

Room (OR) planning and scheduling is challenging. Firstly, multiple stakeholders with conflict-

ing interests are involved [Glouberman and Mintzberg, 2001] such as hospital managers, OR

personnel, surgeons of various specialities, and patients. Secondly, OR surgical scheduling is

complicated due to the big uncertainty regarding the occurrence and duration of surgeries. For

example, the arrival of semi-elective patients may disrupt the planned scheduling throughout

the day. In addition, the complications that can happen in surgeries because of their unpre-

dicted nature also cause modifications to fixed schedules. Lastly, the OR departments are

facing conflicting performance criteria: allocating less time for surgeries to evade the staff

overtime may lead to excessive patient waiting, while allocating more time for surgeries to

decrease the patients waiting could give rise to staff overtime. This problem has thus attracted

the attention of many researchers (e.g. [Cardoen et al., 2010, Guerriero and Guido, 2011]).

Another big factor in OR planning is the limited nature of the resources that are shared

among the specialities. These resources include the ORs and the medical instruments. The

fact that these limited numbers of medical instruments must be sterilized after each surgery in

order to be ready for the next usage, creates a possible bottleneck. In addition, the sterilizing
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unit is often a shared unit in hospitals among all the units, thus a good resource management

system is highly needed as poor implementation in one unit can lead to high utilization of the

sterilizing unit which affects the performance of the whole hospital.

In this thesis, we will be working with the Centre Hospitalier Universitaire d’Angers (CHU)

of Angers in France. We focus on the surgery scheduling problem at the orthopaedic surgery

unit, a problem formally called: Surgical Case Scheduling (SCS). In our problem, we will

consider the activities of the sterilizing unit with the objectives of minimizing the operating

costs and maximize the resource utilization while keeping a good level of service quality.

Research questions

The SCS problem proved to be a challenging one with a big interest to the hospital management.

The main research question of this thesis is:

How can we use operations research techniques to improve the resources utilizations and

minimize the costs at the surgery unit of the CHU?

In order to tackle this problem, we chose to break it down to sub-problems where we

address a new aspect of the problem in each question:

RQ1: How can we use computer-based modelling techniques to fully represent and understand

the problem?

RQ2: Can we achieve better results by minimizing the operational costs and improving the

resources utilization when applying the operations research techniques in comparison to the

real results achieved at the CHU, when only considering the simple (static) version of the

surgical case scheduling problem?

RQ3: Can we improve our results by generating more robust solutions that are less distorted

by the disturbances and the uncertainties in the data?

RQ4: Can we implement our model and method in a real-life work flow?

Organization of the dissertation

This thesis is focused on the surgical case scheduling problem in order to support the decision

makers at the CHU. It is organized as follows:

The first part is devoted to the presentation of the SCS problem of the CHU and its

methodological details.

In Chapter 1, we describe the concerned elements and work process at the CHU. We

explain the day to day operations at the two involved units namely the orthopaedic surgery

unit and the sterilisation unit. Later, we describe the test data that were given to us by the

CHU and analyse it in depth.

10



In Chapter 2, we review what other researchers have already done and give an intensive

literature review for the operating room management and scheduling problem.

The second part of this thesis is devoted to solving the deterministic version of the SCS

problem, where we disregard the uncertainties presented in surgeries durations.

In Chapter 3, we tackle the deterministic static version of the SCS, where we consider

that the duration of the surgeries are known in advance. First, we prove that the problem is

NP-hard. Next, we propose a Mixed Integer Linear Programming (MILP). Experimental results

are shown next and evaluated using the operational costs metric. Finally, we provide a detailed

comparison of our results with the results of the CHU.

In Chapter 4, we consider the deterministic dynamic version of the problem. We start by

presenting a technical background for deterministic dynamic scheduling problems. Next, we

adapt the MILP presented in Chapter 3 to solve the dynamic (online) version of the problem,

where day to day consulted surgeries are considered. In addition, we consider the patients

delay factor to evaluate our method in addition to the cost factors. We then implement a rolling

horizon method to solve the problem. Finally, experimental results are shown and compared

to the ones of the CHU to evaluate our approach.

In Chapter 5, we discuss the uncertainties found in surgeries durations and show their

effect on our results from Chapters 3 and 4. We evaluate the degradation in our results in both

chapters and compare it to the ones of the CHU.

The third part of this thesis is devoted to solving the non-deterministic version of the sur-

gical case scheduling problem, where we consider the stochastic nature of surgeries durations.

In Chapter 6, we tackle the static non-deterministic SCS problem. We start by providing

a technical background for the two common approaches to deal with uncertainties namely

stochastic programming and robust optimization. Next, we present two robust formulation for

the non-deterministic static SCS problem. Finally, we present our experimental results and

compare it to the ones of the CHU and compare the degradation in solution qualities found in

the obtained results with the ones from the deterministic version and the ones of the CHU.

In Chapter 7, we consider the dynamic non-deterministic version of the problem. We

start by adapting the rolling horizon method presented in Chapter 4 to the robust formulations

presented in Chapter 6. Next, we present our experimental results for both models and com-

pare it to the ones of the CHU. Finally, we analyse the degradation in solution qualities found

in the obtained results and compare it with the ones from the deterministic version and the

ones of the CHU.

Finally, we conclude and provide various perspectives.
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CЂϻЊЎϿЌ 1

TЂϿ ЍЏЌЁЃϽϻІ ϽϻЍϿ ЍϽЂϿϾЏІЃЈЁ

ЊЌЉϼІϿЇ ЉЀ ЎЂϿ CHU ЉЀ AЈЁϿЌЍ

1.1 Introduction

The Centre Hospitalier Universitaire d’Angers (CHU) is a French university hospital centre em-

ploying approximately 6300 hospital staff including 1133 medical and pharmaceutical staff.

Each year, the CHU receives around 90,000 emergency room visits, 430,000 outpatient con-

sultations and 100,000 hospitalizations.

The CHU consists of several surgery units and a sterilizing unit. Following the require-

ments of the CHU, we will focus in this thesis on the Orthopaedic Surgery Unit (OSU) and the

Sterilization Unit (SU). In this chapter, we will start by describing the problem components and

the work process at the OSU and SU. Since the SU is providing its services for all the other

departments including the OSU, we will focus only on the important aspects that are linked

directly to our problem. Next, we will show the problems faced by the CHU with their current

work flow. Finally, we will describe and analyse the real data that we received from the CHU

and conclude with this analysis.
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1.2 The orthopaedic surgery unit

Surgical practices can be categorized in two main categories, namely elective and non-elective

surgeries. Elective surgeries group urgent surgeries that cannot be scheduled in advance,

while non-elective surgeries group surgeries that can be scheduled in advance. The OSU deals

exclusively with non-elective surgeries. They perform 211 types of surgeries with a total of

approximately 2500 surgeries a year.

Two major patient classes are considered at the OSU, namely outpatient and inpatient

(see Figure 1.1). The first class groups patients who are hospitalized for less than 24 hours

with no overnight stay (ambulatory care), whereas the second class represents the patients

that receive longer care. All outpatient surgeries must finish before 15:00 as outpatients need

to spend at least 2 hours in the recovery room after the surgery before being discharged and

the recovery room closes at 17:00. Contrarily, inpatient surgeries can finish up to when the

operating room closes because inpatients are transferred to the Intensive Care Unit (ICU) after

the surgery and the ICU is open 24 hours a day.

surgery

recovery room

ICU

outpatients discharge

inpatients inpatient care

Figure 1.1: The 2 patient classes

There are 3 operating rooms and 15 surgeons at the OSU. Each surgeon is assigned to a

room for a full day where he can arrange his surgical cases. This assignment is indicated in the

Work Shift Schedule (WSS) which is generated 6 months in advance. The WSS schedule also

indicates the ambulatory shifts which are reserved for the outpatients only and any surgeon

can operate in these shifts as long as the case is outpatient. When the WSS is approved by

the surgeons, it can only be changed under certain circumstances such as the absence of a

surgeon or when a surgeon quits the job. The reservation time is a full working day which

means that the surgeon has a room just for his/her operations for the full working hours of

that room. The working hours of the 3 operating rooms are given in Table 1.1. Note that some

rooms can be closed on some days for technical maintenance reasons

Operating room Days per week Opening time Surgeries starting time Closing time

1 & 2 M, T, W, Th, F 8:00 8:15 17:00

3 M, T, W, F 8:00 8:15 14:30

Table 1.1: Operating rooms working hours

The difference in working hours and days between the first two rooms and the third

one is due to the shortage of staff (for any operation, they require 3 general nurses and 1

anaesthetist). Generally, there are a total number of 14 available room day (shift) each week,

where 12 of these shifts are distributed between the surgeons and 2 are marked as ambulatory
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shifts. The ambulatory shifts can be used by any surgeon and are always reserved at room

3 since the closing hour of this room matches the condition of the outpatient surgeries (they

have to finish before 15:00). Due to the large number of surgeries to perform, an operating

room may stay open exceptionally after closing hours for up to 3 hours. In addition, the CHU

imposes an average occupancy rate of the operating rooms of 80% to each of its surgery units

because of the substantial fixed costs induced by opening an OR.

1.3 The surgical kits

The instruments, medical devices and tools that are used for surgeries are organized and

packed in small boxes that are called kits (see Figure 1.2). Each kit contains tools that are

used usually together for specific types of operations. A surgery can use more than one kit,

and each kit can be used for more than one type of operation. When a kit is not being used,

it’s stored in the store room where it can stay up to 6 months (after 6 months, it must be

re-sterilized before being used again).

Figure 1.2: Surgical kit example. Downloaded from http://jkinstrumente.com in June 2018

There are 212 different types of kits at the OSU that are available in limited quantities

(between 1 and 15 kits for each kit type, with a total of 482 available kits at the OSU). In

addition to these available kits, there are some kits that are too expensive and rarely used at

the OSU, which does not justify the investment in buying and stocking them. These expensive

kits are used around once every 6 months and the OSU outsources these kits from other

pharmacies. This procedure can cause a big problem if the date of the surgery is changed after

the outsource request was made.

Two additional types of tools and instruments are available in the OSU:

• The backup tools, which are used when an instrument from a kit breaks down or falls on

the ground (they use one of these instead of opening one full kit just for one instrument).

• The unique use tools (e.g. implanted medical devices).

17



1.4 The sterilizing unit

The Sterilization Unit (SU) opens from Monday to Friday at 07:00 and closes at 20:30. It

centralizes the sterilizing process and provides its services to all the units at the CHU.

The staff at the SU processes the received kits from the different units in a First In First

Out (FIFO) order. They start by opening the kits and preparing the instruments (e.g. they

open the scissors to be washed sufficiently) and they place the instruments back in the kit and

deposit the kits on a metal holder that can take around 20 kits. Finally, they place the holder

on the automatic feed conveyor belt for the washing machine with the minimum load. This

stage takes around 15 minutes.

All the instruments can be washed in the washing machines safely except the electrical

devices (e.g. motors) which must be washed by hand. The SU has 2 types of washing machines

(2 machines of each type):

• The first type is a machine that is divided into 3 stages as shown in the next figure:

stage 1 stage 2 stage 3
auto. feed

≈ 0h30 ≈ 0h30 ≈ 0h30

Figure 1.3: Washing machine type 1.

The total process time for the 3 stages in these machines is around 1 hour and half. When

the machine finishes processing the first stage on a holder, it moves the holder to stage

2 and takes a new holder at stage 1. This makes the waiting time for a holder to around

30 minutes.

• The second type has only 1 stage as shown in the next figure:

stage 1
auto. feed

≈ 1h30

Figure 1.4: Washing machine type 2.

In these machines, once a holder enters, the next one should wait around 1 hour and half

to start its turn.

After the holder leaves the washing machines, the repacking stage starts. The staff

checks if the kits in the holder are washed properly (if not, they send them back to the washing

stage). Then, a nurse from each block gets the kits for her block. The nurse then prepares the

instruments (e.g. close back the scissors) and then packs the instruments into their kits and

put them on a conveyor belt. It is hard to determine the exact time needed for this stage since

it depends on many factors like the availability of the nurses and the load of each basket, but

on average this step takes approximately 15 minutes. At the end of the belt, the staff takes
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the kits and wraps each one and puts a label on them (see Figure 1.5). Finally, the wrapped

kits are placed in a metal basket and sent to the sterilization machines.

The last step is the sterilization stage. In the SU, they have 4 identical sterilizing machines

(autoclaves). Each machine takes 2 baskets at a time and each basket carries between 10 and

30 kits (it depends on the size of the kits). After the machine finishes, they take the baskets

and leave them to cool off. The next thing is to check if the kits were sterilized properly (if not,

they are sent back to be re-sterilized). Finally, they start by packing the kits for each block in a

green marked container where it waits for its pickup. The total time for the sterilizing machines

is around 1h30 and the rest takes about 1h00 thus this step takes around 2h30.

Figure 1.5: Wrapped kits example. Downloaded from https://shadeguide.com.au/ in June
2018

On average, when a kit arrives at the SU, it needs around 4h30 to be ready for pickup.

The whole sterilizing process is summarized in Figure 1.6. Moreover, it is important to note

that the SU does not allow the sterilising process of a kit to start on a day t and end on the

next day t + 1. In other words, if there is not enough time to sterilise a kit on a day, then the
staff at the SU will delay the sterilising process of this kit to the next day. Thus, the deadline

for the last batch that enters the sterilising process at any day is 16:00.

collecting washing repacking sterilizing
arrival

≈ 0h15 = 1h30 ≈ 0h15 = 2h30

Figure 1.6: Kits sterilization 4 stages at the SU.

1.5 The work process at the OSU

There are 9 secretaries at the OSU and each surgeon has one secretary to make his/her ap-

pointments. The process starts usually between 3 weeks to 3 months before the date of the

surgery when the patient comes to see the surgeon for the consultation. At this stage, the

surgeon decides if the patient needs a surgery or not. If the surgeon decides for the surgical

procedure, he defines during consultation the exact date of the surgery depending on many

factors (e.g. the surgeon’s load, the type of the surgery, the urgency level, .. etc.), the type of
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this surgery (ambulatory or not), the required kits for the surgery and the quantity of each kit

type and finally, the surgeon specifies an estimated duration for the surgery. If the surgery is

for an outpatient case then the surgeon can chose to assign it to the date of one of his normal

shifts or to an ambulatory shift.

The estimated duration of a surgery is automatically calculated by the system as the av-

erage duration of surgeries from the same type that were performed by the surgeon. Surgeons

can override the proposed estimated duration if needed to take into account the specificities

of the case like patient’s age or medical history.

Next, the secretary creates the file of the patient in the system and fills it with the data

from the consultation document. In this step the secretary only specifies the date and the

duration of the operation, she neither specifies the order of the operations at that date nor the

starting and finishing times for each operation. The system shows her only the shifts for her

surgeon and the ambulatory shifts (if it was an outpatient case). The system will colour the

available shifts with a certain colour to show the remaining time of the shift after adding the

duration of the current surgery. These colours are:

• Green: More than 50% of the shift’s time is available.

• Yellow: Between 50% and 20% of the shift’s time is available.

• Red: Less than 20% of the shift’s time is available.

• Black: The shift is full.

Each Monday, one specialized nurse prepares the schedule for the next week surgeries.

She specifies the order and the start and finish time of each operation using their estimated

durations, while taking into account that there are limited number of kits. If she finds that for a

certain day there are more scheduled operations that uses the same type of kits than the total

available number of these kits, she will choose to cancel the surgery with the least priority. In

this case she calls the secretary and the surgeon to inform them about the cancellation and the

secretary will reschedule the patient again on the nearest possible time. The weeks schedule

also assigns for each surgery, 3 general nurses and 1 anaesthetist.

Every day, the staff in the OSU picks the required kits for the next day’s surgeries from

the store room. This preparation happens at 2:30pm. The choice of this hour gives the SU

enough time to prepare and send the missing kits for the next day’s surgeries. If some kits are

missing, they send a fax to the SU and then wait for their response. The SU will then check if

they received the kits and if so, they will tell the OSU at which stage exactly the kits are. If

the missing kits were still at the OSU, they put the green label on it (high priority) and prepare

it to be sent urgently to the SU by a special shuttle. Figure 1.7 summarizes the work process

at the OSU from the consultation date till the date of the surgery.

assignment of

surgery date

creation of next

week’s schedule

preparation of the

kits for the surgeries
Surgery

≈ 3 weeks to 3 months

before the surgery

monday of the week

before the surgery

1 day before

the surgery

Figure 1.7: The work process at the OSU.
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Finally, each day, the team at the OSU performs the surgeries that are specified in their

planned schedule. 20 minutes are necessary between each two consecutive surgeries to clean

the room. In most cases, surgeries estimated durations differ from the actual real ones.

After each surgery, the kits that were used are kept in water for 30 minutes for pre-

disinfection, then the staff collects these used kits and store them in a red marked container

to be picked up and sent to the SU at the next pickup hour, while the kits that were not used

are sent back to the store room. Since the SU provides its services to all units at the CHU,

they have a timetable that defines the kits pickup and delivery hours to each unit in order to

distribute the load. In the case of the OSU, these hours are defined in Table 1.2.

pickup 06:50 11:30 13:00 14:30 16:00 17:30 18:30

delivery 06:50 - - 14:30 - 17:30 -

Table 1.2: SU’s pickups and deliveries from the OSB

During the transport, kits are stored in a metal container. The containers that are marked

with a red symbol are for the used kits and the containers that are marked with a green symbol

are for the sterilized kits. A driver collects the red marked containers at the OSU and brings

them to the SU. The driver makes sure that there is a container at the OSU at any time by

leaving an empty one when he picks up the red marked ones from the unit. Finally, the driver

drops the containers that he picked up at a marked place at the SU. A summary of OSU kits

movement is illustrated in Figure 1.8.

OSB store

OSBSU
30 mins of pre-disinfection

+ delay until next collect

' 4h30

+ delay until

next delivery

Figure 1.8: OSU kits movement at the CHU.

1.6 The work process dysfunctions at the OSU

The main problem faced by the CHU is the overtime. This problem can be attributed to the

lack of global planning as each surgeon defines the date of the surgery during the consultation

based on his/her shifts, and the condition and availability of the patient, without considering

the schedule of the other surgeons. Indeed, there are 28 hours of overtime on average per

month at the OSU with around 10 ambulatory surgeries that finish after the 15:00 deadline on

average per month.

The second problem of this work flow is that the major kits check happens at the end

of each week by a nurse that verifies that there are no kit constraint violations in the next
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week’s schedule. The main check consists in verifying that the surgeries scheduled each day

are compatible with the number of kits owned by the OSU, without considering surgeries from

the past day. Despite the effort of increasing the working hours of the SU, kits are regularly

treated urgently there.

Indeed, since the sterilization process takes approximately 4 hours and 30 minutes, and

taking into account the pickup and delivery hours, in a ”normal” situation a delay of at least

7 hours is required between the collecting of a kit at the OSU, and its sterilisation for another

operation. For example, a kit used for a surgery S1 during the morning and collected at 14:30

can be used again the next day from 14:30 for a surgery S2 (see Figure 1.9).

t
8:15 17:00

t + 1
8:15 17:00

20:30

20:30

7:00

7:00

11:30 13:00 16:0014:30 17:30 18:30

11:30 13:00 16:0014:30 17:30 18:30

pickup

delivery

pickup pickup pickup

delivery

pickup pickup

delivery

pickup

OSB rooms opening rooms 1 & 2 closingroom 3 closing

SU closing

S1

S2

Figure 1.9: Normal kit example.

If these delays are not respected, the kits are then considered as urgent or priority kits

depending on the case, as explained below:

• Priority kits

If a kit arrives at the SU with between 5-7 hours to be re-sterilized before the need to use

it again, then the SU has to treat it as a priority kit. The kit is then added to the start of

the queue (high priority). This situation can happen in two cases:

1. Priority kit type 1: if the kit is collected after the first surgery (S1) by the shuttle of

14:30 on day (t) at most, and must be delivered by the shuttle of 7:00 on day (t + 1)
for a surgery (S2) planned between 8:15 and 14:30, as shown in Figure 1.10.

t
8:15 17:00

t + 1
8:15 17:00

20:30

20:30

7:00

7:00

11:30 13:00 16:0014:30 17:30 18:30

11:30 13:00 16:0014:30 17:30 18:30

pickup

delivery

pickup pickup pickup

delivery

pickup pickup

delivery

pickup

OSB rooms opening rooms 1 & 2 closingroom 3 closing

SU closing

S1

S2

Figure 1.10: Priority kit (type 1) example.
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2. Priority kit type 2: if the kit is collected after the first surgery (S1) by the shuttle of

17:30 on day (t), and must be delivered by the shuttle of 14:30 on day (t + 1) for a
surgery (S2) planned between 14:30 and 17:00, as shown in Figure 1.11.

t
8:15 17:00

t + 1
8:15 17:00

20:30

20:30

7:00

7:00

11:30 13:00 16:0014:30 17:30 18:30

11:30 13:00 16:0014:30 17:30 18:30

pickup

delivery

pickup pickup pickup

delivery

pickup pickup

delivery

pickup

OSB rooms opening rooms 1 & 2 closingroom 3 closing

SU closing

S1

S2

Figure 1.11: Priority kit (type 2) example.

• Urgent kits

If a kit arrives at the SU with barely enough time to be re-sterilized before the need to use

it again (less than 5 hours), then the SU will treat it as an urgent kit (highest priority). In

order to treat an urgent kit, the staff of the SU puts the kits at the start of the queue, and

eventually delays the start of washing machines waiting for the arrival of the urgent kit.

This situation happens if the kit is collected after a surgery (S1) by the shuttle of 16:00 on

day (t) at most, and must be delivered by the shuttle of 7:00 on day (t + 1) for a surgery
(S2) starting between 8:15 and 14:30, as shown in Figure 1.12.

t
8:15 17:00

t + 1
8:15 17:00

20:30

20:30

7:00

7:00

11:30 13:00 16:0014:30 17:30 18:30

11:30 13:00 16:0014:30 17:30 18:30

pickup

delivery

pickup pickup pickup

delivery

pickup pickup

delivery

pickup

OSB rooms opening rooms 1 & 2 closingroom 3 closing

SU closing

S1

S2

Figure 1.12: Urgent kit example.

Other emergencies may arise when the delay between the 2 surgeries that will use the

same kit is large enough for the sterilizing process (> 4h30), but the fixed pickup and delivery

hours does not allow for the kit to be delivered to the SU for sterilization and then delivered

back to the OSU before the next planned usage. This situation can happen in two cases: if the

two surgeries are planned in the same day t, or if the two surgeries are planned during two

consecutive working days t and t + 1. An example of the first case is illustrated in Figure 1.13.

23



t
8:15 17:00 20:307:00 11:30 13:00 16:0014:30 17:30 18:30

pickup

delivery

pickup pickup pickup

delivery

pickup pickup

delivery

pickup

OSB rooms opening rooms 1 & 2 closingroom 3 closing

SU closing

10:30

S1 S2

Figure 1.13: Not allowed kit example 1.

Figure 1.14 gives an example of the second case.

t
8:15 17:00

t + 1
8:15 17:00

20:30

20:30

7:00

7:00

11:30 13:00 16:0014:30 17:30 18:30

11:30 13:00 16:0014:30 17:30 18:30

pickup

delivery

pickup pickup pickup

delivery

pickup pickup

delivery

pickup

OSB rooms opening rooms 1 & 2 closingroom 3 closing

SU closing

S1

S2

Figure 1.14: Not allowed kit example 2.

Even if these cases must be strictly avoided, they can occur as the SU can send a special

shuttle outside the collecting hours just to collect these kits so that there will be enough time to

sterilize them before sending them back possibly by another special shuttle outside the delivery

hours. We will refer to these kits by ”Not allowed kits”.

In the current state at the CHU, priority, urgent and not allowed kits are a common

problem. They treat an average of 50 priority kits, 8 urgent kits and 6 not allowed kits per

month. Priority kits have negative impact on the work flow at the different units at the CHU

as they take the place of other kits at the start of the queue and cause delays to the other

kits from other units. The impact of urgent kits is even bigger as they generate a lot of stress

for the staff of the SU, in addition to the delays they cause to the other kits from other units.

Finally, the not allowed kits have the worst impact as in addition to the stress caused at the

SU, they generate more delays by reserving a special shuttle that would be normally delivering

and picking up kits from other units.

1.7 CHU objectives

In light of the problems faced at the CHU that we identified in the previous section, the goal of

the CHU’s management is to minimize the operational costs while maintaining the same level

of quality of service represented by the total number of operated patients per month at the

OSU.
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The first objective is to identify the potential costs reductions that can be achieved us-

ing operations research techniques. This study will help toward the main goal, which is to

present a complete framework that automates the whole patients scheduling process from the

consultation till the surgery date.

Using a unified scheduling procedure for all the surgeons at the OSU will eliminate the

lack of global planning problem currently faced, while also minimizing the operating costs and

the inconvenience in the SU. The costs considered are represented by the overtime at the OSU

and the costs for opening operating rooms. In the actual context of budgetary restriction and

of hard working conditions for the hospital staff, the objective for the CHU is to schedule all

surgeries in order to minimize the total overtime of the staff members of the OSB, thus reducing

costs while taking into account the quality of work life of the staff. The second objective consists

in minimizing the number of used operating rooms, as opening an OR generates substantial

costs. Finally, the third objective is to keep the number of urgent and priority kits as low as

possible. The minimization of these objectives has to be achieved while maintaining the same

current level and quality of service represented by the total number of operated surgeries per

month at the block.

1.8 The provided data

The CHU provided us with real data that corresponds to the activity of the OSU during the

period from September 2014 till June 2015. Table 1.3 shows the characteristics of the received

data where the ’#Working days’ column represents the number of working days for the OSU

at the given month. On average, the OSU works 21 days a month. Similarly, the ’#Surgeries’

column shows the number of surgeries performed at the OSU: in average, 200 surgeries are

performed each month. Finally, the ’#Surgeons’ column shows the total number of surgeons:

on average, 13 surgeons were active each month. In addition to the 2000 surgeries found in

the instances, 69 more OSU surgeries were performed outside the unit during the 10 concerned

months. We however had to consider these surgeries due to their impact on the numbers of

kits. In order to do so, we created a fourth room that is exclusive to these surgeries performed

outside the unit and fixed the dates and times for these surgeries as in the original schedule in

this new room. Furthermore, 38 surgeries from other units were performed at the OSU. Again,

we had to consider these surgeries due to their impact on the total operating time at the ORs,

and we achieved this by decreasing the total operating hours of the corresponding ORs at the

dates of these surgeries by the duration of each of these surgeries.

In order to better understand and analyse the provided data, we studied the following

aspects:

1. OSU’s planned schedule analysis.

2. OSU’s achieved schedule analysis.

3. Difference between planned and achieved schedules.

In the reminder of this section, we will show and analyse each of these studies in order

to give a better understanding of the problems faced at the OSU.
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Month #Working days #Surgeries #Surgeons

Sept. 22 218 14

Oct. 23 212 13

Nov. 20 189 14

Dec. 23 189 13

Jan. 21 220 13

Feb. 20 199 11

March. 22 223 12

April 21 188 12

May 17 165 10

June 22 197 13

Average 21 207 13

Table 1.3: OSU’s provided data characeristics.

1.8.1 OSU’s planned schedule analysis

As explained before in the work process of the CHU section, the staff at the OSU plans the

surgeries using their estimated durations and the schedule that they generate is called the

planned schedule. Table 1.4 shows the violated constraints in the planned schedule of the

CHU during the course of the 10 months of the provided instances. We can see that there are

approximately 7.6 late ambulatory surgeries on average each month as shown in the ’#Late

ambs.’ column. In addition, the ’#Not allowed kits’ column shows the number of the not

allowed kits that the SU had to treat each month. In average, the OSU had approximately

10.2 not allowed kits per month.

Month #Late ambs. #Not allowed kits

Sept. 11 5

Oct. 9 7

Nov. 5 10

Dec. 9 18

Jan. 12 12

Feb. 7 5

March 4 25

April 5 9

May 8 7

June 6 4

Average 7.6 10.2

Table 1.4: Violated constraints in the OSU’s planned schedule.

Next, table 1.5 shows the overtime in the planned schedule of the OSU. As shown in

column ‘Overtime (in min)’ which shows the total overtime in each month in minutes, the

average overtime is approximately 804.1 minutes (more than 13 hours) per month. In addition,

the ‘max’ column shows the maximum overtime in minutes found in a day during the considered
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month. We can see that the rule of maximum of 3 hours (180 minutes) of overtime per room

per day is violated in 2 months (February and June).

Month Overtime (in min) max

Sept. 590 131

Oct. 714 176

Nov. 502 81

Dec. 656 77

Jan. 1159 120

Feb. 1278 183

March 641 109

April 561 65

May 870 105

June 1070 266

Average 804.1

Table 1.5: OSU’s planned schedule overtime.

Table 1.6 states the number of opened rooms each month in the OSU’s planned schedule.

In the ‘#opened rooms’ column, we can see that the average number of opened rooms is 53.9

per month. Column ‘Avg. Occ. rate’ shows the average occupancy rate in each month: in

average, the OSU had approximately 80.9% occupation rate per month with 3 months dropping

below the 80% occupancy rate target specified by the management of the CHU. Moreover as

shown in column ‘Min. Occ. rate’ which contains the minimum occupancy rate found in each

month, several rooms are not used efficiently: only one month had a minimum rate greater

than 50% with 4 months having less than 20%.

Month #opened rooms Min Occ. rate Avg. Occ. rate

Sept. 59 27.6% 80.2%

Oct. 59 13.8% 77.5%

Nov. 48 18.3% 80.7%

Dec. 48 42.4% 86.5%

Jan. 59 28.8% 85.1%

Feb. 52 51.2% 83.3%

March 59 34.3% 81.5%

April 49 26.1% 82.9%

May 46 11.6% 79.4%

June 60 9.5% 72.3%

Average 53.9 80.9%

Table 1.6: OSU’s planned schedule opened rooms.

Finally, table 1.7 states the number of urgent and priority kits (both cases) that are found

in the OSU’s planned schedule. On average, the OSU had approximately 6.6 urgent kits and

62.6 priority kits to process per month with a total of 69.2 problem kits (urgent + priority) per

month.
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Month #urgent #priority

Sept. 2 51

Oct. 2 56

Nov. 8 68

Dec. 13 82

Jan. 6 68

Feb. 2 59

March 28 98

April 0 56

May 2 53

June 3 35

Average 6.6 62.6

Table 1.7: OSU’s planned schedule urgent and priority kits.

1.8.2 OSU’s achieved schedule analysis

We analyse now the achieved schedule of the OSU which represents what actually happened

after performing the surgeries and replacing the estimated durations of the surgeries with the

actual (real) ones. Following the same order as in the planned schedule analysis, we start with

Table 1.8 which compares the violated constraints found each month. On average, the OSU

had approximately 10.1 ambulatory surgeries that finish after 15:00 and 6.2 not allowed kits

per month.

Month #Late ambs. #Not allowed kits

Sept. 14 5

Oct. 14 5

Nov. 6 10

Dec. 10 8

Jan. 14 5

Feb. 8 4

March 6 13

April 9 2

May 10 7

June 10 3

Average 10.1 6.2

Table 1.8: Violated constraints in the OSU’s achieved schedule.

Next, table 1.9 shows the overtime in the achieved schedule of the OSU. The average

overtime is approximately 1717.4 minutes (almost 29 hours) per month. In addition, the rule

of maximum of 3 hours (180 minutes) of overtime per room per day is violated in 4 months

(September, October, February and June).
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Month Overtime (in min) max

Sept. 1382 190

Oct. 1692 227

Nov. 1322 113

Dec. 1800 98

Jan. 2370 130

Feb. 2140 201

March 1454 170

April 1584 100

May 1500 126

June 1930 326

Average 1717.4

Table 1.9: OSU’s achieved schedule overtime.

Table 1.10 states the number of opened rooms each month in the OSU’s achieved sched-

ule. Of course, the number of opened rooms does not change from the planned schedule since

the staff are not allowed to use other rooms. But, the average occupancy rate dropped on

average to 78.8% per month with 6 months below the 80% occupancy rate target specified by

the management of the CHU, with only one month having a minimum occupancy rate above

50%.

Month #opened rooms Min Occ. rate Avg. Occ. rate

Sept. 59 29.9% 79.2%

Oct. 59 12.9% 76%

Nov. 48 19% 79.3%

Dec. 48 44% 82.9%

Jan. 59 29.7% 81.9%

Feb. 52 50.8% 79%

March 59 33.1% 80.6%

April 49 23.7% 81.5%

May 46 12.3% 77.3%

June 60 9.9% 70.7%

Average 53.9 78.8%

Table 1.10: OSU’s achieved schedule opened rooms.

The OR idle time is the time where the room is opened but no surgery is taking place.

Normally, the idle time is supposed to be 20 minutes between each two consecutive surgeries,

which is the time required by the OSU to clean and prepare the room for the next surgery. We

can calculate the total expected idle time as:

Total expected idle time = (Number of surgeries – Number of opened rooms) X 20

Table 1.11 compares the ORs expected idle times with the actual attained ones from the

OSU’s achieved schedules. From this, we can clearly see that there is an increase of around 50
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hours on average per month between the expected and attained idle times. In other words,

the OSU is wasting approximately 50 hours per month from the ORs time.

Month Rooms Attained Expected Increase

Sept. 59 6767 3220 110.15%

Oct. 59 7145 3140 127.54%

Nov. 48 4852 2840 70.84%

Dec. 48 4473 2860 56.39%

Jan. 58 5681 3280 73.2%

Feb. 52 6947 3160 119.84%

March 59 6733 3360 100.38%

April 49 4681 2860 107.12%

May 46 5421 2540 113.42%

June 60 7939 3360 136.28%

Avg 53.9 6064 3062 98.04%

Table 1.11: OSU’s achieved schedule expected and achieved idle times in minutes.

Finally, table 11 states the number of urgent and priority kits (both cases) that are found

in the OSU’s achieved schedule. On average, the OSU had approximately 7.9 urgent kits and

49.4 priority kits per month with a total of 57.3 problem kits (urgent + priority) per month.

Month #urgent #priority

Sept. 3 39

Oct. 3 44

Nov. 8 49

Dec. 14 64

Jan. 6 58

Feb. 1 53

March 28 72

April 4 46

May 8 42

June 4 27

Average 7.9 49.4

Table 1.12: OSU’s achieved schedule urgent and priority kits.

1.8.3 Difference between planned and achieved schedules

In the previous sections (1.8.1 and 1.8.2) we showed both the planned schedules and their

corresponding achieved ones for the OSU. When comparing each criterion, we can see that

there is a big difference happening when applying the real durations of surgeries.

Starting with the violated constraints, we see that the number of late ambulatory surg-

eries increased from an average of 7.6 to 10.1 surgeries per month (+32.9%), while the

average number of not allowed kits dropped from 10.2 to 6.2 kits per month (-39.2%).
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Next, the average overtime increased from 804.1 minutes (≈ 13h) to 1717.4 minutes

(≈ 28h) per month (+113.6%). Of course, the number of opened ORs stayed the same, but

the average occupancy rate dropped from 80.9% to 78.8% (-2.1%) making it lower than the

goal of CHU’s management (≥ 80%).

Finally, the average number of urgent kits increased from 6.6 to 7.9 kits per month

(+19.7%), while the average number of priority kits decreased from 62.6 to 49.4 kits per

month (-21.1%).

The degradation in solution qualities is a result of the big uncertainty in surgeries es-

timated durations. Since the estimated duration is calculated using the average of the past

surgeries from the same type, we will start by showing the number of surgeries for the different

types as shown in Figure 1.15. Due to the fact that many surgery types have low number of

surgeries (75 types have less than 5 surgeries for each), this make it very difficult to get a

good estimation for the duration of the new surgeries from that type.
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Figure 1.15: Number of surgeries for the different types.

When comparing the difference between the achieved (real) and planned durations for

all the surgeries, only 987 surgeries out of the total 2069 surgeries (approximately 47.7%)

had a real duration that differed from the planned duration by less than 20 minutes, while 939

surgeries (approximately 45.4%) had a difference between 20 minutes and 1 hour. For the

rest of the surgeries, the difference can reach up to 3 hours. These big differences highlight

the stochastic nature of the scheduling problem of the CHU and are shown in more details in

Figure 1.16.
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Figure 1.16: Difference between surgeries planned and real durations.
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1.9 Conclusion

In this chapter, we explained the surgical case scheduling problem of the CHU in the first part.

We started by describing the concerned elements, namely the OSU, the SU and the surgical

kits. We then explained the current work process at the CHU, and the problems faced there

with this work flow. The main cause for these problems is the lack of global planning, where

each surgeon is responsible for scheduling his/her own surgeries. Finally, we described the

objectives of the CHU’s management. These objectives are mainly to minimize the costs.

In the second part we analysed the data that we received from the OSU. We explored

the planned schedules, which use the estimated durations of the surgeries, and the achieved

schedules that use the real durations of surgeries and represent what actually happened at

the OSU after performing the surgeries. We then showed that there is quite a big degradation

in solution qualities when applying surgeries real durations in place of the estimated ones.

This degradation is a result of the stochastic nature of surgeries durations, which is showed in

details in the last section by comparing surgeries estimated and real durations.
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CЂϻЊЎϿЌ 2

LЃЎϿЌϻЎЏЌϿ ЌϿАЃϿБ

2.1 Introduction

Surgery is one of the most important activities in hospitals. It has been recognized as a

main source of income as it generates approximately two thirds of hospital revenues [Jackson,

2002]. In addition, it counts for approximately 40% of hospital costs [Macario et al., 1995]

through the use of facilities (operating rooms, intensive care beds, etc.) and the personnel

costs (surgeons, nurses, anaesthetists, etc.).

Furthermore, the operating room scheduling and planning problems involve many stake-

holders, such as hospital management, surgeons and patients, which makes it very hard to

find a solution that satisfies the requirements of all the involved parties and improves the

overall performance of the surgical unit. For these reasons, numerous researchers studied

the operating room planning and scheduling problems [Cardoen et al., 2010, Guerriero and

Guido, 2011, Hulshof et al., 2012, Zhu et al., 2018]. One can note that a different classifica-

tion method for the literature was used in each of the available literature reviews. In [Cardoen

et al., 2010], six categories are presented: patient characteristics, performance measures,

decision delineation, research methodology, uncertainty and applicability of research. On the

other hand, the authors in [Zhu et al., 2018] organized their literature in six fields: decision

level, scheduling strategies, patient characteristics, problem features, mathematical models

and solutions and methods. In our work, we will classify the literature based on the three

decision level that make up the problem (strategic, tactical and operational levels).

Indeed, the OR planning and scheduling problems can be viewed as being made up of

three phases corresponding to three decision levels [Testi et al., 2007]. The first phase (strate-

gic level) corresponds to the problem of determining on a long term horizon (more than a year):

the number, the type and the working hours of the available operating rooms (ORs), and of

assigning these ORs to surgical specialities [Zhang et al., 2009, Dexter et al., 2002, VanBerkel

and Blake, 2007, Dexter et al., 1999]. The second phase (tactical level) corresponds to the

problem of creating a timetable, often cyclic and referred to as Master Surgical Schedule (MSS)

on a medium term horizon (quarterly/semi-annually). This timetable defines the specific as-

signment of ORs to surgeons. A new MSS must be generated whenever the total amount of

OR time changes or when the make-up of some specialities changes. This can occur not only

as a response to long-term changes in the overall OR capacity or fluctuations in staffing, but

also in response to seasonal fluctuations in demand [Blake et al., 2002, Blake and Donald,

2002, Beliën and Demeulemeester, 2007, van Oostrum et al., 2008]. Finally, the last phase

(operational level) is referred to as the Surgical Case Scheduling (SCS) problem. This phase is

generally separated into two sub-problems referred to as “advance scheduling” and “allocation

scheduling” [Magerlein and Martin, 1978].

This chapter provides a comprehensive survey of the research done on operating room
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planning and scheduling problem. We start by exploring the three decision levels involved in

the problem with more attention towards the SCS problem that resides in the operational level.

In addition, we explore the different variants of the SCS problem and take into account the

dynamic aspect and the uncertainties that arise in the problem. Finally, we present a recap of

the discussed literature in the form of a summary table.
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2.2 Strategic level

At the strategic level (also referred to as session planning problem), the scheduling problems

have a long planning horizon and decisions are based on gathered information and forecasts.

However, there is a big ambiguity in the literature regarding whether a problem belongs to the

strategic or tactical level [Choi and Wilhelm, 2014, Zhu et al., 2018, Blake and Donald, 2002].

For this, we will consider the classification mentioned in [Choi and Wilhelm, 2014], where at

the strategic level, two main problems are identified namely: capacity planning and capacity

allocation.

2.2.1 Capacity planning

In this problem, the goal is to determine the quantity of required resources in order to cover

the demands in a cost-effective way [Choi and Wilhelm, 2014]. In other words, the goal of this

problem is to determine the working hours of the available ORs. Many researchers viewed this

problem in a detailed taxonomic classification [Hulshof et al., 2012], where the objective is to

provide an accurate OR session capacity (OR working hours) in order to avoid under-utilization

and over-utilization of ORs as both are expensive. In [Lehtonen et al., 2013], the authors

studied the effect of implementing duration categories on the OR productivity to optimize the

time constituting the end of the workday. On the contrary, the authors in [Koppka et al., 2018]

studied the usability of having different capacities for the different ORs at a hospital by having

a model that tactically distributes the OR time over the ORs. Moreover, the authors in [Ma and

Demeulemeester, 2013] proposed a multilevel integrative an Integer Linear Programming (ILP)

model to solve the deterministic version of the capacity planning problem. They consider the

resource allocation and take into account the variability and its effect on resource utilizations,

such as the expected bed occupancy of each ward.

2.2.2 Capacity allocation

The capacity allocation problem consists in assigning surgical specialities to operating-room

days. In [Dexter et al., 2003], the authors focus on filling the allocated OR time at different

rates to maximize the OR efficiency. They investigate how and when to release allocated

OR time appropriately from a surgical speciality when a new surgical case arrives to another

surgical speciality that does not have enough time for it. They show that the best approach

resulted in only slightly less OR efficiency achieved when the service whose time is released is

the service that has the most allocated but unused OR time at the moment the new surgical

case is scheduled. More recently, the authors in [Creemers et al., 2012] present a model

for assigning time slots to different classes of patients at strategic decision level with the

objective of minimizing the total expected weighted waiting time of a patient. They use a

service queueing model to obtain the expected waiting time of a patient of a particular class,

given a feasible allocation of service time slots. Their solutions provide a valuable tool for OR

management to estimate the effect of OR capacity allocation on different patient categories

waiting times.
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2.3 Tactical level

The problem addressed at the tactical level concerns the development of a timetable called

the Master Surgical Schedule (MSS), which specifies the assignment of surgeons (or surgical

groups) to ORs time block each day.

Many researchers [Wachtel and Dexter, 2008, Beliën et al., 2006, Beliën and Demeule-

meester, 2007] showed that a better MSS can have a big positive impact on the overall usage

of the involved resources (e.g. wards, Post-Anaesthesia Care Unit (PACU) beds, and Intensive

Care Unit (ICU)) when these resources are considered at the MSS building stage.

The assignment of surgeons (or surgeon groups) to ORs and consequently the use of an

MSS at any hospital are directly affected by the management procedures implemented at the

operating theatre. The authors in [Main, 1995] presented and analysed the following three

different management procedures:

• Open-Scheduling:

This strategy represents a first come, first served model, where ORs are not assigned to

surgeons, but instead are open to whoever calls first. In other words, surgeons can assign

surgeries to any available OR at their own convenience. This strategy is a good option

to surgeons who can schedule their surgeries far in advance such as plastic surgery and

ophthalmology, while it is not favourable to specialities that cannot forecast schedule far

in advance, such as general surgery and cardiac surgery.

• Block-Scheduling:

In the block-Scheduling strategy, blocks of OR time are assigned to specific surgeons or

groups of surgeons each week to schedule their surgical cases. Generally speaking, the

surgeon or group owns the block and it cannot be released even when unused, which

affects the OR utilization in a negative way. This strategy provides surgeons with a pre-

dictable schedule in which they can book time, but reallocating and assigning block time

might raise difficult political issues.

• Modified Block-Scheduling:

Block scheduling can be modified in two ways to create a more flexible version. In one way,

a mix of both Open and Block scheduling procedures are implemented, where some time

is blocked and some is left open for any surgeon (or group) to use. In the second, unused

OR time blocks are released at a predefined time before surgery (such as 72 hours). This

procedure combines both block and open scheduling while taking the advantages of both

methods by balancing the needs of specialities that can schedule in advance with the ones

that cannot.

The MSS construction problem has been studied extensively in the literature. However,

it is not always clear in the literature which procedure was used. For this, we will try to our

best to mention the used procedure when possible.

In [Lehtonen et al., 2013], the authors used a newsvendor model to construct the MSS.

They show that OR productivity can be improved markedly by increasing flexibility in the OR

team’s working hours. Moreover, the authors in [Penn et al., 2017] used a MIP solver to

build their MSS in a reasonable amount of time and showed that using solvers to generate

MSS is possible for medium sized hospitals. Furthermore, the authors in [Blake and Donald,
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2002] developed an integer-programming model and a post-solution heuristic based on the

characteristics found in the case of the surgical suite at Mt. Sinai Hospital in Toronto, Canada.

Their method is successfully implemented in the hospital and the results show remarkable

administrative savings and the ability to generate quickly an equitable MSS.

In [Kharraja et al., 2006], the authors presented a decision making tool for OR managers

that includes two different MSS implementation approaches that work in both Block-Scheduling

and modified Block-Scheduling systems. Their first approach is an ILP model which constructs

an MSS for all surgeons regardless of their specialities with the objective of minimizing the gap

between the requests of all surgeons and the total supply. On the contrary, the second approach

is based on the same ILP model, but provides an MSS for the surgical groups. The objective

function of the second approach is to minimize the gap between the total supply and the

request of all surgical groups. The second approach provides better results as surgeons have

more flexibility inside groups to perform their surgeries. In contrast, the authors in [Kuo et al.,

2003] considered a Block-Scheduling procedure and presented a LP based approach with the

objective of determining the best mix of surgical OR time allocations so that it either minimizes

the hospital total costs or maximizes the professional receipts. Their financial productivity

based model was tested on real data obtained from the division of general surgery at Duke

University medical centre, and the computational results showed an increase in the financial

efficiency but their MSS can only be implemented in an ideal scenario due to the assumptions

made. Similar results were presented in [Beliën et al., 2009], where the authors developed a

solution approach based on Column Generation (CG) technique which shows that considerable

savings to the staffing costs can be obtained by integrating the OR and nurse scheduling process

together. Despite the potential of their IP model to determine the human resource management

waste sources, the real-life savings are probably much smaller because of the difficulty that

accompanies modifying an MSS in a real-life environment.

A number of MIP based and metaheuristic approaches were presented in [Beliën and De-

meulemeester, 2007], in which the authors took into account the stochastic numbers of arriving

patients and the stochastic length of stay for each operated patient. Their methods considered

the OR capacity and surgery demand constraints and the daily expected bed occupancy, the

variance on this occupancy, the expected bed shortage and the probability of a shortage on

each day performance measures with the objective of levelling the resulting bed occupancy.

Both approaches performed well in the experiments, but the metaheuristic method took the

edge with better results and faster computation times.

2.4 Operational level

The last hierarchical phase is mainly concerned with generating a schedule of elective surgeries

and is called “surgical case scheduling”.

As explained in [Magerlein and Martin, 1978], the surgical case scheduling problem is

generally separated into two sub-problems referred to as “advanced scheduling” and “allocation

scheduling”. The Advanced Scheduling Problem (AdvSP) assigns patients to ORs and days,

while the Allocation Scheduling Problem (AllocSP) provides the appropriate sequence for the

assigned patients each day at each OR. In the literature, some researchers focused on one

sub-problem while others included both sub-problems in their research.

In addition, such operational real-world optimisation problems can be classified into 4
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categories according to the quality of the data (potential uncertainty in the available data) and

their evolution (possible changes during the execution of a plan):

• Deterministic static problems: all inputs are known in advance and do not change

during the execution of a plan. This is the case in SCS problems when the list and durations

of the surgeries are known in advance, and they do not change during the realization of

the planning.

• Deterministic dynamic problems: part or all the data are revealed during the process,

and the information dynamically revealed is known with certainty. For example in the

case of the SCS problem, new patients that require urgent surgeries arrive during the

realization of the planning, but the durations of the surgeries are known for certain at the

patient arrival.

• Non-deterministic static problems: data do not change during the realization of the

process, but are partially known as random variables, or range of values. For example in

the case of the SCS problem, the list of patients is known in advance, but the durations

of the surgeries are only known as a range estimate of their real duration.

• Non-deterministic dynamic problems: part or all the inputs are revealed during the

execution of a plan, but exploitable knowledge is available before-hand. For example, the

case of the SCS problem which includes both elective (known in advance) and non-elective

(unexpected) surgeries, and a range estimate of the durations of the surgeries is in this

category.

The reminder of this section is divided in three parts: the first one explores the ad-

vanced scheduling problem, the second one explores the allocation scheduling problem, and

the last one focuses on the work that considers both advanced and allocation scheduling simul-

taneously. In addition, each part will be further divided following the 4 categories mentioned

before.

2.4.1 Advanced scheduling problem

Advanced scheduling is the process of assigning a surgery date and an OR to a patient. This

problem determines the date only and does not deal with the order of the surgeries in each

day nor the starting time of each surgery.

Deterministic static AdvSP

Several research studies address the AdvSP with the deterministic static settings, where no

stochastic aspects are considered and the full list of considered patients is known in advance

(offline). For instance, in [Fei et al., 2008] the authors solved the assignment problem in a

Block-Scheduling strategy with a decomposition-based branch-and-price algorithm that min-

imizes the total overtime and ORs underutilization costs. They assumed that human and in-

struments resources are available whenever needed and tested their approach on randomly

generated instances and their results showed that their method worked well for the instances.

Later on, the same authors in [Fei et al., 2009] studied the same problem but in an Open-

Scheduling strategy in multiple multi-functional ORs within one week. They developed a binary
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IP model that considers the ORs opening hours, surgeries deadline and surgeon availability to

minimize the total overtime and ORs underutilization costs. They reformulate their model due

to the high computational time as a set-partitioning problem and then they solved it using a CG

procedure. Their results showed that if the involved resources are well organized, an efficient

surgeries assignment can be obtained.

In [Ozkarahan, 2000], the authors present a goal programming model with the objective

of minimizing ORs overtime and idle times while maximising the satisfaction of the surgeons,

staff and patients. Their approach involved sorting the requests for a particular day on the basis

of block restrictions, room utilization, surgeon preferences and intensive care capabilities. Their

experiments show that their method managed to give better OR utilization while satisfying all

the requirements.

Another approach was presented in [Molina and Framinan, 2009], where the authors

considered three different policies to allocate patients to ORs:

1. P-S-OR: This is the normal approach that guaranties the continuity of care, where patients

are first assigned to surgeons, and then the set ”patient-surgeon” is allocated to an OR.

2. P-OR-S: Patients are first assigned to an OR, and then surgeons are allocated to the

set ”patient-OR”. This policy is more flexible than the previous one since patients do

not depend on the availability of surgeons, but does not take into account the patient

preferences regarding the operating surgeon.

3. Hybrid: Patients who are previously assigned to a surgeon (P-S-OR) are allocated to a

suitable OR, whereas other patients are assigned based on the (P-OR-S) policy, where a

”knapsack surgeon” is created at each OR shift and these patients are assigned to this

surgeon. The surgeon who is not assigned to this shift will perform the surgeries in the

(P-OR-S) set.

They test the three policies in a Block-Scheduling system with the objective of maximizing the

quality of service represented by the total weight of the performed surgeries, which depends on

the type of surgery (normal or microsurgery), while considering surgery deadline constraints.

Their experiments show that the (P-OR-S) yields the best results as it is more flexible, while

the (P-S-OR) had the worst improvement. In all three policies, their results were better than

the ones reported in the real data they used for the tests.

Deterministic dynamic AdvSP

By extension, some researchers propose to address the deterministic version of the problem

with dynamic setting. For example in [Velásquez et al., 2008], the authors proposed a heuris-

tic approach based on a bin packing problem which takes into account the limited resource

availability with the objective of minimising a penalty sum of not satisfying the time window

of a patient and using a resource that uses additional capacity. They tested their method on

instances from a German hospital and the results showed high quality solutions. Moreover in

[Ogulata and Erol, 2003], the authors proposed a mathematical model and a solution approach

that formulates the weekly AdvSP as a multi-objective binary IP model. Their objectives were

to minimize the patients waiting time, maximize the OR capacity utilization and balance the

distribution of surgeries among surgical groups. Their proposed solution approach works by

dividing the scheduling problem into three logical steps:
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1. Patients admission planning: a subset of patients is selected from the initial list based on

their priorities and arrival date.

2. Patients assignment: the patients of the selected subset are assigned to surgical groups.

3. Day and OR assignment: a date and an OR are assigned to each surgery of each surgical

group independently from the other groups.

In [Dios et al., 2015], the authors present a Decision Support System (DSS) that embeds

a number of optimization procedures (exact and approximate) to solve the dynamic AdvSP.

Their system is capable of producing a medium-term plan (up to six months) by selecting

assigned patients from a waiting list. The objective of their DSS was to maximise an indicator

of the quality of service combining patient’s medical priority and the need to fulfil regional

imposed standards. These standards state that for each illness type, the time between the

diagnosis and the surgery should not exceed a predefined maximum number of days called

‘clinical guarantee’.

Moreover, the authors in [Testi et al., 2007] addressed the three decision levels of the

operating theatre management problem. In the operational level, they considered the dynamic

AdvSP and proposed a simulation method that uses a priority rank to schedule surgeries in

order to minimise the number of cancelled patients and the total overtime. The authors tested

several dispatching rules and found that using the shortest processing time rule yields the best

results.

Finally, in [Luo et al., 2016], the authors developed a Mixed Integer Linear Programming

(MILP) and integrated it into a rolling horizon approach to solve the scheduling problem on a

day-to-day basis. In their work, surgeries exact durations and maximum waiting times are

know in advance and they didn’t include any resource constraints. The objective considered is

to minimise the idle times at the ORs in order to balance the occupancy rates among the ORs.

They tested their approach on generated data and found that using a rolling horizon method

allows a more flexible planning of the pool of surgeries and minimises the total idle time in

comparison to using a non-rolling horizon method.

Non-deterministic static AdvSP

Some researchers addressed the non-deterministic static variant of the AdvSP. In [Hans et al.,

2008], the authors proposed constructive and local search heuristics for the assignment prob-

lem with the objective of freeing operating rooms and capacity while taking into account the

uncertainty that may occur (e.g. patient cancellation). Moreover, the authors in [Rachuba

and Werners, 2017] developed a fuzzy multi-objective model while simultaneously reserving

time windows dedicated for randomly arriving emergencies. The considered objectives are to

minimise the waiting time of patients (patients perspective), minimise the total overtime (staff

perspective), and maximise the total number of operated patients (management perspective).

In their tests, they showed that only small changes in the absolute levels of the stakeholder’s

goals were necessary to find an acceptable solution.

Another approach was presented in [Denton et al., 2010], where the authors proposed

two models with the objective of minimizing the total costs represented by the sum of fixed OR

opening costs and the variable cost of overtime. Their first model was a two-stage stochastic

linear program with binary decisions in the first stage and simple recourse in the second stage.
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The second model was a robust formulation counterpart. They then compared the results of

the two models and showed that the robust method performs way faster than the stochastic

model and it has the benefit of limiting the worst-case outcome of the resource problem.

The authors in [Hans et al., 2008] proposed constructive and local search heuristics to

maximize the capacity utilization by minimizing the total planned slack and to minimize the

risk of overtime, and thus cancelled patients. Whereas the authors in [Addis et al., 2014]

proposed a robust formulation based on the formulation presented in [Bertsimas and Sim,

2004]. They considered the objective of minimising the costs associated with patients tardiness

and waiting time while allowing overtime when needed. The authors used generated data to

test two versions for both the deterministic and robust MILPs, with one that allows overtime

and another that does not. The results show that allowing overtime reduces the overall penalty

for both models, and the robust model outperforms the deterministic by reducing the numbers

of cancelled patients and total overtime.

Non-deterministic dynamic AdvSP

Despite the huge real applications for the robust dynamic version of the problem, very few

researches have been done on this particular problem. In [Herring and Herrmann, 2012]

the authors presented a stochastic dynamic model for the single-day single-OR version of the

problem. In addition, they proposed several threshold-based heuristics to solve the scheduling

problem. Their threshold identifies how much open time to preserve for future primary cases.

Another example in [Addis et al., 2016], where the authors developed two ILP to solve both the

deterministic and robust problems and integrated these models in a rolling horizon method. In

their work, each surgery has maximum waiting time (due date) and estimated duration and

the objective is to minimize the total waiting time and tardiness of patients. The rescheduling

happens because of the semi-elective surgeries and cancelled surgeries (no time to perform).

In [Min and Yih, 2010a], the authors presented a stochastic dynamic programming model

to address the scheduling problem of patients with different priorities. In their work, a decision

is made at the beginning of each period to determine the number of patients to be scheduled

based on the trade-offs between the cost for overtime work and the cost for surgery postpone-

ment. The authors proposed a stochastic dynamic programming model to solve the problem.

Their experiments show that the consideration of patient priority results in significant differ-

ences in surgery schedules compared to the schedule that ignores the patient priority, where

the decision regarding the level of detail in classifying patient priority depends on the trade-offs

between computation time and solution quality.

2.4.2 Allocation scheduling problem

Given the advanced schedule, the second sub-problem then determines the precise sequence of

surgical procedures and the allocation of resources for each OR time block in order to implement

it as efficiently as possible. Similar to the AdvSP, many researchers tackled the AllocSP with

various performance criteria. No dynamic approaches to this problem can be found in the

literature due to the nature of the allocation problem, where the goal is to provide the sequence

for patients that are already assigned to an OR at a given date.
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Deterministic static AllocSP

The first contribution concerning this problem was presented by [Sier et al., 1997]. The authors

proposed a discrete-time MIP nonlinear model that assigns patients to OR timeslots. They

also developed a simulated annealing approach to obtain near-optimal solutions and defined

a weighted penalty function that takes into account the equipment usage conflicts, OR usage

collision and patients age.

Several mixed integer linear programming solution approaches were developed in [Car-

doen et al., 2009a], which are either exact or heuristic, and consider multiple objectives in-

cluding minimising the starting time for children and priority patients and minimising the stay

in recovery after the closure of the day-care centre. Furthermore in [Cardoen et al., 2009b],

the same authors used a branch-and-price methodology with the objective of minimising the

peak use of recovery beds, the occurrence of recovery overtime and the violation of various

patient and surgeon preferences.

A two-stage no-wait flow shop scheduling problem variant was studied by [Hsu et al.,

2003] to tackle the allocation problem in an ambulatory surgical centre, while considering the

PACU capacity. The two-stage were represented by OR with independent and non-identical

surgeons for the first stage, and PACU for the second stage. They developed a tabu based

heuristic to solve the two sub-problems iteratively: the objective of the first one is to determine

the minimum nurses number required in a single PACU so that the completion time of the last

patient is less than a pre-determined threshold; in the second sub-problem, the objective is

to minimize the makespan given a fixed number of nurses. They tested their method on real

data from an ambulatory surgical centre in a university hospital and showed that it finds near

optimal solutions.

The impact of sequencing rules on PACU and ORs is tested in [Marcon and Dexter, 2006].

The authors applied seven sequencing rules (some are borrowed from the classical scheduling

theory) to each surgeon’s list of cases independently. The behaviour of the different rules

has been tested using discrete event simulation, while considering the PACU completion time,

delays in PACU admission, PACU staffing and ORs over-utilization performance measures. The

results showed that the Longest Cases First (LCF) rule performs the worst, generates more

over-utilized ORs, requires more PACU nurses each working day and generates more days with

at least one PACU admission delay.

In addition to the PACU resource, the authors in [Latorre-Núñez et al., 2016] considered

the surgery required resources. They formulated an integer linear programming model for the

sequencing problem and developed a genetic algorithm based metaheuristic and a constructive

heuristic to solve the problem. One interesting point was investigated in [Augusto et al., 2010],

where patients are allowed to recover in the operating room if no recovery room was available

at the end of his/her surgery. The authors modelled the problem as a 4-stage hybrid flowshop

problem with blocking constraints and solved it using Lagrangian relaxation method. They

tested their approach against not allowing the recovery in OR on randomly generated instances.

Non-deterministic static AllocSP

Very few researches were done on the robust version of the allocation problem. In [Denton

et al., 2007], the authors proposed a stochastic optimization model and three practical heuris-

tics for computing OR schedules. They focused on the effects of sequencing surgeries and
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scheduling start times in a single day single OR environment. The tests were made on real

instances from a local hospital and the results show that it is possible to generate substantial

reductions in total surgeon and OR team waiting, OR idling, and overtime costs.

2.4.3 Advanced and allocation scheduling problem

The decomposition of the SCS problem into two sub-problems ( AdvSP and AllocSP) is motivated

by the need to reduce the problem complexity. The AdvSP, which is generally treated as a

generalized bin-packing problem with unequal bins, has a strong NP-hard complexity as shown

in [Hans et al., 2008]. In addition, the allocation step is argued in [Cardoen et al., 2009b] to

be also an NP-hard problem.

Such decomposition leads to significant disadvantages, as pointed out by [Cardoen et al.,

2009a]: the quality of the achieved surgeries sequence in the allocation scheduling step de-

pends heavily on the quality of the achieved surgeries assignment that was generated in the

advance scheduling step. The reason for this is that the sequencing is bound by the previous

assignment decisions, which were made without considering the objectives of the sequencing

step. This claim is also supported by the work of [Jebali et al., 2006], where the authors

show that allowing some degree of modification to the previous assignment of surgeries leads

to better results in the sequencing step, but this comes at the price of higher computational

times.

To avoid such disadvantages, many researchers proposed approaches that solve the ad-

vance and allocation scheduling sub-problems at the same time in a single procedure. We will

refer to this problem as the Advanced and Allocation Scheduling Problem (AASP).

Deterministic static AASP

Some research studies address the two sub-problems with the deterministic and static settings.

For example, in [Roland et al., 2006] the authors proposed a mathematical model based on the

literature classical resource constraint project scheduling model that aims at minimizing the

overtime and operating costs of ORs. Their model takes into account the renewable resources,

such as surgeons, nurses and anaesthetists, and the non-renewable resources, such as sterile

materials and pharmaceuticals. They developed a genetic-algorithm approach to solve the

problem and tested it on real instances from a Belgian hospital. More recently, the same authors

proposed a modified version of their previous model in [Roland et al., 2010] that focuses on

human resources availability by allowing renewable resources (nurses and anaesthetists) to

leave the surgery before its end based on a consumption rate. In their work, they Similarly

to their previous approach, they developed a genetic-algorithm approach to solve the problem

and tested it on real instances from a Belgian hospital.

The Integrated Physician (surgeon) and Surgery Scheduling Problem (IPSSP) was pre-

sented in [Van Huele and Vanhoucke, 2014], where surgeries can only be performed in a

predefined set of ORs by a pre-specified number of surgeons (based on their skills). In their

work, the authors developed a MILP formulation for the problem based on the most frequently

observed objective (overtime) and restrictions of the surgery scheduling and the physician

rostering problem in the literature (recovery beds and staff availability). They analysed the

schedules by relaxing both surgeon and surgery constraints and then measured the effects of
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integrating the surgeon preferences on the surgery schedule. Their experimental results al-

lowed to make a ranking system for the surgery and surgeon constraints, where the constraints

at the bottom of the ranking list can be satisfied more easily without disrupting the surgery

schedule.

One of the very few papers that included medical devices sterilisation aspect in the prob-

lem is [Beroule et al., 2016], where the authors propose several metaheuristics (genetic al-

gorithm, particle swarm optimisation, and tabu search) to solve an advanced and allocation

scheduling problem including the medical device sterilisation step with the objective of min-

imising the number of medical devices required at the same time to respect a schedule.

Deterministic dynamic AASP

More studies can be found concerning the deterministic dynamic version of the advanced and

allocation problem. Some researchers tend to solve the problem in two steps, where a step

corresponds to each sup-problem ( AdvSP and AllocSP). For example, the authors in [Fei et al.,

2006] considered a Block-Scheduling strategy and formulated a binary programming model for

the weekly AdvSP and solved it using Column-Generation-Based Heuristic (CGBH) that assigns

surgeries to pre-determined time blocks with the objective of minimizing the overtime costs.

The daily AllocSP was formulated as a flow shop scheduling problem that aims to minimize

the cost of ORs and recovery rooms and solved using a hybrid genetic algorithm. They tested

their approach on randomly generated instances and obtained good quality solutions. Later

on, the same authors formulated a multi-objective mathematical model in [Fei et al., 2010]

that aimed at minimising both overtime cost in the operating theatre and unexpected idle

time between surgical cases, while maximising the ORs utilization to solve the problem in

the same Block-Scheduling setting. The weekly AdvSP is formulated as a set-partitioning IP

model that is solved by a CGBH, using a tabu search procedure. Then the daily AllocSP, which

takes into account account the recovery beds’ availability, is solved as a two-stage hybrid flow-

shop problem by a hybrid genetic algorithm (similar to their previous approach in [Fei et al.,

2006]). The experiments were conducted on real data from a Belgian university hospital and

the results show that the obtained surgery schedules using the proposed method have less

idle time between surgical cases, much higher utilisation of operating rooms and produce less

overtime.

Moreover, the authors in [Jebali et al., 2006] also solved the problem in two steps. The

first step consists of assigning surgical operations to operating rooms while minimizing the

overtime, under-time and patient waiting times. The second step is formulated as a two stage

hybrid flow shop and consists in sequencing the assigned operations while considering various

resource-related constraints (e.g. recovery beds) in order to improve the overall ORs usage.

Two strategies for the sequencing step are presented, where in the former, surgeries assign-

ment to ORs obtained from the first step is not reconsidered, whereas in the latter, the process

is less constrained by allowing to redefine the surgeries assignment to ORs. Their experiments

were performed on a set of randomly generated instances and show good performance of the

operations sequencing without reconsidering the assignment problem as well as the accuracy

of the assignment step in terms of patients selection while minimizing total cost.

Other researchers used a one step approach to solve both sub-problems in a single unified

procedure. A local search method based on iterated local search and variable neighbourhood

descent was presented in [Riise and Burke, 2011] to solve the problem. The algorithm uses
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simple Relocate and Two-Exchange neighbourhoods. The authors also analyse the search space

associated with these move operators for three typical fitness surfaces that represent different

compromises between surgeon overtime, patient waiting time, and waiting time for children in

the morning of the surgery day. The method showed good results when tested on real instances

from a Norwegian hospital. In [Guinet and Chaabane, 2003], the authors proposed a model

that divides each OR day into 8 periods. The authors considered the staff and equipment

availability, with the objective of minimising the total overtime and patients’ waiting times, and

they solved the problem using a primal-dual heuristic. The experiments were conducted on

generated data and showed good results.

Another method was presented in [Marques et al., 2012]. The authors allocate along a

weekly time horizon elective surgical cases to a specific time period in a day at a certain OR

with the objective of maximizing the utilization of surgical suits. The authors developed a MILP

for the problem with an improvement heuristic that improves the non-optimal solutions. The

experiments were done on instances from a local hospital in Lisbon and the results show that

the addition of an improvement heuristic improved almost all non-optimal solutions.

Moreover, the authors in [Dexter et al., 2000] proposed a method to schedule surgeries

to ORs while minimizing the staffing costs and taking into account the preferences of surgeons

and patients regarding the date and time of the case. They suggested the use of an ”overflow

block time”, which refers to a time block reserved for surgeons who can not schedule all their

surgeries in their regular reserved shifts. The authors tested their approach using computer

simulation and the results showed that the use of the overflow time block provided surgeons

and patients more flexibility, while increasing OR staffing costs slightly over the minimum

achieved using regular shifts strategy. Furthermore, the authors of [Everett, 2002] proposed a

simulation model to schedule patients from a waiting list to operating rooms. Their goal was to

provide a tool that will respect the budget limits at the hospital described as the opening hours

and the number of recovery beds while also minimizing the waiting time of patients from the

waiting list based on the urgency of their surgery. Similarly, the authors in [Niu et al., 2011]

proposed a simulation model to analyse the performance of operating rooms by scheduling

surgeries to ORs and detecting possible bottlenecks from the number of available resources.

Finally, the authors in [Vali Siar et al., 2017] developed a MILP to solve the scheduling

(both AdvSP and AllocSP) and rescheduling problem. In their work, surgeries are scheduled

one day in advance. They assumed that surgeries exact durations are know in advance and

they considered the recovery beds resources. Their objective was to minimize the tardiness,

idle time, and overtime. In addition, they assumed that surgeries are assigned to a specialty

instead of a single surgeon, thus any surgeon from that specialty can perform the surgeries

assigned to his/her specialty.

Non-deterministic static AASP

Concerning the robust static version of the problem, the authors in [Lamiri et al., 2008b] pro-

posed a stochastic mathematical programming model and a CG approach to solve the elective

surgery scheduling problem where emergency patients can arrive randomly. The objective of

the method is to minimise patient-related costs and the expected operating rooms’ utilization

costs. Their approaches reported solutions within 2% of the optimum in short computation

times for their instances.

Furthermore, the authors in [Min and Yih, 2010b] considered the problem of scheduling
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a set of elective surgeries to ORs with downstream capacity constraints with stochastic surgery

durations and stochastic length of stay at the ICU unit. The authors proposed a stochastic

optimisation model and solved the problem using a sample average approximation method

while minimizing the total of patient related costs represented by their length of stay at the

ICU and overtime costs. The tests were conducted on slightly modified real data and the results

show promising values in terms of overtime and patients costs. By contrast, the authors in

[Neyshabouri and Berg, 2017] proposed a two stage robust optimization model to address the

uncertainty in surgeries durations and length of stay in the intensive care unit after the surgery

with the objective of minimising patients assigning costs (patient priority and waiting time),

the total overtime, and the total cost of lack os ICU capacity. They propose an adapted column-

and-constraint generation method to obtain exact solutions for the proposed formulations. The

tests were conducted over generated data and show potential for the model to manage multi-

stage care operations.

In [Wang et al., 2014], the authors proposed a stochastic model with the goal of minimiz-

ing the total costs of opening ORs and overtime. They developed a CGBH to solve the integer

programming problem. They tested their approach on randomly generated instances and the

results show that the CGBH method was able to obtain results within a 5% gap of the lower

bound obtained by the linear program for large scale problems that can not be solved using

the solver.

Non-deterministic dynamic AASP

Finally, some researchers studied the non-deterministic dynamic variant of the problem. In

[Persson and Persson, 2009], the authors proposed an approach using simulation including

optimization to schedule patients to ORs from a waiting list while considering the uncertainty

in surgeries durations. Their objective is to minimize the patient related costs for delayed and

cancelled (outsourced) patients and the hospital related costs expressed as extra beds and

staff overtime. Experiments were carried over instances from a local hospital in Sweden and

the results shows that it is possible to reduce the waiting time for patients by around 16 weeks.

Whereas in [Saadouli et al., 2015], the authors considered the problem of scheduling surgeries

to ORs from a waiting list while taking into account the recovery phase for each patient on one

of the limited recovery beds and the stochastic aspect of surgeries durations. They propose

an approach in which a slack is given to each surgery in the waiting list and then a knapsack

model chooses the surgeries for a given day from the list. Finally, the assignment of these

surgeries to the ORs is done using a mixed integer programming model with the objective of

minimizing the makespan and patients’ waiting times.

Different stakeholders perspectives were taken into account in [Marques and Captivo,

2017]. The authors proposed three mixed integer linear programming models. The first one

focuses on the management needs as the objective is to maximise the use of the OR time,

while the second model focuses on surgeons perspective with a morning shifts objective of

minimising the waiting time for surgeries and an evening shifts objective of maximising the

use of available resources and number of scheduled surgeries. The last model provides a

middle ground with the administrative objective being used for the morning shifts and the

surgeons objective for the evening shifts. In addition, the authors compare the results of the

deterministic versions with a robust one that they developed based on the objective functions

presented in each version of the models.
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In [Bowers and Mould, 2004], the authors developed a simulation approach to maximize

the utilization of the ORs and minimize the overtime. In addition, they proposed a model with

a number of approximations and showed that the model offers competitive results to their

simulation approach. In addition, the authors in [Lamiri et al., 2008a] proposed a stochastic

mathematical programming model to solve the surgical case scheduling problem combining

the elective surgeries that can be planned in advance and the emergency surgeries that arrive

randomly and have to be performed at the day of arrival. Their objective is to minimize the sum

of elective surgeries related costs and operating rooms overtime costs. They also proposed a

Monte Carlo optimization method that combines the Monte Carlo simulation and Mixed Integer

Programming and showed that this method is proved to converge to a real optimum as the

computation budget increases.

2.5 Synthesis and analysis

This section provides a summary of the discussed literature on the surgical case scheduling

problem. Tables 2.1, 2.2, and 2.3 classify each reference according to:

• The sub-problem it solves: whether advanced scheduling, allocation scheduling or both.

• The setting of the solved problem: Deterministic Static (DS), Deterministic Dynamic (DD),

Non-deterministic Static (NS), or Non-deterministic Dynamic (ND).

• The considered resources constraints:

1. Recovery beds

2. Pre-operative beds

3. ICU

4. Equipment (e.g. medical instruments)

5. Staff

6. Instruments sterilisation

7. Others

• The considered objective function:

1. Makespan

2. Overtime

3. OR utilization

4. Patient waiting time

5. Penalty for constraint violation

6. Freeing ORs

7. Distribute load on surgeons

8. Staff satisfaction

9. Patients satisfaction

10. Management satisfaction
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11. Quality of service

12. Peak use of recovery beds

13. Total completion time

14. Objectives based on medical instruments sterilisation

15. Other

• The used solution method.
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Table 2.1: Classification of the AdvSP bibliographical references

Reference
Problem setting

Resources Objective Solution method
DS DD NS ND

[Fei et al., 2008] X - 2, 3 branch-and-price

[Fei et al., 2009] X - 2, 3 CGBH

[Hans et al., 2008] X - 2, 3, 6 constructive heuristics with local search

[Velásquez et al., 2008] X 4, 5 5 heuristic based on bin packing

[Ogulata and Erol, 2003] X - 3, 4, 7 multi-objective binary IP model

[Ozkarahan, 2000] X 3, 5 2, 3, 8 goal programming

[Dios et al., 2015] X - 8, 9 MILP based framework

[Roshanaei et al., 2017] X - 4, 6, 9 logic-based benders’ decomposition

[Molina and Framinan, 2009] X - 11 MILP

[Rachuba and Werners, 2017] X - 2, 4, 10 fuzzy optimization

[Herring and Herrmann, 2012] X - 3, 9 threshold based heuristics

[Denton et al., 2010] X - 2, 6 stochastic and robust MILPs

[Hans et al., 2008] X - 2, 3, 6 constructive and local search heuristics

[Addis et al., 2014] X - 2, 4, 5 ILP

[Addis et al., 2016] X - 4, 5 rolling horizon with ILP

[Luo et al., 2016] X - 3 rolling horizon with MILP

[Testi et al., 2007] X - 2, 15 simulation with dispatching rules

[Min and Yih, 2010a] X - 2, 4 stochastic dynamic programming

[Guido and Conforti, 2017] X - 2, 3, 15 hybrid genetic algorithm
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Table 2.2: Classification of the AllocSP bibliographical references

Reference
Problem setting

Resources Objective Solution method
DS DD NS ND

[Sier et al., 1997] X - 5 simulated Annealing

[Cardoen et al., 2009a] X 1 5, 9, 12 MILP based approaches

[Cardoen et al., 2009b] X 1, 6 2, 5, 9, 12 branch-and-price

[Hsu et al., 2003] X 1 1 tabu search based heuristic

[Marcon and Dexter, 2006] X 1 3, 5, 12 constructive heuristics

[Latorre-Núñez et al., 2016] X 1, 4, 7 1 , 13, 15 MILP

[Denton et al., 2007] X - 2, 3, 8 stochastic heuristic

[Augusto et al., 2010] X 1, 7 1 lagrangian relaxation method for a 4-stage
hybrid flowshop with blocking constraints

Table 2.3: Classification of the AASP bibliographical references

Reference
Problem setting

Resources Objective Solution method
DS DD NS ND

[Roland et al., 2006] X 4 2, 6 genetic algorithm

[Roland et al., 2010] X 4, 5 2, 6 genetic algorithm

[Riise and Burke, 2011] X - 2, 9, 15 local search

[Guinet and Chaabane, 2003] X 4, 5 2, 9 primal-dual heuristic

[Marques et al., 2012] X 1 2, 3, 15 MILP with improvement heuristic
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Table 2.3: Classification of the AASP bibliographical references

Reference
Problem setting

Resources Objective Solution method
DS DD NS ND

[Fei et al., 2006] X 1 2, 3 CG for the advanced scheduling and hybrid
genetic algorithm for the allocation part

[Fei et al., 2010] X 1 2, 3, 15 tabu search heuristic for the advanced
scheduling and hybrid genetic algorithm for
the allocation part

[Van Huele and Vanhoucke,
2014]

X 1, 5 2 MILP

[Jebali et al., 2006] X 1 2, 3, 4 MILP

[Min and Yih, 2010b] X 3 2, 15 sample average approximation

[Lamiri et al., 2008b] X - 2, 3, 15 stochastic LP and CG

[Persson and Persson, 2009] X 1 2, 15 simulation-based optimization

[Saadouli et al., 2015] X 1 1, 4 knapsack model with dynamic programming
and bi-objective MILP

[Neyshabouri and Berg, 2017] X 3 2, 4, 15 adapted column-and-constraint generation

[Marques and Captivo, 2017] X - 3, 4, 15 MILP

[Bowers and Mould, 2004] X - 9 monte carlo simulation

[Dexter et al., 2000] X - 9, 10 simulation method

[Everett, 2002] X 1 4 simulation method

[Lamiri et al., 2008a] X - 2, 4, 15 monte carlo simulation and MIP

[Wang et al., 2014] X - 2, 6 CGBH

[Vali Siar et al., 2017] X 1, 2 2, 6 MILP

[Beroule et al., 2016] X 6 15 genetic algorithm, particle swarm optimisa-
tion, and tabu search

5
3



From this summary of the studied literature, it is clear that the SCS problem is a very

varied problem. This variance is mainly related to the differences in hospitals work-flows and

stakeholders preferences. In addition, the used methods in the literature to solve the problem

are vary varied as well.

Starting with the AdvSP (Table 2.1), we can see that the majority of the researchers opted

not to consider any resources. This is due to the fact that resources are usually considered in

the allocation scheduling step where the start and end time of each surgery will be known, and

thus resources violations can be measured. Moreover, we can distinguish the most considered

objectives to be the overtime, OR utilization, and patients’ waiting time.

Moving to the AllocSP (Table 2.2), we can note the absence of any dynamic setting con-

siderations. This is due to the fact that at this step, the set of considered surgeries and their

assignment to ORs is already known. Moreover, most researchers focus in this problem on

the recovery beds constraint (e.g. PACU and ICU). This also is reflected on the considered

objectives as most researches consider the minimisation of a penalty for constraint violations

in addition to the makespan objective.

Finally, we can note that the majority of the research done on the SCS problem considers

the AASP (Table 2.3). Moreover, the most considered constraints are the recovery beds and

the most considered objectives are the overtime, the ORs utilization, and freeing ORs. Despite

the huge impact for the surgery department over the whole hospital, most researchers studied

did not consider the non-deterministic version of the AASP. This is not true in most cases as

most hospitals operate in dynamic on-line environments where patients keep arriving to the

hospital for surgery and some inevitable real-time events may cause a change in the schedule.

These events are usually caused by the change in the estimated duration for the surgery due

to some complications. A good view for the gap between scheduling theory and practice is

shown in [Cowling and Johansson, 2002] where they show also that scheduling models are not

making use of real-time information.

In addition, one major component of the SCS problem that lacked behind in terms of

researchers attention is the medical instruments sterilising process. This claim can be further

supported in Tables 2.1, 2.2, and 2.3, where the only researches that considered the steriliz-

ing step are [Beroule et al., 2016, Cardoen et al., 2009b]. As we explained before, medical

instruments are an important resource that is available in limited quantities, and any delays

in providing the required instruments at the time of the surgery can cause delays and even

surgery cancellation.

The work reported in this thesis concerns the AASP of the CHU, where the consideration

of the medical instruments sterilisation is a big priority. As we can note from this summary,

there are to the best of our knowledge only two articles that consider resource 6 (Instruments

sterilisation), with only one of these two articles that treats the AASP problem. Thus, the

importance of this work is justified from the fact that none of the reported articles in the

literature treats the AASP while considering all proposed objectives by the CHU.
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2.6 Conclusion

In this chapter, we reviewed the literature on the operating rooms planning and scheduling

problems. In the review, we visited the 3 decision levels that make the problem. We then

focused on the operational level as it is where our problem resides. Next, we explored the

two sub-problems that combine the SCS problem (AdvSP and AllocSP) and explained that

decomposing the problem and solving each sub-problem individually negatively affects the

quality of obtained solutions. For this, we explored the literature for the approaches that solve

both sub-problems in a single step (AASP). Finally, we presented a summary and synthesis for

the presented literature, where we showed that there are no existing researches in the literature

that cover the needs of the CHU, while considering the medical instruments sterilisation step.

In the rest of this thesis, we will solve the SCS problem of the CHU by simultaneously

solving the Advanced and Allocation Scheduling Problem (AASP). We will consider both the

medical instruments resource and the sterilising step, while taking into account the dynamic

and non-deterministic aspects of the problem. For the sake of clarity, we classify the 4 con-

tributions of this thesis based on the evolution of available data over time (static or dynamic)

and the quality of the data (deterministic or non-deterministic) in Table 2.4.

Chapter
Problem setting

Resources Objective
DS DD NS ND

Chapter 3 X 4, 6 2, 6, 14

Chapter 4 X 4, 6 2, 4, 14, 11

Chapter 6 X 4, 6 2, 6, 14

Chapter 7 X 4, 6 2, 4, 14, 11

Table 2.4: Thesis chapters position
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PϻЌЎ II

The Deterministic Surgical case

scheduling problem
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CЂϻЊЎϿЌ 3

DϿЎϿЌЇЃЈЃЍЎЃϽ SЎϻЎЃϽ SЏЌЁЃϽϻІ

CϻЍϿ SϽЂϿϾЏІЃЈЁ ЊЌЉϼІϿЇ

3.1 Introduction

In this chapter, we will tackle the deterministic and static (DSSCS) problem of the CHU in

which the surgeries and their durations are known in advance. The goal is to schedule a set

of surgeries on a given time horizon while minimizing several objectives. According to the

CHU, the first objective is to minimize the total overtime of the staff members of the OSU.

The second objective consists in minimizing the number of used operating rooms, and finally

the third objective is to keep the number of urgent and priority kits as low as possible. The

following section presents two approaches to solve the problem.

First, we start by defining formally the problem. Then, we prove that the problem is

NP-hard, and we propose a mathematical formulation and a constructive heuristic method to

solve it. Finally, we show the numerical experiments and compare our planned schedules with

the one of the OSU.
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3.2 Formal problem presentation

The problem consists in scheduling O surgical operations using K types of kits and performed

by S surgeons in R operating rooms on an horizon of T days.

In this problem, each surgeon s must perform a set λs of surgeries and is assigned to

work on specific days in specific rooms (with parameter δsrt = 1 if surgeon s can use room r on

day t, and 0 otherwise). For each surgery i we know its duration pi in minutes, its type (we set

parameter ai = 1 if surgery i is ambulatory, and 0 otherwise), and its required quantity qik of

each type of kits k. And for each kit type k, we know the number Qk of available kits for this

type.

Starting from the different kits reusing conditions listed in Chapter 1, we can observe

that some of the pick-up hours, although they allow to distribute the load on the SU, do not

have any impact on surgeries schedule. For example, all kits collected at 11:30, 13:00 and

14:30 will be reusable from the same hour the next day. Thus, we can consider only the pick-

up shuttle of 14:30. We can also ignore the pick-up shuttle of 17:30 and 18:30 as the kits

collected at these hours will be reusable at the same hour as those collected at 7:00 the next

day. Furthermore, since used kits must be pre-disinfected for 30 minutes at the OSU after a

surgery, a kit can be collected by a shuttle if the surgery that used it ends at least 30 minutes

before the shuttle hour. This leads us to consider the pick-up “preparation limits” at 14:00 and

15:30 instead of the actual pick-up times of 14:30 and 16:00.

Similarly, for the delivery shuttles, the one of 17:30 can be ignored since no surgery is

supposed to start after 17:30. We can also assume that the first delivery shuttle arrives at

8:15 (room opening) instead of 7:00.

8:15 17:0014:00 14:30 15:30

1 2 3 4

rooms 1 & 2 closingroom 3 closingOSU rooms opening

pickup

delivery

pickup prep’ pickup prep’

delivery

Figure 3.1: The four periods of an operating room.

From these key hours, we propose to divide the working day into J = 4 periods, as shown
in Figure 3.1. In terms of periods, the different kits reusing conditions listed in Section 1.6

become:

1. A kit used for a surgery that ends in period 1 of day t is collected by the shuttle of 14:30

and:

• It cannot be used again in period 2, 3 or 4 of day t (thus a kit cannot be used more

than once in any given day).

• It can be used again for another surgery that starts in period 1 or 2 of day t + 1. In
that case, the kit will be considered as a priority kit in the OSU (case 1).

• If it is not treated as a priority, it can be used again for another surgery that starts

in period 3 or 4 of day t + 1.
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2. A kit used for a surgery S1 that ends in period 2 or 3 of day t is collected by the shuttle of

16:00 and:

• It cannot be used again in period 4 of day t.

• It can be used again for another surgery S2 which starts in period 1 or 2 of day t + 1.
In that case, the kit will be considered as an urgent kit in the OSU.

• If it is not treated urgently, it can be used again for another surgery S2 which starts

in period 3 or 4 of day t + 1.

3. A kit used for a surgery S1 that ends in period 4 of day t is collected by the shuttle of 8:15

on day t + 1 and:

• It cannot be used again in period 1 and 2 of day t + 1.

• It can be used again for another surgery S2 which starts in period 3 or 4 of day t + 1.
In that case, the kit will be considered as a priority kit in the OSU (case 2).

• If it is not treated as a priority, it can be used again for another surgery S2 which

starts in any period of day t + 2.

This interaction between period of surgeries and kit reuse can be summarized as shown in table

3.1.

End of kit utilization on day t
Next possible reuse on day t + 1

Period 1 Period 2 Period 3 Period 4

Period 1 Priority kit (case 1) Priority kit (case 1) Normal Normal

Period 2 or 3 Urgent kit Urgent kit Normal Normal

Period 4 - - Priority kit (case 2) Priority kit (case 2)

Table 3.1: Reusing conditions for the kits.

For each room r and each day t, the length of period j in minutes is denoted by dj
rt (0

if the room is closed that day and cannot be used). For added convenience, the parameter

dbf
rt =

∑j=f
j=b dj

rt will specify the total duration from period b to period f of day t for room r.

Finally, priority kits and urgent kits are penalized through respective cp and cu unit costs.

From the problem description, we have the following constraints:

• All surgical operations must be scheduled.

• Each surgeon can only perform surgeries in a room if he is allowed to use the room on

that day.

• Each day, a surgeon can use at most one room.

• Each day, the overtime in each room cannot exceed εmax.

• Ambulatory surgeries must finish before time limit Amax.
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• Quantities of resources (kits) must be respected, taking into account the reusing condi-

tions given in Table 3.1.

The objective is to schedule all the surgical operations in order to minimize the total over-

time, the total number of rooms opened, and the total penalties of emergencies and priorities

in the SU.

We will solve the problem in 3 steps:

1. In the first step, we seek to minimize the overtime (in minutes) in order to be able to

schedule all the surgeries on the planning horizon.

2. Then, we schedule all surgeries while minimizing the total number of rooms opened,

allowing the minimum overtime found in step 1.

3. Finally, we schedule all surgeries while minimizing the total penalties of urgent and priority

kits at the SU without exceeding the number of opened rooms found in step 2 nor the

total overtime from step 1.

3.3 Proof of complexity

Proposition 1:

SCS is NP-hard

Proof : We will show that a simplified version of SCS is an NP-hard problem starting

from the 3-PARTITION problem. More precisely, we will consider the decision version of

the two problems.

SCS simplified version : We will consider the problem SCS′ ; a particular case of SCS

with only 1 OR, 1 surgeon, a horizon of length m, 1 period per day, n number of surgeries

to schedule, and no kits.

SCS′ associated decision problem, DSCS′ : Given an instance of SCS′, is there a

valid schedule for the instance with no overtime?

3-PARTITION decision problem : Let us consider an integer B, a set A = {a1, a2, ..., an}
of n = 3m integers such that the following relations hold:

n∑
i=1

ai = mB

B

4 < ai <
B

2 , ∀i ∈ {1, ..., n}

Can A be partitioned in m subsets A1, A2, ..., Am such that the sum of the numbers in each

subset is equal to B?

1. It is clear that SCSd ∈ NP : A proposition of a YES solution is polynomially

verifiable (given a schedule, it is easy to check the amount of overtime).
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2. Polynomial construction of an instance ofDSCS′ starting from a 3-PARTITION

instance .

Our reduction will assign an instance I ′ of the SCS to any instance I of 3-PARTITION

as follows:

• We have only one room (R = 1) used by one surgeon (S = 1) available for T = m

days.

• Each day has only one period (J = 1) and the legal duration of a day is set to B

(we have d1
1t = B for all days t).

• There are no kits (K = 0).

• We are given m operations to be scheduled over the planning horizon with pi = ai

for each operation i and there are no required kits.

It is clear that this construction is polynomial.

3. There is a solution for I ′ with no required overtime if and only if there exists

a 3-PARTITION of A.

If we consider a 3-partition A1, A2, ..., Am of A such that the sum of the numbers in

each subset is equal to B, we can clearly plan to schedule each operation i related

to given ai ∈ Ak to the corresponding day k. Since the duration of each day is set to

B, then we clearly have no overtime over the whole planning horizon.

4. There exists a 3-PARTITION of A if and only if there is a solution for I ′ with

no required overtime

Let us assume that we are given a solution I ′ with no overtime. We can partition A

into m subsets, assigning ai into subset Ak if operation i is scheduled on day k. Since

there is no overtime, the sum of the numbers in each subset must be lower or equal

to B and we have a 3-PARTITION of A.

5. Conclusion : we have a reduction from 3-PARTITION to SCS′. Thus, the particular

case SCS′ of SCS is NP-Hard, and hence, SCS is NP-Hard too.

3.4 A MILP formulation

The parameters, variables and constraints of the MILP we propose are as follows.

Parameters:

T total number of days in the horizon

J number of periods in each day

K total number of kit types

O total number of operations

R total number of operating rooms
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S total number of surgeons

pi duration of operation i

λs set of operations for surgeon s

qik required quantity of kits of type k for operation i

Qk total quantity of kits of type k owned by the block

cu urgent kit penalty

cp priority kit penalty

dj
rt duration of period j of day t for room r (0 if the room is closed that day)

dbf
rt duration from period b to period f (≥ b) of day t for room r

δsrt binary parameter equal to 1 if surgeon s can use room r on day t, 0 otherwise

ai binary parameter equal to 1 if operation i is ambulatory, 0 otherwise

Amax latest time for ambulatory operations to be performed at

εmax maximum allowed overtime for any room on any given day

uγ binary parameter equal to 1 if γ = J and 0 otherwise

We introduce the following decision variables:

witr binary variable equal to 1 if operation i is scheduled at day t in room r

xbf
itr binary variable equal to 1 if surgery i begins at period b and finishes at f, on day t, in

room r

εtr integer variable representing the total overtime in room r at day t

Ltr binary variable equal to 1 if room r is used at day t

Usrt binary variable equal to 1 if surgeon s is using room r at day t

Etk integer variable representing the total urgent kits of type k at day t

Y 1
tk integer variable representing the total priority kits (case 1) of type k at day t

Y 2
tk integer variable representing the total priority kits (case 2) of type k at day t

The constraints are the following:

Constraints (3.1) ensure that all surgeries are scheduled and constraints (3.2) state that each

surgery must start and finish the day when it is scheduled.

T∑
t=1

R∑
r=1

witr = 1 , ∀i ∈ {1, . . . , O} (3.1)

J∑
b=1

J∑
f=b

xbf
itr = witr , ∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (3.2)
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Constraints (3.3) state that each day in each room no more than one surgery can be scheduled

over the time γ which separates two periods (surgeries with b ≤ γ and f > γ). In other words,

they prevent the case where more than one surgery start in a period and extend to other

periods.

O∑
i=1

γ∑
b=1

J∑
f=γ+1

xbf
itr ≤ 1 , ∀γ ∈ {1, . . . , J − 1},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (3.3)

Constraints (3.4) control the workload of surgeries for each interval of the day and each room.

The first term of constraints (3.4) calculates the total duration of surgeries that start and finish

between β and γ. The second term computes the sum, over all surgeries starting before β and

finishing after γ, of the part of the surgeries that overlap periods β to γ. The sum of the two

terms must be less than or equal to the total duration of periods from β to γ if the room is open

(plus overtime εtr if γ is the last period).

O∑
i=1

γ∑
b=β

γ∑
f=b

pi · xbf
itr +

O∑
i=1

β−1∑
b=1

J∑
f=γ+1

dβγ
rt · x

bf
itr ≤ dβγ

rt · Ltr + uγ · εtr ,

∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(3.4)

Constraints (3.5) state that a surgeon is using a room if there is at least one operation scheduled

for him in that room on that day, while constraints (3.6) state that a room is considered used

on a day if there is at least one operation scheduled in the room for that day.

witr ≤ Usrt , ∀s ∈ {1, . . . , S},∀i ∈ λs,∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (3.5)

witr ≤ Ltr , ∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (3.6)

Constraints (3.7) indicate that a surgeon is only allowed to use rooms that he is assigned to,

while constraints (3.8) ensure that each surgeon does not use more than one room each day.

Usrt ≤ δsrt , ∀s ∈ {1, . . . , S},∀r ∈ {1, . . . , R},∀t ∈ {1, . . . , T} (3.7)

R∑
r=1

Usrt ≤ 1 , ∀s ∈ {1, . . . , S},∀t ∈ {1, . . . , T} (3.8)

Constraints (3.9)-(3.10) ensure that there is enough time to sterilize each kit between two

utilizations at the OSU. Constraints (3.9) state that the number of used kits per day must

respect the available quantity of these kits. Constraints (3.10) ensure that the used kits at last

period of day t are not used at the first and second periods of the next day t + 1.

O∑
i=1

R∑
r=1

qik · witr ≤ Qk , ∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K} (3.9)

O∑
i=1

R∑
r=1

qik.

( J∑
b=1

xbJ
itr +

2∑
b=1

J∑
f=b

xbf
i(t+1)r

)
≤ Qk ,

∀t ∈ {1, . . . , T − 1},∀k ∈ {1, . . . , K}

(3.10)
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The expression of urgent kits is stated in constraints (3.11) and the expressions of priority kits

(case 1 and 2) are stated in constraints (3.12)-(3.13).

O∑
i=1

R∑
r=1

qik.

( J∑
f=2

f∑
b=1

xbf
itr +

2∑
b=1

J∑
f=b

xbf
i(t+1)r

)
−Qk ≤ Etk ,

∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K}

(3.11)

O∑
i=1

R∑
r=1

qik.

( J∑
f=1

f∑
b=1

xbf
itr +

2∑
b=1

J∑
f=b

xbf
i(t+1)r

)
−Qk − Etk ≤ Y 1

tk ,

∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K}

(3.12)

O∑
i=1

R∑
r=1

qik.

( J∑
f=2

f∑
b=1

xbf
itr +

J∑
b=1

J∑
f=b

xbf
i(t+1)r

)
−Qk − Etk ≤ Y 2

tk ,

∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K}

(3.13)

Next, constraints (3.14) ensure that all ambulatory surgeries finish before Amax. The first

part of the left term of these constraints calculates the total duration of all surgeries that are

assigned to finish in the first and second periods and the second part adds the total duration

of only the ambulatory surgeries that finish in the third period. This sum must be less than or

equal to Amax. This is due to the fact that the third period ends after Amax and thus we consider

that ambulatory surgeries are scheduled before the others in that period.

O∑
i=1

2∑
b=β

2∑
f=b

pi · xbf
itr +

O∑
i=1

3∑
b=β

ai · pi · xb3
itr ≤ Amax −

β−1∑
j=1

dj
rt ,

∀β ∈ {1, . . . , 3},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(3.14)

Constraints (3.15) states that no ambulatory surgeries finish at the fourth period.

J∑
b=1

ai · xbJ
itr = 0 , ∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (3.15)

Constraints (3.16) impose that the overtime at each room at any day does not exceed εmax.

εtr ≤ εmax , ∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (3.16)

Finally, constraints (3.17) to (3.24) define the range of the variables.

witr ∈ {0, 1} , ∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (3.17)

xbf
itr ∈ {0, 1} ,

∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R},∀b ∈ {1, . . . , J},∀f ∈ {b, . . . , J}
(3.18)

εtr ≥ 0 , ∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (3.19)

Ltr ∈ {0, 1} , ∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (3.20)
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Usrt ∈ {0, 1} , ∀s ∈ {1, . . . , S},∀r ∈ {1, . . . , R},∀t ∈ {1, . . . , T} (3.21)

Etk ≥ 0 , ∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K} (3.22)

Y 1
tk ≥ 0 , ∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K} (3.23)

Y 2
tk ≥ 0 , ∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K} (3.24)

The multiple objective functions (3.25) are taken into account by using a lexicographic

method.

First, we minimize f1 the total overtime that is required to schedule all surgeries. Then

we add the resulting value of (
∑T

t=1
∑R

r=1 εtr) as an upper bound in our model and we minimize

f2 the total number of opened rooms without exceeding the overtime found for f1. Finally,

we set the resulting (
∑T

t=1
∑R

r=1 Ltr) as an upper bound in our model and minimize f3 the total

penalty cost of urgent and priority kits without exceeding the total overtime found for objective

f1 and the total number of opened rooms found for objective f2.

Minimize Lex



f1 :
∑T

t=1
∑R

r=1 εtr ;

f2 :
∑T

t=1
∑R

r=1 Ltr ;

f3 :
∑T

t=1
∑K

k=1
[
cu · Etk + cp · (Y 1

tk + Y 2
tk)

]


(3.25)

3.5 Heuristic approach

Due to the high complexity of the problem, we propose a heuristic approach based on the one

of [Kirca and Kökten, 1994] to solve it. This method uses an iterative surgeon-by-surgeon

strategy for generating solutions to the problem.

This approach generates solutions to the Deterministic Static SCS problem iteratively.

In each iteration, a surgeon s is selected from the list of unscheduled surgeons ϑ. Then, a

schedule for λs (the list of surgeries of surgeon s) is generated by solving the MILP from the

previous section considering only the surgeries of surgeon s, while taking into account all the

fixed surgeries from previous iterations. Next, the surgeries in λs are fixed and added to the

list of fixed surgeries ζ. An outline for the heuristic is shown in Algorithm 1.
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Algorithm 1 Constructive heuristic method

1: ϑ = {1, ..., S} . define unscheduled surgeons list
2: ζ ← φ . set of fixed surgeries
3: while ϑ 6= φ do
4: Determine candidate surgeon s such that s ∈ ϑ
5: Schedule surgeries of λs using MILP from (3.4) while fixing all surgeries in ζ

. schedule surgeries of current surgeon s
6: ζ = ζ + λs . Add current surgeon surgeries to list of fixed surgeries
7: ϑ = ϑ− s . Remove current surgeon from list of unscheduled surgeons
8: end while

We tried the following dispatching rules for surgeons selecting step:

1. Highest Load Surgeons First (HLSF).

2. Lowest Load Surgeons First (LLSF).

After several tests, we found that the surgeons dispatching rule has big influence on the

quality of solution, due to the limited resources nature of the problem expressed by the number

of available kits and ORs time. Despite that the HLSF rule should theoretically work best since

surgeons with the most load affect the objectives values the most, this did not hold true as it

leads to infeasibility in most instances. This is due to the fact that surgeons with the least load

have 1-2 shifts that are shared with other surgeons with more load, and these shifts were filled

by these surgeons with more load in previous iterations. On the other hand, using the LLSF

rule yields feasible solutions for all instances. For this, we will use the LLSF rule going onward.

3.6 Experimental results

3.6.1 Test Data

In order to test our MILP, we used the 10 test instances described before in Table 1.3.

The values of the parameters are as follows:

• Latest time Amax for ambulatory surgeries : 3 p.m.

• Maximum overtime εmax allowed each day : 3 hours

• Penalty cost cu of urgent kits : 5

• Penalty cost cp of priority kits : 1

Note that the urgent and priority penalties have been evaluated by the CHU according to

the disturbance and stress perceived at the SU.

In addition, Table 3.2 shows the duration of each period in the 3 operating rooms for day

t when the rooms are open (0 when a room is closed).

The original data received from the CHU included the planned schedule (with surgeries

planned durations, i.e. the durations estimated by the surgeons at the consultation date). As

explained before in Section 1.8, some surgeries from other blocks were performed at the OSU.

We considered these surgeries by decreasing the duration of the corresponding periods at the

surgeries dates by the duration of each of these surgeries.

Our testing environment is:
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dj
rt Rooms 1 & 2 Room 3

d1
rt 5h45 5h45

d2
rt 0h30 0h30

d3
rt 1h00 0h00

d4
rt 2h30 0h00

Table 3.2: Periods duration for the ORs.

• Intel® Core™ i3-2120 @ 3.30 GHz

• 8 GB of RAM

• IBM® ILOG® CPLEX® 12.5

3.6.2 Comparison of planned schedules

In order to test the performance of our model, we ran the experiments on the instances de-

scribed in Table 1.3. We used the planned surgery durations to compare our planned schedules

with the planned schedules of the OSU described before in Section 1.8.1. The time limits for

these experiments were set to 1 hour per objective (3 hours per instance).

Month #Late ambs. #Not allowed kits

Sept. 11 5

Oct. 9 7

Nov. 5 10

Dec. 9 18

Jan. 12 12

Feb. 7 5

March 4 25

April 5 9

May 8 7

June 6 4

Average 7.6 10.2

Table 3.3: Violated constraints in the OSU’s planned schedule.

We start by comparing the violated constraints between the two planned schedules. Table

3.3 represents the violated constraints of the OSU, where the ‘#late ambs’ column represents

the number of ambulatory surgeries that end after 3 p.m. and the ‘#Not allowed kits’ column

represents the total number of kits that do not respect the reuse conditions defined in Table

3.1. These constraints were violated regularly in the original data with an average of 7.6

late ambulatories and 10.2 violated kits per month, which have a negative impact on the

performance of the CHU units and the SU in general, in addition to the delays in surgery times

while waiting for the violated kits. In both our solutions, no such constraints are violated as

they are considered as hard constraints in the mathematical model.
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Following the order of the multiple objectives, the tables below compare the three objec-

tive functions between the planned schedules acquired using our MILP and heuristic method,

and that of the OSU. In these tables, the (*) symbol represents an optimal solution found using

the MILP.

Table 3.4 compares the total overtime between the three schedules. In average, the

overtime in the schedules obtained by our MILP is around 215.5 minutes (3 hours 35 minutes)

per month, while it is 372 minutes (6 hours and 12 minutes) per month using our heuristic

method, and 804.1 minutes (13 hours 24 minutes) per month in the original data. The average

difference between the MILP and the data from the OSU is approximately 9 hours 48 minutes

per month, representing a decrease of approximately 73.2%, while the heuristic method man-

aged a decrease of approximately 53.7% (savings of 7 hours and 12 minutes per month). In

addition, the ‘max’ column shows the maximum overtime in minutes found in a day during the

considered month. Our MILP provided lower values than the solution of the OSU in 6 instances,

and the heuristic in 5 instances.

The ‘LB’ column shows the lower bound found by the MILP. These bounds represent the

inevitable overtime caused by the fact that sometimes, the total durations of the surgeries

assigned to some surgeons exceed the total duration of their shifts. We see that 6 solutions

are optimal in our schedules, and the others are very close to the lower bound (only few

more minutes). Finally, the ‘CPU’ column represents the execution time for our MILP. The

solver in the MILP approach reached the time limit of 1 hour in 4 instances. In all cases,

the big improvements in the MILP solutions happen in the first 20 minutes and very small

improvements are found in the remaining time, while the average execution time in the heuristic

method is approximately 45 seconds per instance.

Instance
OSU planned schedule MILP planned schedule Heuristic planned schedule

overtime (min) max LB overtime (min) max CPU (s) overtime (min) max CPU (s)

1 590 131 0 0* 0 16 230 59 11

2 714 176 368 384 90 3600 518 108 5

3 502 81 89 89* 23 1089 124 47 21

4 656 77 314 318 94 3600 432 117 174

5 1159 120 312 312* 123 58 605 113 6

6 1278 183 347 350 84 3600 459 122 87

7 641 109 225 232 130 3600 431 179 122

8 561 65 334 334* 106 1619 455 154 4

9 870 105 136 136* 37 1031 333 148 6

10 1070 266 0 0* 0 781 133 77 9

Average 804.1 215.5 372

Table 3.4: DSSCS planned overtime comparison (Objective 1).

Next, table 3.5 shows the number of ORs opened with the MILP, the heuristic method,

and in the original data, and also compares the room occupancy rates in the three schedules.

In the MILP schedule, we were able to reduce the number of rooms opened in 7 instances out

of 10 compared with the schedule of the OSU, while in the heuristic schedule, we managed to

reduce the number of rooms in 6 instances out of the 10. We were able to close approximately

1.9 ORs on average each month using the MILP approach and 1.1 ORs using the heuristic
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method, where these freed rooms can be used to perform more surgeries. The ‘LB’ column

shows the lower bound found by the solver concerning the rooms opened. The ‘CPU’ column

represents the execution time for our MILP and heuristic approach concerning only the rooms

opened objective. In the 7 instances where the time limit was reached in our MILP approach,

the solver found the best solution in the first 20 minutes and was unable to find a better solution

nor prove the optimality of the best found solution. We tried to increase this time limit to 12

hours without any improvements. Consequently, setting the time limit for this objective to 30

minutes appears to be a good option. On the other hand, the average execution time in the

heuristic method is approximately 38 seconds per instance.

When comparing the occupancy rates, we observe approximately 84.4% on average in

our MILP solutions, 83.6% in the heuristic solutions, and 80.9% for the OSU. In addition, the

‘Min Occ. rate’ column represents the minimum occupancy rate found in each schedule. In

our MILP schedule, 6 instances had a minimum occupancy rate greater than 50%, compared

with 2 instances with similar minimum occupancy rate using the heuristic method, and only 1

instance that had a minimum occupancy rate greater than 50% for the OSU with 4 instances

below 20%. These values show that our MILP solutions have better room load distribution than

those of the heuristic method and OSU.

Instance

OSU planned schedule MILP planned schedule Heuristic planned schedule

# opened

rooms

Min

Occ.

rate

Avg.

Occ.

rate

LB
# opened

rooms
CPU (s)

Min

Occ.

rate

Avg.

Occ.

rate

# opened

rooms
CPU (s)

Min

Occ.

rate

Avg.

Occ.

rate

1 59 27.6% 80.2% 55.1 58 3600 48.6% 81.7% 58 9 24.3% 82.2%

2 59 13.8% 77.5% 52.3 55 3600 51.6% 82.4% 57 7 36.9% 81.7%

3 48 18.3% 80.7% 44.6 46 3600 55.2% 85.4% 47 15 47.5% 85.6%

4 48 42.4% 86.5% 46.8 48 3600 40.7% 87.4% 48 114 40.6% 87.1%

5 59 28.8% 85.1% 55.2 58 3600 59.8% 83.9% 59 8 35.8% 82.3%

6 52 51.2% 83.3% 52 52* 23 51.6% 83.2% 52 105 36.1% 83.8%

7 59 34.3% 81.5% 55.3 59 3600 47.9% 84.1% 59 98 37.8% 84.3%

8 49 26.1% 82.9% 48 48* 13 63.7% 85.5% 48 7 60.2% 85.0%

9 46 11.6% 79.4% 43 43* 14 58.2% 86.0% 44 4 62.9% 84.2%

10 60 9.5% 72.3% 50.1 53 3600 49.3% 84.5% 56 8 25.9% 80.3%

Average 53.9 80.9% 52 84.4% 52.8 83.6%

Table 3.5: DSSCS planned opened rooms comparison (Objective 2).

Finally, Table 3.6 shows the total number of urgent and priority kits obtained. In the

original data, the average number of urgent kits is 6.6 per month and the average number of

priority kits is 62.6 with the average number of problem kits (urgent + priority) approximately

69.2 per month. The MILP was able to eliminate all the urgent kits and provide an average

of 3.7 priority kits per month, with a decrease of 94.65% from the OSU’s solution in the total

number of problem kits. On the other hand, the heuristic managed an average number of

problem kits (urgent + priority) of approximately 9.1 kits per month, consisting of an average

of 0.6 urgent kits and 8.5 priority kits per month with a decrease of 86.8% from the OSU’s

solution. The ’CPU’ column represents the execution times for the MILP and heuristic method

concerning only the urgent and priority kits objective. In the 3 instances where the MILP found

an optimal solution, the average execution time is 953 seconds. Following the same behaviour

as in the previous objectives, the model finds the large improvements in the solutions in the

first 20 minutes and very small improvements during the remaining 40 minutes, while the
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average execution time in the heuristic method is 70 seconds per instance.

Instance
CHU planned schedule MILP planned schedule Heuristic planned schedule

# urgent # priorities # urgent # priorities CPU (s) # urgent # priorities CPU (s)

1 2 51 0* 0* 1199 0 6 21

2 2 56 0 2 3600 1 10 12

3 8 68 0 7 3600 1 9 27

4 13 82 0 5 3600 0 15 336

5 6 68 0 9 3600 0 13 8

6 2 59 0 11 3600 0 17 134

7 28 98 0* 0* 1165 1 4 108

8 0 56 0* 0* 497 0 3 9

9 2 53 0 1 3600 2 5 11

10 3 35 0 2 3600 1 3 25

Average 6.6 62.6 0 3.7 0.6 8.5

Table 3.6: DSSCS planned urgent and priority kits comparison (Objective 3).

Although the execution times are much longer, the MILP provides results that are better

in every aspect than the heuristic. In addition, it shows that the actual schedules currently

implemented at the OSU can be improved significantly.
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3.7 Conclusion

In this chapter, we tackled the deterministic static surgical case scheduling problem of the CHU.

We started by formulating the problem and proving that this problem is NP-hard. Next, we

proposed a mixed integer linear programming formulation which is solved in a lexicographic

fashion and a constructive heuristic method to solve the problem.

First, we solved the problem with both our proposed MILP and heuristic method in order to

create the planned schedules using surgeries estimated durations. Both our results significantly

improve those of the CHU in terms of overtime and urgent kits at the SU. Moreover, the MILP

provides better results than the heuristic, but needs much longer execution times.

In the next chapter, we will tackle the dynamic nature of the CHU’s SCS problem by solving

the deterministic dynamic version of the problem, where the list of surgeries to schedule is not

known in advance.
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CЂϻЊЎϿЌ 4

DϿЎϿЌЇЃЈЃЍЎЃϽ DГЈϻЇЃϽ SЏЌЁЃϽϻІ

CϻЍϿ SϽЂϿϾЏІЃЈЁ ЊЌЉϼІϿЇ

4.1 Introduction

In the previous chapter, we solved the deterministic static version of the SCS problem. Despite

the good results that were obtained, the method itself can not be applied at the CHU because

of the dynamic nature of the problem, which comes from the uncertainty in patients arrival.

In the OSU, each surgeon is responsible for managing and fixing the date of his/her surgeries

during the consultation. This lack of global planning leads to poor resources management and

higher costs.

In this chapter, we propose an approach to solve the Deterministic Dynamic SCS problem

in which, during the consultation, the surgeons indicate only a due date for the surgeries. These

surgeries are then added to a waiting list in order to be scheduled later. In other words, we

address the problem of selecting iteratively a subset of patients from a given waiting list and

assigning them a surgery date and an OR.

The objective of this new work flow is to schedule as much patients from the waiting

list as possible, while minimizing the operational costs. For this, minimising the number of

opened rooms is not an objective any more. Instead, we will consider the patients perspective

in the form of minimising the surgeries tardiness. Hence, the considered objectives are first

to maximise the number of scheduled patients, then minimise the total overtime at the OSU,

then minimise the total cost of urgent and priority kits processed at the sterilizing unit, and

finally minimise the total tardiness of surgeries from their due dates.
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4.2 Technical background

In this section, we will provide a technical review on the dynamic scheduling problem. Due

to the scarce number of papers on the dynamic SCS problem, we will study also the dynamic

scheduling problem in production and manufacturing as both problems are similar. A review

about the dynamic scheduling problem in manufacturing can be found in [Ouelhadj and Petro-

vic, 2009].

4.2.1 Dynamic scheduling problem

In the literature, dynamic scheduling problems concern scheduling problems where the problem

characteristics change during the solving process due to real-time events. These real-time

events are classified into two categories [Cowling and Johansson, 2002, Vieira et al., 2003]

namely Resource-related and Job-related. In the case of dynamic SCS where the ORs can be

considered as machines and surgeries as jobs, example of such events are:

1. Resource-related: OR closing, staff unavailability, medical kits failure or shortages,

delays in the arrival of the medical kits, etc.

2. Surgery-related: Surgery cancellations, new surgeries arrival, etc.

Following the requirements of the SCS problem of the CHU, we are only concerned with

surgery-related events. In the next section, we will explore the different approaches proposed

in the literature to solve the deterministic dynamic scheduling problems.

4.2.2 Solution approaches

Themain solution approaches found in the literature to solve the deterministic dynamic schedul-

ing problems are called ”reactive approaches” [Aytug et al., 2005, Herroelen and Leus, 2005].

They can be classified into two categories depending on whether a base-line (starting) schedule

is generated in advance or not.

In the first category, no base-line schedule is generated in advance and decisions are

made locally in real-time [Ouelhadj and Petrovic, 2009]. Priority dispatching rules are fre-

quently used to select the next job (surgery) with the highest priority to be processed for a

waiting list that contains jobs that are waiting for the machine to be free. These dispatching

rules are quick and easy to implement and the priority of a job is determined based on the

attributes of the job and the machine. Despite the simplicity of these rules, it is hard to predict

the system performance as decisions are made locally in real-time. Thus, global scheduling has

the potential to significantly improve shop performance compared to these dispatching rules.

On the other hand, second category methods use a base-line schedule that was computed

beforehand and then implement a rescheduling strategy that reacts to real-time events. The

application of such methods leads to two main issues that need to be addressed: when to

reschedule, and how to reschedule?

• How to reschedule

There are two strategies in the literature that are used for rescheduling namely: schedule

repair and complete rescheduling [Sabuncuoglu and Bayız, 2000, Cowling and Johansson,

2002, Vieira et al., 2003].
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Schedule repair refers to some local adjustment of the current schedule and may be

preferable because of the potential saving in CPU times and the stability of the system is

preserved [Ouelhadj and Petrovic, 2009].

Complete rescheduling recreates a new schedule from scratch. In theory, complete

rescheduling might be better in reserving optimal solutions, but these solutions require ex-

pensive computation time and can lead to instability in the overall schedules. The benefits of

the schedule repair over the complete rescheduling in most reactive scheduling systems was

reported in [Sun and Xue, 2001]. In addition, the authors in [Sabuncuoglu and Bayız, 2000]

showed that schedule repair has better potential success over the complete rescheduling in

terms of schedule stability and computation times.

The problem of whether to use schedule repair or to regenerate the whole schedule from

scratch has been addressed in the literature. In [Cowling and Johansson, 2002], the authors

used utility and stability measures to estimate the performance of various schedule repair and

complete scheduling strategies, and then to select the best rescheduling strategy. On the

other hand, the authors in [Jensen, 2001] used robustness measures (efficiency and stability)

to chose the best rescheduling strategy to apply.

• When to reschedule

There are three policies in the literature regarding this issue namely: event driven, periodic,

and hybrid [Sabuncuoglu and Bayız, 2000, Vieira et al., 2003]. Both periodic and hybrid policies

are identified in the literature under the name rolling time horizon [Church and Uzsoy, 1992,

Vieira et al., 2000a, Aytug et al., 2005].

In event driven policy, the rescheduling is triggered whenever an unexpected event occurs

that changes the current system status. This is the most used policy in dynamic scheduling

approaches. In [Vieira et al., 2000a], the authors described analytical models to estimate

the performance of a single machine system under periodic and event driven rescheduling

strategies in an environment where jobs arrive dynamically. They proposed to evaluate the

performance of periodic rescheduling and event driven rescheduling using analytical models

that can easily and quickly estimate important performance measures, such as average flow

time andmachine utilization. In [Vieira et al., 2000b], they extended that study by investigating

parallel machine systems. It was shown that rescheduling frequency can significantly affect the

system performance (average flow time). A lower rescheduling frequency lowers the number of

set ups. A higher rescheduling frequency allows the system to react more quickly to disruptions

but may increase the number of set-ups.

In the periodic policy, schedules are generated at regular intervals, which gather all avail-

able information from the shop floor. The dynamic scheduling problem is decomposed into a

series of static problems that can be solved by using classical scheduling algorithms. The

schedule is then executed and not revised until the next period begins, where the planning

horizon is renewed by taking into account new information gathered from the current shop

floor status. The periodic policy yields more schedule stability and less schedule nervousness.

Unfortunately, following an established schedule in the face of significant changes in the shop

floor status may compromise performance since unwanted products or intermediates may be

produced. Determining the rescheduling period is also a difficult task.

A hybrid policy reschedules the system periodically and also when an exception occurs.

Events usually considered are machine breakdowns, arrival of urgent jobs, cancellation of jobs,
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or job priority changes. In [Church and Uzsoy, 1992], the authors developed a hybrid event

driven rescheduling policy for rescheduling in a single machine and parallel machine environ-

ment with dynamic job arrivals. Their system does rescheduling periodically. Events classified

as regular occurring between periodic rescheduling are ignored until the next rescheduling mo-

ment. However, when an event is classified as urgent, complete rescheduling is immediately

performed. The results indicated that the performance of periodic scheduling deteriorates as

the length of rescheduling period increases, while event driven method achieves a reasonably

good performance.

For the problem of the CHU, rather than individually scheduling each new surgery at the

consultation step, we propose to use a periodic rescheduling scheme. In this approach, the new

consulted surgeries will be added to the waiting list and at the end of each period (a week), we

will schedule all the surgeries from the waiting list. The goal of this change is to allow for better

global optimisation. Such approach is know in the literature as a ”Rolling Horizon approach”.

In the reminder of this section, we will provide a technical review focused on this approach.

4.2.3 The rolling horizon approach

The Rolling horizon algorithms are based on separating the scheduling problem in a sequence

of iterations, each of which models only part of the planning horizon in detail (”the detailed

time block”), while the rest of the horizon (”the aggregate time block”) is represented in an

aggregate manner [Dimitriadis et al., 1997]. In principle, this approach may produce close to

optimal solutions with a significant reduction of the computational requirements.

In [Baker, 1977], the authors conducted an experimental study of the effectiveness of

rolling horizon decision making in production planning. They noted that while most existing

formulations in the production planning literature are finite horizon models, the production

planning problems themselves occur in systems that will operate indefinitely. They suggested

that there are two principal reasons why finite horizon models might be appropriate for decision-

making in infinite horizon problems. First, the forecasts for the remote future tend to be

unreliable and are, therefore, of limited usefulness. Second, the decisions must for practical

reasons be based on limited information about the future. The purpose of their study was

to use simulation to investigate the efficiency of decisions obtained from optimizing a finite

multiperiod problem with concave costs and implementing those decisions on a rolling basis.

The study suggested, with exceptions however, that rolling schedules are quite efficient.

More recently, the authors in [Guimaraesa et al., 2015] applied the rolling horizon on

a lot sizing and scheduling problem. They decomposed the horizon in two parts: the initial

periods explicitly consider the production sequences to obtain detail schedules, while in the

remaining periods a rough plan is generated to give an estimation of future costs and capacity.

They showed that the business practice establishes that the improved models and solutions

that integrate the lot sizing and scheduling problems together are likely to be applied in a

rolling horizon basis. Only the first part of the plan is actually implemented, corresponding

to the initial time periods. The remaining part serves the purposes of estimating future costs

and capacity shortages, in order to account for their impact on the nearer decisions. They

incorporated these principles behind rolling planning on lot sizing and scheduling using two

distinct approaches. One explores the idea of an internal rolling scheduling using an implicit

time decomposition of rolling planning to be able to efficiently handle large instances. The

other focuses on the external rolling horizon defined by the successive planning steps to develop
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efficient mathematical formulations that trade-off the plans detail and the computational effort.

These two approaches share a common time structure partitioning the planning horizon into

three parts: fixed, detailed and simplified horizons (”the aggregate time block”). The fixed

horizon is associated with previous iterations of the method or previous planning steps. The

detailed horizon embeds at least all the time periods to be implemented in the next iteration and

uses an accurate model to express the problem. The simplified horizon uses an approximation

of the exact model.

The key idea of this iterative approach was detailed in [Dimitriadis et al., 1997] as:

1. The planning horizon is divided into two Time Blocks (TBs). The first TB (detailed) is

modelled through a discrete time function, while the second TB (aggregate) is done using

aggregate formulations. At the first iteration, the detailed TB spans a relatively small part

of the entire planning horizon.

2. The corresponding MILP is solved to optimality. The algorithm stops if the detailed TB

covers already the entire time horizon.

3. Some of the variables of the detailed TB are fixed to their current optimal values from the

obtained optimal solution for all following iterations.

4. Increase the size of the detailed TB by a number of time periods, and decrease the size

of the aggregate TB by an equal amount.

5. Repeat from Step (2).

One big challenge of this approach is to determine the set of variable that will be fixed

at step 3. One option is to fix all variables in the detailed TB. However, this is considered to

be unnecessarily restrictive, as the only goal of fixing variables is to reduce the computational

complexity of the MILP from step 2 in the following iterations. Since this complexity is a

function of the number of discrete decisions, then it may be sufficient to only fix these decisions

while allowing the corresponding continuous variables to vary. The second option allows for re-

assessing at each iteration any continuous decisions made at earlier iterations, which potentially

compensates for any inaccuracies caused by using the aggregate formulation.

This scheme is outlined in Figure 4.1 for a 4 week long scheduling problem. At each

iteration, the size of the detailed TB is increased by 1 week.

Figure 4.1: Rolling horizon algorithm as in [Dimitriadis et al., 1997]
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4.3 Formal problem presentation

In the current work flow at the OSU (see Section 1.5), each surgeon is responsible of scheduling

his/her own surgeries at the OSU. At the end of the consultation, the surgeons defines:

1. The date of the surgery.

2. Its estimated duration.

3. The list of required kits.

4. The type of the surgery (Ambulatory or normal).

As explain in Section 1.6, this myopic approach is responsible in particular for the large

numbers of urgent and priority kits at the SU. In order to overcome this limitation, we propose

to use a rolling horizon approach in which no actual surgery scheduling happens at the consul-

tation, but instead the surgeon defines a due date for the surgery, and the surgery is added to

a waiting list. Finally, at the end of each week t, the surgeries in the waiting list are scheduled

starting from week t + 3. This 3 weeks gap assures that patients have enough time to prepare
and organize their hospitalization.

Our rolling horizon framework consists of two elements:

1. The waiting list updater.

2. The scheduler unit.

The relationship between the two elements are described in Figure 4.2, where at each

iteration, the waiting list updater prepares the waiting list surgeries and then this list is given

to the scheduler unit in order to generate the schedule as described in Figure 4.3.

Waiting list updaterScheduler unit

Surgeries list

Schedule

New arrivals

Current list

Figure 4.2: DDSCS scheduling framework

In other words, our framework works at the end of each week t as follows (see Figure

4.3):

1. Add the surgeries consulted at the current week t to the waiting list.

2. Calculate the horizon length for each surgeon Ts based on their surgeries load and shifts.

3. For each surgeon s, schedule the surgeries in the list over the horizon starting from week

t + 3 and ending at t + Ts using a MILP.

4. Fix the surgeries that were scheduled at week t + 3 and return the surgeries that were
scheduled after t + 3 to the list.
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In this procedure, the horizon length of each surgeon is calculated as follows:

1. Calculate the current load (total surgeon surgeries planned duration).

2. From t + 3 , open shifts for the surgeon until their load is covered.

3. Increase the horizon by hs

The reason why we are increasing the length of the horizon for each surgeon by hs is

that we can’t know for sure the exact amount of shifts needed for each surgeon due to the fact

that surgeons share some ORs occasionally, which makes it impossible to calculate the exact

amount of time allocated for each surgeon.

Weeks

1 2 3 4 5 6 7 8 9 10

gap after
consultation

.....................

......................................................................

First Iter.

Second Iter.

Third Iter.

......

Final schedule

Figure 4.3: DDSCS rolling horizon scheme

4.4 Mathematical formulation

At each iteration, the scheduler unit solves the problem of scheduling all the surgeries in the

waiting list over the horizon. In other words, a set of elective patients O is to be scheduled over

a horizon of Ts days. The horizon length Ts represents the minimum number of days (shifts)

that are required for each surgeon s to schedule all of his surgeries from the waiting list. For

each surgery i ∈ O a due date di is given in addition to its estimated duration pi.

The value of the horizon length Ts can not be measured accurately since some surgeons

share some of the ORs and we can not anticipate the exact amount of time each surgeon needs

at the shared room. For this, we will introduce a form of relaxation represented in hs which

indicates the number of extra days (shifts) we add for the surgeon s over the length of his

horizon Ts in order to surely cover all of his surgeries load.

The scheduling problem is solved using a modified version of the SSCS problem MILP

presented in section 3.2. For clarity sake, the changes in the model (parameters, variables, and

constraints) are marked with a ”*”. These changes concern the addition of patients tardiness,

the exclusion of ORs number as an objective, and removing the need to schedule all surgeries.
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Parameters:

* hs number of extra shifts opened for surgeon s

* T total number of days in the horizon ( = max(Ts) )

J number of periods in day

K total number of kit types

O total number of operations

R total number of operating rooms

S total number of surgeons

pi duration of operation i

* di due date for operation i

λs set of operations for surgeon s

qik required quantity of kits of type k for operation i

Qk total quantity of kits of type k owned by the block

cu urgent kit penalty

cp priority kit penalty

dj
rt duration of period j of day t for room r (0 if the room is closed that day)

dbf
rt duration from period b to period f (≥ b) of day t for room r

δsrt binary parameter equal to 1 if surgeon s can use room r on day t, 0 otherwise

ai binary parameter equal to 1 if operation i is ambulatory, 0 otherwise

Amax latest time for ambulatory operations to be performed at

εmax maximum allowed overtime for any room on any given day

uγ binary parameter equal to 1 if γ = J and 0 otherwise

The decision variables:

witr binary variable equal to 1 if operation i is scheduled at day t in room r

xbf
itr binary variable equal to 1 if surgery i begins at period b and finishes at f, on day t, in

room r

εtr integer variable representing the total overtime in room r at day t

Ustr binary variable equal to 1 if surgeon s is using room r at day t

Etk integer variable representing the total urgent kits of type k at day t

Y 1
tk integer variable representing the total priority kits (case 1) of type k at day t
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Y 2
tk integer variable representing the total priority kits (case 2) of type k at day t

* Ci integer variable representing the completion date t for surgery i

* Ti integer variable representing the tardiness of operation i

The constraints are :

In opposition to our MILP presented in 3.4, not all surgeries here can be scheduled. For this,

Constraints (4.1) ensure that each surgery is scheduled at most once if at all.

∗
T∑

t=1

R∑
r=1

witr ≤ 1, ∀i ∈ {1, . . . , O} (4.1)

J∑
b=1

J∑
f=b

xbf
itr = witr, ∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (4.2)

O∑
i=1

γ∑
b=1

J∑
f=γ+1

xbf
itr ≤ 1, ∀γ ∈ {1, . . . , J − 1},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (4.3)

Note that we removed from constraints 4.4 the variable Ltr (binary variable =1 if OR r is opened

at day t and =0 otherwise) as minimising the total number of opened ORs is not an objective

in this MILP.

∗
O∑

i=1

γ∑
b=β

γ∑
f=b

pi · xbf
itr +

O∑
i=1

β−1∑
b=1

J∑
f=γ+1

dβγ
rt · x

bf
itr ≤ dβγ

rt + uγ · εtr,

∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(4.4)

witr ≤ Usrt, ∀s ∈ {1, . . . , S},∀i ∈ λs,∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (4.5)

Usrt ≤ δsrt, ∀s ∈ {1, . . . , S},∀r ∈ {1, . . . , R},∀t ∈ {1, . . . , T} (4.6)

R∑
r=1

Usrt ≤ 1, ∀s ∈ {1, . . . , S},∀t ∈ {1, . . . , T} (4.7)

O∑
i=1

R∑
r=1

qik · witr ≤ Qk, ∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K} (4.8)

O∑
i=1

R∑
r=1

qik.

( J∑
b=1

xbJ
itr +

2∑
b=1

J∑
f=b

xbf
i(t+1)r

)
≤ Qk,

∀t ∈ {1, . . . , T − 1},∀k ∈ {1, . . . , K}

(4.9)

O∑
i=1

R∑
r=1

qik.

( J∑
f=2

f∑
b=1

xbf
itr +

2∑
b=1

J∑
f=b

xbf
i(t+1)r

)
−Qk ≤ Etk,

∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K}

(4.10)
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O∑
i=1

R∑
r=1

qik.

( J∑
f=1

f∑
b=1

xbf
itr +

2∑
b=1

J∑
f=b

xbf
i(t+1)r

)
−Qk − Etk ≤ Y 1

tk,

∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K}

(4.11)

O∑
i=1

R∑
r=1

qik.

( J∑
f=2

f∑
b=1

xbf
itr +

J∑
b=1

J∑
f=b

xbf
i(t+1)r

)
−Qk − Etk ≤ Y 2

tk,

∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K}

(4.12)

O∑
i=1

2∑
b=β

2∑
f=b

pi · xbf
itr +

O∑
i=1

3∑
b=β

ai · pi · xb3
itr ≤ Amax −

β−1∑
j=1

dj
rt,

∀β ∈ {1, . . . , 3},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(4.13)

J∑
b=1

ai · xbJ
itr = 0, ∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (4.14)

εtr ≤ εmax, ∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (4.15)

The expression of surgeries completion date Ci is given in constraints (4.16) and expression

of surgeries tardiness Ti is given in constraints (4.17).

∗ Ci ≥
T∑

t=1

R∑
r=1

(t.witr), ∀i ∈ {1, . . . , O} (4.16)

∗ Ti ≥ Ci − di, ∀i ∈ {1, . . . , O} (4.17)

Finally, constraints (4.18) to (4.26) define the range of the variables.

witr ∈ {0, 1} , ∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (4.18)

xbf
itr ∈ {0, 1} ,

∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R},∀b ∈ {1, . . . , J},∀f ∈ {b, . . . , J}
(4.19)

εtr ≥ 0 , ∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R} (4.20)

Usrt ∈ {0, 1} , ∀s ∈ {1, . . . , S},∀r ∈ {1, . . . , R},∀t ∈ {1, . . . , T} (4.21)

Etk ≥ 0 , ∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K} (4.22)

Y 1
tk ≥ 0 , ∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K} (4.23)

Y 2
tk ≥ 0 , ∀t ∈ {1, . . . , T},∀k ∈ {1, . . . , K} (4.24)
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∗ Ts ≥ Ci ≥ 0 , ∀s ∈ {1, . . . , S},∀i ∈ {1, . . . , O} (4.25)

∗ Ti ≥ 0 , ∀i ∈ {1, . . . , O} (4.26)

The multiple objective functions (4.27) are taken into account by using a lexicographic

method.

We start by first maximising f1 the total number of scheduled surgeries from the waiting

list. We then add the resulting value of
∑O

i=1
∑T

t=1
∑R

r=1 witr as a lower bound in the model and

move to minimising f2 the total overtime required to schedule at least the number of scheduled

surgeries found in f1. We then add the resulting value of (
∑T

t=1
∑R

r=1 εtr) as an upper bound

in the model and we move to minimising f3 the total penalty cost of urgent and priority kits

without scheduling less surgeries than what was found for objective f1 nor exceeding the total

overtime found for objective f2. We then add the value of (
∑T

t=1
∑K

k=1
[
cu · Etk + cp · (Y 1

tk + Y 2
tk)

]
)

as an upper bound in our model and we minimise f4 the total tardiness of surgeries without

scheduling less surgeries than what we found in f1 nor exceeding the total overtime calculated

for f2 nor the total penalty cost of urgent and priority found for f3.

Lex



f1 : Maximise
∑O

i=1
∑T

t=1
∑R

r=1 witr ;

f2 : Minimise
∑T

t=1
∑R

r=1 εtr ;

f3 : Minimise
∑T

t=1
∑K

k=1
[
cu · Etk + cp · (Y 1

tk + Y 2
tk)

]
;

f4 : Minimise
∑O

i=1 Ti



(4.27)

4.5 Experimental results

We used the data described in Section 1.8 as a single instance to test our method. Since the

due dates of surgeries that we described in our suggested approach do not exist in the provided

data, we will use the actual dates of surgeries as due dates. The characteristics of this single

instance are as follows:

• Total number of surgeries O = 2000

• 69 OSU surgeries performed outside the block (considered for their kits).

• Horizon: 44 weeks.

• Total number of surgeons S = 15

• Due dates: actual date of the surgery.
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Since the data that we have contains the schedule from 1/9/2014 till 30/6/2015 and

we consider a gap of 3 weeks between the consultation and the start of schedule, we start

our method from 11/8/2014, where all the surgeries that were consulted before this date are

placed in the initial waiting list. Figure 4.4 shows the number of consulted surgeries per week

in addition to the number of surgeries in the initial waiting list.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

S
u
rg
e
ri
e
s
c
o
n
s
u
lt
e
d

Figure 4.4: Consulted surgeries per week (initial waiting list at 0)

We performed 4 experiments using different values for the parameters as follows:

1. Run 1: εmax = 180 min, hs = 2

2. Run 2: εmax = 180 min, hs = 4

3. Run 3: εmax = 90 min, hs = 2

4. Run 4: εmax = 90 min, hs = 4

Where:

• εmax is the maximum allowed overtime at each room r at each day t.

• hs is the number of extra shifts opened for each surgeon s.

Our testing environment is:

• CPU: Intel Core i3-2120 @ 3.30GHz

• OS: Windows 7 64 bits

• RAM: 8 GB
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• Solver: CPLEX 12.5

• Time limit: 4 hour per iteration (1 hour per objective).

Table 4.1 shows the planned schedules obtained with the 4 runs and the one of the OSU.
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Run 1 1973 5829 180 527 29.7% 81.5% 10 126 13221 121 12

Run 2 1981 3181 177 530 32% 82.5% 2 34 7279 77 9

Run 3 1966 2322 90 528 22.8% 81.6% 9 108 10874 145 11

Run 4 1974 1547 90 530 43.5% 82.2% 0 30 7516 121 9

OSU 2000 8041 266 539 9.5% 80.9% 66 626

Table 4.1: DDSCS planned schedule comparison

We start the comparison with the total number of schedules surgeries as shown in column

’# Scheduled’. In average, our method managed to schedule over the period of 10 months

around 98.7% of the total 2000 surgeries among the 4 runs with run 2 managing to schedule

the most surgeries (1981 that is around 99% of the total 2000 surgeries). Next, column

’Overtime’ represents the total overtime found in each schedule. All of our 4 runs managed to

use lower overtime than the OSU. In addition, using an εmax = 90 as in run 3 and 4 yields the
lowest overtime used in all of the schedules with run 4 decreasing the used overtime by 80.8%

over the OSU. Similarly, all of our runs has less maximum overtime since it is a hard constraint

as shown in column ’Max. overtime’. To better understand the behaviour of our model, Figure

4.5 shows the overall overtime for our solutions and the one of the OSU. From this, we can

clearly see that the overtime in our method substantially increases near the end of the horizon.

This situation should not happen in real life as there should not be an end for the scheduling

horizon.

Despite that we are not currently minimising the total number of opened ORs, the results

reported in column ’# opened ORs’ shows that our 4 runs managed to decrease the number

of used rooms by around 10 rooms on average, with run 1 managing the biggest decrease

with a total of 12 closed ORs. Note that the model was unable to use these ORs to schedule

more surgeries due to conflict in kits constraints, and the mandatory 3 weeks gap that we

are leaving between the consultation and the earliest possible date for any surgery. This can

be further justified by the fact that when giving the solver a higher flexibility margin (hs), it

managed to use more ORs to schedule more surgeries (as in Run 2 and 4). In addition, column

’Min. Occ. rate’ shows the minimum occupancy rate found at a room in each schedule. By

comparing these results, we can clearly see that using a value of hs = 4 yields the best minimum
occupancy rates as runs 2 and 4 has the highest. The same also can be said about the average

occupancy rates shown in column ’Avg. Occ. rate’, where all of our tests have better values

than the OSU, with runs 2 and 4 having the highest among all results.

Next, column ’# Urgent’ shows the total number of urgent kits and column ’# Priorities’
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Figure 4.5: DDSCS planned cumulative overtime comparison

shows the total number of priority kits found in each schedule. Following the same behaviour

of the model, using a value of hs = 4 yields the best results as run 2 managed a decrease of
94.8% for the total number of problem kits (urgent + priorities) over the schedule of the OSU,

while run 4 managed the best results with a decrease of 95.7% over the OSU. This can be

seen in depth with Figure 4.6, which shows the total number of problem kits per week for each

schedule.
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Figure 4.6: DDSCS planned cumulative urgent and priority kits comparison

Finally, we compare the tardiness of surgeries from their due dates measured in number

of days. The reason behind the huge numbers shown in the total tardiness (column ’
∑

Ti ’)

in our results is the fact that using the actual date of surgery as a due date gave a very small

margin of maneuver for most surgeries to be scheduled if any. This is also supported by the

fact that 247 surgeries out of the 2000 total surgeries (around 12.3%) have less than 3 weeks

between their consultation date and actual surgery date (due date), which makes them already
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tardy even before beginning the scheduling process. Again we can see that runs 2 and 4 have

the best results when comparing the total tardiness, maximum tardiness (column ’ Max Ti ’)

and average tardiness (column ’ Avg Ti ’), with run 2 having the lowest values for the three

criteria over all of our runs.

Through this results analysis, we can see that our method provided significant improve-

ments in the given time limit over the one currently implemented at the OSU in terms of the

total overtime used and the number of urgent and priority kits. In addition, we saw that this

method performs better when giving the model a higher flexibility margin (hs) as Run 2 and 4

performed better than the rest.
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4.6 Conclusion

In this chapter, we tackled the deterministic dynamic surgical case scheduling problem of the

CHU. Formally, the problem consists in selecting a subset of patients from a given waiting list

and assigning them a surgery date and an OR.

We started by providing a technical background for the dynamic scheduling problem and

rolling horizon method with some insights from the dynamic scheduling problem in production

and manufacturing. We then presented a formal description of the problem, where we ex-

plained the dynamic nature of the scheduling problem at the OSU and presented a new work

flow for the OSU in which, during the consultation, the surgeons indicate only a due date for

the surgeries instead of the actual surgery date as in their current work flow. These surgeries

are then added to a waiting list in order to be scheduled later. Then, we presented a MILP for-

mulation for the problem, where the objectives are first to maximise the number of scheduled

patients, then minimise the total overtime at the OSU, then minimise the total cost of urgent

and priority kits processed at the sterilizing unit, and finally minimise the total tardiness of

surgeries from their due dates. Finally, we presented our numerical experiments in the form

of planned schedules comparisons. Our method proved to be better than the current applied

approach at the OSU in terms of overtime, numbers of opened ORs, occupancy rates at the

ORs and numbers of urgent and priority kits while being able to schedule around 99% of the

total number of surgeries.
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CЂϻЊЎϿЌ 5

FЌЉЇ ЊІϻЈЈϿϾ ЎЉ ϻϽЂЃϿАϿϾ

ЍϽЂϿϾЏІϿЍ

5.1 Introduction

In chapters 3 and 4, we tackled the deterministic problem of the CHU in both static and dy-

namic settings. Our planned schedules showed great improvement over the ones of the OSU.

However, these results were obtained on the basis of surgeries durations that are not easy

to estimate. In order to better understand and analyse the performance of our methods, we

compare the achieved schedules that uses surgeries real durations for both problems with the

ones of the OSU.

In this chapter, we will start by presenting the procedure that generates the correspond-

ing achieved schedule from an existing planned one. Next, we will present and analyse the

achieved schedules obtained from the solutions of the deterministic static SCS problem and

compare the results with the ones of the OSU. In addition, we will compare any degradation

that happens between the planned and achieved schedules. We will also compare our achieved

schedules with the best case scenario obtained by running our MILP directly with surgeries real

durations.

Next, we will use the same algorithm to obtain the achieved schedules from the de-

terministic dynamic problem and compare these schedules to the ones of the OSU. Finally,

we will study any degradation that we find when comparing the achieved schedules to their

corresponding planned ones.
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5.2 Achieved schedules generating algorithm

As the name suggests, the planned schedule relies on the estimated durations before the

surgeries take place. In order to obtain the effective schedule based on the real durations,

we implemented a procedure that simulates the work process of the OSU to create the cor-

responding achieved schedule from the planned schedule. This algorithm will go through the

horizon simulating the start of each day and starting surgeries with their real durations. The

goal is to eliminate the not allowed kits situation. The procedure fixes the start of the next

surgery in the planning and allows the possibility to start the next surgery (i + 1) in place of i

if i is waiting for a kit and i + 1 is not. But, it is not possible for a further surgery to start in
place of i (i.e. i + 3 cannot start in place of i). This was done to stay true with the process of

the CHU, as patients are prepared for their surgery not more than 1 hour in advance, so later

patients in the queue (> i + 1) wont be ready to start directly.
In order to do this, we will keep track at any given time of:

• the occupancy of rooms,

• the kits current available quantities,

• the queue of surgeries to schedule (FIFO).

We will create an event queue which will hold events like:

• kit return event,

• surgery end event.

Algorithm 2 Achieved schedule simulation

1: for all t ∈ T do
2: currentT ime← 8 : 15
3: while surgeriesQueue is not empty do
4: check events queue for events happening at currentT ime
5: free resources based on the events found at currentT ime
6: pop surgeries from surgeriesQueue
7: for all surgery i ∈ poped surgeries do
8: if there is enough kits to schedule i then
9: start surgery i
10: else
11: if there is enough kits to schedule the next surgery after i in the same room
then

12: start the next surgery
13: end if
14: end if
15: create surgery end event for started surgery (also adding the 20 minutes break)
16: create kit return event for each kit for the started surgery
17: decrease available quantities of used kits
18: end for
19: currentT ime← currentT ime + 1
20: end while
21: end for

An outline for the algorithm is presented in Algorithm 2. In other word, this algorithm

consists in replacing the planned duration of each surgery with the real duration and inserting
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a break of 20 minutes between each two consecutive surgeries to clean the room (this break

is already included in the planned durations). This algorithm provides a mean of keeping track

of the current available number of each kit type and the current state of each room.

5.3 Deterministic Static SCS problem

In this section, we will focus on the Deterministic Static SCS problem. We start by presenting

and analysing the generated achieved schedules for the planned schedules from 3.6.2. We

then analyse the differences between those planned and achieved schedules.

5.3.1 Achieved schedules

Table 5.1 shows the achieved schedule of the OSU which represents what actually happened at

the CHU, Table 5.2 shows the achieved schedule obtained using the MILP, and Table 5.3 shows

the achieved schedule obtained using the heuristic method.

Instance
Violated constraints Overtime ORs Kits

#late ambs #violated kits total max #opened Min Occ. rate Avg. Occ. rate #urgent #priorities

1 14 5 1382 190 59 29.9% 79.2% 3 39

2 14 5 1692 227 59 12.9% 76% 3 44

3 6 10 1322 113 48 19% 79.3% 8 49

4 10 8 1800 98 48 44% 82.9% 14 64

5 14 5 2370 130 59 29.7% 81.9% 6 58

6 8 4 2140 201 52 50.8% 79% 1 53

7 6 13 1454 170 59 33.1% 80.6% 28 72

8 9 2 1584 100 49 23.7% 81.5% 4 46

9 10 7 1500 126 46 12.3% 77.3% 8 42

10 10 3 1930 326 60 9.9% 70.7% 4 27

Average 10.1 6.2 1717.4 53.9 78.8% 7.9 49.4

Table 5.1: OSU achieved schedule.

Instance
Violated constraints Overtime ORs Kits

#late ambs #violated kits total max #opened Min Occ. rate Avg. Occ. rate #urgent #priorities

1 4 0 979 135 58 65.1% 87.8% 0 11

2 4 0 1268 189 55 31.4% 89.7% 0 24

3 3 0 1305 156 46 55.0% 89.8% 0 14

4 9 0 1745 130 48 53.9% 90.7% 1 17

5 5 0 1990 200 58 68.3% 89.1% 0 44

6 3 0 1034 206 52 71.4% 89.4% 0 34

7 1 0 965 125 59 48.1% 89.5% 5 31

8 3 0 1014 103 48 66.3% 91.4% 0 1

9 6 0 950 137 43 75.7% 88.8% 0 7

10 2 0 1060 240 53 54.3% 87.0% 0 6

Average 4 0 1231 52 89.3% 0.6 18.9

Table 5.2: DSSCS MILP achieved schedule.
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Instance
Violated constraints Overtime ORs Kits

#late ambs #violated kits total max #opened Min Occ. rate Avg. Occ. rate #urgent #priorities

1 8 0 1604 182 58 26.6% 86.9% 0 18

2 6 0 1569 207 57 35.8% 84.6% 0 17

3 4 0 1576 158 47 57.1% 88.2% 1 13

4 12 0 1822 149 48 46.1% 90.1% 4 21

5 12 0 2116 256 59 44.8% 84.2% 1 39

6 5 0 1432 139 52 43.3% 88.8% 2 45

7 3 0 1314 226 59 47.7% 87.4% 3 44

8 7 0 1194 159 48 67.9% 86.9% 0 12

9 6 0 1349 153 44 66.3% 87.4% 2 19

10 1 0 747 325 56 23.5% 83.4% 0 18

Average 6.4 0 1472.3 52.8 86.8% 1.3 24.6

Table 5.3: DSSCS heuristic achieved schedule.

We see that the MILP decreased the number of late ambulatories by approximately 60.4%

compared with the OSU’s solution, while the heuristic method decreased it by approximately

36.6%. In addition, the OSU used 6.2 violated kits on average per month, while our method

does not allow it. Likewise, the schedules obtained using the MILP managed to decrease the

total overtime by approximately 28.3% compared with the OSU’s used overtime (savings of

approximately 8 hours and 6 minutes on average per month), and heuristic based achieved

schedules managed a decrease of approximately 14.3% (savings of approximately 4 hours

and 5 minutes). In addition, the ’max’ column shows the maximum overtime found in a day

during the month considered. In both MILP and OSU’s solutions, 4 instances had a maximum

overtime over the limit of 180 minutes set by the management of the CHU, while 5 instances

had a maximum overtime over the 180 minutes limit in the heuristic solution.

Note that the number of rooms opened does not change since our method only uses rooms

opened in the planned solution, thus the MILP schedules still save 1.9 ORs, and the heuristic

schedules save 1.1 ORs on average per month over the OSU’s solution. But, the MILP schedules

managed to achieve an average occupancy rate for the rooms opened of approximately 89.3%

which is better than the average for both the heuristic approach (86.8%) and the OSU (78.8%).

Similarly, the minimum occupancy rate found in the MILP schedules in 8 instances is greater

than 50% (compared with 1 for the OSU and 3 for the heuristic method).

Concerning the last criterion, the MILP model generated approximately 0.6 urgent and

18.9 priority kits on average (19.5 problem kits per month), while these numbers are approx-

imately 1.3 and 24.6 (25.9 problem kits per month) for the heuristic, and 7.9 and 49.4 (57.3

problem kits per month) for the OSU. Thus, the MILP model was able to decrease the number

of urgent and priority kits by approximately 65.9% compared with the OSU’s solution, while

the heuristic method managed a decrease of approximately 57.8%.

Similar to the planned schedules, we can see our achieved schedules (especially the ones

obtained by the MILP) remain significantly better than the ones of the CHU.

5.3.2 Degradation

Despite the good results acquired using our method, we can note a significant degradation

between the planned schedules and the achieved ones. This degradation is due to the big

uncertainty regarding surgeries durations as shown in Section 1.8.3.

94



schedule #late ambs #not allowed kits overtime
#problem kits

(urgent + priorities)

OSU

Planned 7.6 10.2 804.1 69.2

Achieved 10.1 6.2 1717.4 57.3

Degradation +32.9% -39.2% +113.6% -17.2%

MILP

Planned 0 0 215.5 3.7

Achieved 4 0 1231 19.5

Degradation NA - +471.2% +427%

Heuristic

Planned 0 0 372 9.1

Achieved 6.4 0 1472.3 25.9

Degradation NA - +295.8% +184.6%

Table 5.4: DSSCS degradation analysis

Table 5.4 provides a summary for the difference between the planned and achieved sched-

ules for both our MILP and heuristic methods and the OSU’s solutions. Starting with the solu-

tions of the OSU, we can see that the average numbers of late ambulatory surgeries increase

from 7.6 to 10.1 surgeries per month (+32.9%), while the average number of not allowed kits

decrease from 10.2 to 6.2 kits per month (-39.2%). Next, the average overtime increased

from 804.1 to 1717.4 minutes per month (+113.6%). Finally, the average number of problem

kits (urgent + priorities) decreased from 69.2 to 57.3 kits per month (-17.2%).

Concerning our MILP, 4 ambulatory surgeries were scheduled after 15:00 (late ambulato-

ries) on average per month, while this number in our initial planned schedule was 0. Regarding

the not allowed kits, our simulation method does not allow a surgery to start unless all required

kits are available, and thus, the average number of not allowed kits stays at 0 for both our

planned and achieved schedules. Next, the average overtime increases from 215.5 to 1231

minutes per month (+471.2%). Similarly, the average number of problem kits increases from

3.7 to 19.5 kits per month (+427%).

Finally, we note for our heuristic an average of 6.4 late ambulatory surgeries per month

(from 0 in the planned schedule), while the average number of not allowed kits is 0 similar to our

MILP results. Another quite big increase can be noted when analysing the average overtime in

the heuristic solutions as it moves from 372 to 1472.3 minutes per month (+295.8%). Finally,

the average number of problem kits increases from 9.1 to 25.9 kits per month (+184.6%).

Thus even if our solutions are indeed better than those of the OSU, we can note that the

degradations are more present in ours. In other words, the better the planned solution is, the

bigger the degradation. This probably can be explained by the fact that our solutions are more

tightly packed and consequently are more sensible to uncertainties.

In order to calibrate the quality and robustness of our solutions, we ran our model on

the instances using directly the real durations of the surgeries and included a 20 minutes gap

between consecutive surgeries.

The results of this experiment are given in table 5.5. If we compare the new results

with our original achieved schedule (table 5.2), we can see that the overtime can really be

optimised (average of 265.3 minutes per month instead of 1231) if we knew in advance the

real durations. Furthermore, it is possible to build a schedule with no problem kit nor late
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ambulatory surgeries (at the cost of using one additional room).

Instance overtime # rooms # urgent # priorities # late ambs

1 79 58 0 0 0

2 350 55 0 0 0

3 291 46 0 0 0

4 395 48 0 0 0

5 679 58 0 0 0

6 100 52 0 0 0

7 55 59 0 0 0

8 389 48 0 0 0

9 279 44 0 0 0

10 36 53 0 0 0

Average 265.3 52.1 0 0 0

Table 5.5: Achieved schedule directly from MILP

5.4 Deterministic Dynamic SCS

In this section, we will study the results of the Deterministic Dynamic SCS problem. We start

by presenting and analysing the generated achieved schedules from the planned schedules

from 4.5. We then analyse the differences between those planned and achieved schedules.

5.4.1 Achieved schedules

Following the work process of the OSU, we applied our simulation method presented in Algo-

rithm 2 to obtain the achieved schedules from the planned schedules obtained by our rolling

horizon method.

S
c
h
e
d
u
le

#
la
te
a
m
b
s

#
S
c
h
e
d
u
le
d

O
v
e
r
ti
m
e

M
a
x
.
o
v
e
r
ti
m
e

#
o
p
e
n
e
d
O
R
s

M
in
.
O
c
c
.
r
a
te

A
v
g
.
O
c
c
.
r
a
te

#
U
r
g
e
n
t

#
P
r
io
r
it
ie
s

Run 1 13 1973 13304 371 527 28.7% 86.5% 17 213

Run 2 12 1981 11346 408 530 39.3% 88.5% 2 181

Run 3 11 1966 10822 257 528 32.8% 85.9% 3 236

Run 4 12 1974 9443 258 530 45.4% 87.8% 7 152

OSU 101 2000 17174 326 539 9.9% 78.8% 79 494

Table 5.6: DDSCS achieved schedule comparison

The obtained achieved schedules are shown in Table 5.6. We start by comparing the

numbers of late ambulatory surgeries shown in column ’# late ambs’, where all 4 runs had

better results than the ones of the OSU with an average of 12 late ambulatory surgeries among
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all the runs and an average decrease of around 88.1% over the OSU. Next, the number of

scheduled surgeries doesn’t change here from the planned schedules since our simulation

method doesn’t add or remove surgeries from the planned schedule. Thus, run 2 still provides

the best results with 1981 scheduled surgeries (around 99% of the total 2000 surgeries) and

run 4 coming next with 1974 scheduled surgeries (around 98.7%).

Regarding the overtime, column ’Overtime’ shows the total overtime in minutes for each

schedule. In addition to that all 4 runs had better values than the OSU and run 4 had the best

overtime with a decrease of approximately 45% over the OSU (savings of 128 hours and 51

minutes), we can see that limiting the maximum overtime εmax per room per day to a lower

value (90 minutes instead of 180) rewards with better results as shown in runs 3 and 4 (both

had εmax = 90) compared with runs 1 and 2 (both had εmax = 180). In addition, we can see
that providing the solver with a larger flexibility margin represented by hs gives better overtime

when fixing εmax, as shown with run 2 having better results than run 1, and run 4 having better

results than run 3. Of course providing lower εmax values yields lower maximum overtime in

the end results as shown in column ’Max. overtime’ with runs 3 and 4 having the lowest values.

Similar to the number of scheduled surgeries, the total number of opened ORs shown in

column ’# opened ORs’ doesn’t change here from the planned schedules. Next, column ’Min.

Occ. rate’ shows the minimum occupancy rate found at a room in each schedule. Similar to

the planned schedules comparison, using a value of hs = 4 yields the best minimum occupancy

rates as runs 2 and 4 has the highest values, as well as a better average occupancy rates as

shown in column ’Avg. Occ. rate’ with runs 2 and 4 having the best results. In addition, all

of our schedules provided an average occupancy rate greater than the 80% goal fixed by the

CHU, which is not the case for the schedule of the OSU.

Finally, column ’# Urgent’ shows the total number of urgent kits and column ’# Priorities’

shows the total number of priority kits found in each schedule. Again, using a value of hs = 4
yields the best results as run 2 had a total number of problem kits (urgent + priorities) of

183 kits with a decrease of approximately 68% over the 573 kits obtained by the schedule of

the OSU, while run 4 managed the best results with 159 problem kits equal to a decrease of

approximately 72.3% over the OSU.

Similar to the planned schedules, we can see all of our achieved schedules still provide

significant improvements over the solution of the CHU. In addition, these achieved schedules

are coherent to the planned ones, where giving the solver a higher margin of flexibility yields

better results (as in runs 2 and 4).

5.4.2 Degradation

When comparing the differences between the planned and achieved schedules, it becomes

clear that there is a significant degradation for all 4 runs we used to test the method. Table

5.7 summarises the differences between the planned and achieved schedules for each of the

4 runs.

Starting with the overtime, we can see that all 4 runs are less robust than the OSU’s so-

lution. Of course this is justified by the fact that all 4 runs had better planned values compared

to the OSU. This can be further supported as run 2 and 4 had the best planned values and thus

suffer from the most degradation.

The same behaviour continues when comparing the total number of urgent and priority

kits, where all 4 runs had worst robustness than the CHU with run 2 and 4 having the worst
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schedule #late ambs #not allowed kits overtime
#problem kits

(urgent + priorities)

OSU

Planned 76 102 8041 692

Achieved 101 62 17174 573

Degradation +32.9% -39.2% +113.6% -17.2%

Run 1

(εmax = 180, hs = 2)

Planned 0 0 5829 136

Achieved 13 0 13304 230

Degradation NA - +128.2% +69.1%

Run 2

(εmax = 180, hs = 4)

Planned 0 0 3181 36

Achieved 12 0 11346 183

Degradation NA - +256.7% +408.3%

Run 3

(εmax = 90, hs = 2)

Planned 0 0 2322 117

Achieved 11 0 10822 239

Degradation NA - +366.1% +104.3%

Run 4

(εmax = 90, hs = 4)

Planned 0 0 1547 30

Achieved 12 0 9443 159

Degradation NA - +510.4% +430%

Table 5.7: DDSCS degradation analysis

robustness among all.

By analysing these results, one can note that similarly to the Deterministic Static SCS

results, our results are better than the ones of the OSU in every way, but suffer from degra-

dation. The same rule still holds true, where the better the planned schedule is, the more

degradation its corresponding achieved one will have. This makes it clear that a more robust

solution is a necessity in order to overcome this degradation.
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5.5 Conclusion

In this chapter, we studied the results for both the Deterministic Static SCS (from Chapter

3) and Deterministic Dynamic SCS (from Chapter 4). For each problem, we presented the

achieved schedules and provided an extensive analysis of the results and compared it with the

ones of the OSU. Our results in both problems outperformed the ones of the OSU in every

criteria. Despite this lead over the OSU, we noticed a certain amount of degradation in so-

lution qualities when comparing each of our planned schedules to its corresponding achieved

schedule.

This degradation was clear in both problems and represented a loss in solutions qualities.

In the Deterministic Static SCS, we found the effects to be more than 400% increase in the

amount of overtime and problem kits when passing from planned to achieved schedules. In the

case of Deterministic Dynamic SCS, we found similar behaviour with increases of more than

250% in most cases in overtime and problem kits. Further analyses revealed that these big

degradations are due to the big differences between surgeries estimated and real durations,

and that in both static and dynamic context, the better the planned solution is, the bigger the

degradation will be. This probably can be explained by the fact that our solutions are more

tightly packed and consequently are more sensible to uncertainties.

In conclusion, the effects of the uncertainties found in surgeries durations is too huge to

ignore. For this, we will tackle in the next part the non deterministic version of the problem,

where we will try to generate more robust schedules, less sensible to these uncertainties.
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PϻЌЎ III

The Non-Deterministic Surgical

case scheduling problem
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CЂϻЊЎϿЌ 6

NЉЈ-DϿЎϿЌЇЃЈЃЍЎЃϽ SЎϻЎЃϽ

SЏЌЁЃϽϻІ CϻЍϿ SϽЂϿϾЏІЃЈЁ

ЊЌЉϼІϿЇ

6.1 Introduction

In the previous part, we tackled the deterministic version of the OSU’s scheduling problem.

During our experiments, we found that the results obtained with our method gave a huge

competitive edge over the ones of the OSU when considering the planned schedules. This

cannot be said for the achieved schedules as our results were still better than the ones of the

OSU, but suffered from a big degradation in solution qualities. To overcome this, we will tackle

the non-deterministic version of the surgical case scheduling problem and try to build more

robust schedules against surgeries durations uncertainties.

In this chapter, we will tackle the Non-Deterministic Static Surgical Case Scheduling prob-

lem (NDSSCS) of the CHU. First, we will provide some technical background on the solutions

methods used to deal with data uncertainties. Next, we propose two robust models and com-

pare the numerical results of both models with the deterministic model and the original data.

Finally, we analyse the differences between the two models and conclude with this analysis.
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6.2 Technical review

This section provides some technical background on the solutions methods used to deal with

data uncertainties, namely stochastic programming and robust optimization. We start by in-

troducing both methods and comparing the cons and pros for each one. Then, we focus on the

robust optimization approaches and justify our choice of RO approaches for our problem.

6.2.1 Non-Deterministic Optimisation

In real life problems, it is very common that the data includes some sort of uncertainty in the

parameters values at the time a decision should be made. Of course it is possible to solve the

problem using estimated or nominal parameter values, but as seen previously in Part II, this can

lead to poor quality solutions and infeasibility in some cases. To deal with such uncertainties,

two main methodologies are used in the literature: Stochastic Programming (SP) and Robust

Optimisation (RO).

The difference between SP and RO, discussed in [Bertsimas et al., 2011], is that, contrary

to SP methods, RO approaches consider that the uncertainty model is not stochastic, but rather

deterministic and set-based. Instead of seeking to immunize the solution in some probabilistic

sense to stochastic uncertainty, these methods construct a solution that is feasible for any

realization of the uncertainty in a given set.

On one hand, SP approaches rely completely on the availability of historical data to derive

probability distributions and generate scenarios if any (as in Monte Carlo sampling and Sample

Average Approximation (SAA) methods). One of the main drawbacks of SP approaches is the

difficulty of determining the number of scenarios to compute, as a higher number of generated

scenarios leads to obtaining a better estimations quality of the uncertainties, but at the cost of

higher computational times. Moreover, it may prove difficult to fit the probability distributions

to the uncertain data. Although using SP approaches usually adds to the complexity of the

problem, it provides more flexibility when compared to RO, as it is possible to compute or

estimate the expectation function or to control the risk.

On the other hand, RO approaches require very little information about the uncertain

parameters, as it needs only a convex or discrete description of the uncertainty. In addition,

these methods are more understandable to decision makers and are often easier to implement

than the SP approaches. Despite the lower flexibility that RO approaches provide in comparison

with the SP counterpart, they prove to add less complexity to the problem and are computa-

tionally tractable if the uncertainty sets satisfies mild convexity and computability assumptions

[Ben-Tal et al., 2009]. This made the RO an attractive alternative to the SP, which can be

clearly seen in the increasing attention it is gaining lately [Cardoen et al., 2010].

The choice of which method to use in a particular problem is not always a clear one and

depends heavily on the availability of historical data. In the case of the SCS problem of the

CHU, the data provided to us lacked this historical depth, which made the choice of using RO

a logical one. This can be further supported by analysing the number of surgeries in each type

from the data provided to us by the OSU (see Figure 1.15), where 75 surgery types had less

than 5 surgeries which is not enough to derive any probability distributions for the SP methods

to function properly. In the remainder of this section, we present a more in depth technical

review of the RO, then we explore the two main approaches used in the literature for RO.
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6.2.2 Robust Optimisation

Robust optimization is a field of optimization theory that deals with optimization problems

in which a certain measure of robustness is sought against uncertainty in the values of the

parameters of the problem. Generally speaking, robust optimization is often known as worst-

case optimization as the goal is to generate a solution that is feasible for any possible realisation

of the uncertain parameters.

In the literature, there are two main approaches used to achieve such robustness in

the solutions. The first approach is through applying a classical robust formulation, while the

second approach is called Redundancy-based techniques.

Classical robust formulations

Three main formulations were presented in the literature. To compare the three approaches,

we will consider as in [Bertsimas and Sim, 2004] the following nominal linear optimization

problem:

maximise
m∑

j=1
cjxj

st.
m∑

j=1
aijxj ≤ bi , ∀i = 1...n

x ∈ X

where c = (cj) ∈ Rn, b = (bi) ∈ Rm, A = (aij) ∈ Rn.m, and X ⊆ Rm
+ .

In this formulation, the uncertainty affects only the parameter A and not the objective

function. For each row i of the matrix A, let Ji represent a set of coefficients in row i that

are subject to uncertainty. Each entry aij , j ∈ Ji is modelled as a bounded random variable

ãij , j ∈ Ji that takes values in [āij − âij , āij + âij ], where āij (referred to as the nominal value of

coefficient aij) and âij ≥ 0 are given in advance. Therefore, it exists a random variable ζij that

takes values in [−1, 1], such that:

ãij = āij − ζij âij

Then, the robust problem is equivalent to:

maximise
m∑

j=1
cjxj

st.
m∑

j=1
āijxj +

m∑
j=1

ζij âijxj ≤ bi , ∀i = 1...n

x ∈ X

• The robust formulation of Soyster

The main idea of the formulation presented in [Soyster, 1973] is that the solution must

be feasible for every possible realization ãij of the uncertain data. Thus, this formulation

yields the highest protection ”Robustness”.

maximise
m∑

j=1
cjxj

st.
m∑

j=1
(āij + âij) xj ≤ bi ∀i = 1...n

x ∈ X
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Despite the high protection that this formulation presents, it is considered too conservative

and hence the robust solution that it yields has an objective function value much worse

than the objective value of the solution of the nominal problem.

To overcome this problem, two robust formulations that are quite similar in the concept,

have been designed. Moreover, under the additional assumption of a symmetrical distri-

bution for ζij, these approaches offer a guarantee of performance.

• The robust formulation of Ben-Tal and Nemirovski

The authors in [Ben-Tal and Nemirovski, 2000] proposed the following formulation:

maximise
m∑

j=1
cjxj

st.
m∑

j=1
āijxj +

m∑
j=1

âijyj + Ωi

√
m∑

j=1
â2

ijz2
j ≤ bi ∀i = 1...n

−yj ≤ xj − zj ≤ yj ∀j = 1...m

yi ≥ 0 ∀j = 1...m

x ∈ X

In this formulation, the authors considered a spherical uncertainty set where for each

row i, the L2-norm of the deviations is bounded by a predefined parameter Ωi ≥ 0. The
main drawback of this approach is that it is a quadratic (non-linear) model which makes

it unattractive for solving robust discrete optimization models.

• The robust formulation of Bertsimas and Sim

The main idea behind the formulation presented in [Bertsimas and Sim, 2004] is to in-

troduce a parameter Γi that controls the level of ”robustness” against the level of conser-

vatism of the solution. The parameter Γi takes values in the interval [0, |Ji|]. The authors
suppose that it is unlikely that all of the aij , j ∈ Ji will change and thus the goal is to

protect against all cases that up to bΓic of these coefficients are allowed to change, and
one coefficient aij changes by (Γi − bΓic)âij.

They start by considering the following (nonlinear) formulation:

maximise
m∑

j=1
cjxj

st.
m∑

j=1
āijxj + max

{Si∪{ti}|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

{ ∑
j∈Si

âijyj + (Γi − bΓic)âitiyt

}
≤ bi ∀i = 1...n

−yj ≤ xj ≤ yj ∀j = 1...m

y ≥ 0

x ∈ X

Then they prove that this nonlinear model has an equivalent linear formulation as follows:
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maximise
m∑

j=1
cjxj

st.
m∑

j=1
aijxj + ziΓi +

m∑
j=1

pij ≤ bi ∀i = 1...n

zi + pij ≥ âijyj ∀i = 1...n, j = 1...m

−yj ≤ xj ≤ yj ∀j = 1...m

lj ≤ xj ≤ uj ∀j = 1...m

pij ≥ 0 ∀i = 1...n, j = 1...m

yj ≥ 0 ∀j = 1...m

zi ≥ 0 ∀i = 1...n

x ∈ X

One key point of this formulation is that it maintains the linearity of the problem, which

makes solving the robust counterpart as tractable as the nominal problem. Moreover, it is

less conservative than the formulation of [Soyster, 1973], as the level of conservatism can be

controlled via the parameter Γ. For this, we will test this formulation in our problem.

Redundancy-based techniques

The main goal of the Redundancy-based techniques (also called fault tolerance techniques) in

scheduling problems is to ensure that faults in the system does not cause overall system failure

[Herroelen and Leus, 2005]. This can be achieved through two main ways:

1. Resource redundancy: achieved by keeping in standby multiple identical sets of re-

sources [Ghosh and Mosse, 1996].

2. Time redundancy: scheduling backup tasks that reserve time for re-execution in the

event of a fault [Ghosh et al., 1995].

One main problem with the resource redundancy approach is that it is unrealistic to imple-

ment it in a project environment, as doubling the various resources would be cost prohibitive.

On the other hand, time redundancy approaches doe not suffer from the same limitation and

have been explored in the literature.

In the case of the non-deterministic SCS problem, the authors in [Hans et al., 2008]

proposed a slack-time based approach, where a sufficient planned time slacks are added to

their schedule to provide some sort of robustness. In their work, the authors assume that

surgery durations are mutually independent and base the amount of planned slack on each

OR-day to prevent overtime on the expected variance of the durations of the surgeries planned

on that OR-day. Given that:

• Kst is an OR-day and represents an OR k ∈ K that is available at day t ∈ T for speciality

s ∈ S.

• Nskt indicates the set of surgeries assigned by speciality s in operating room k, on day t.

• σi is the standard deviation of surgery i ∈ N.
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• β (β ≥ 0) is a parameter that influences the probability that the surgeries will complete on
time.

• Oskt is the overtime on OR-day (s, k, t).

• ckt is the capacity of OR k at day t.

The expected duration of the planned surgeries on OR-day (s, k, t), k ∈ Kst is:

µskt =
∑

i∈Nskt

µi

Next, the variance of the planned surgeries on OR-day (s, k, t), k ∈ Kst is:

σ2
skt =

∑
i∈Nskt

σ2
i

Then, the planned slack size δskt on each OR-day (s, k, t), k ∈ Kst, is calculated as follows:

δskt = β .

√ ∑
i∈Nskt

σ2
i

Finally, the OR-day capacity constraint at each OR k for each speciality s is as follows:∑
i∈Nskt

µi + δskt ≤ ckt + Oskt

6.3 First formulation

In our first approach, we will apply a robust optimization formulation following the one of

Bertsimas and Sim ([Bertsimas and Sim, 2004]).

The random variables that we will consider in our case represent the stochastic duration

p̃i of each surgery i. The value of p̃i may vary in a given interval [p̄i − p̂i , p̄i + p̂i]. Note that
given the nature of our problem, we will assume that the distribution function F (p̃i) for each
surgery type is symmetrical where, p̂i represents the standard deviation parameter of F (p̃i)
and p̄i represents the central value. These values were calculated using 10 months’ historical

data for each surgery type and applied to all the surgeries in this type. Our goal is to protect

against the maximum value of this random variable expressed as p̄i + p̂i.

In our case, the formulation of Bertsimas and Sim guarantees that any solution is feasible

for all the constraints if at most Γ surgeries reach their maximum duration in each room r and

each day t over a full length day (8h45), assuming that the other surgeries take their central

value. These surgeries are chosen so that they have the worst impact on the total duration of

surgeries assigned to room r on day t, and our solution is then forced to be feasible for this

realisation.

Due to the difference in periods lengths, we use a ratio Γbf of this Γ for each periods pair
(b, f), b ∈ {1, . . . , J}, f ∈ {b, . . . , J} such that:

Γbf = (dbf /d1J).Γ (6.1)

where:

dbf = max(dbf
rt ), ∀r ∈ {1, . . . , R},∀t ∈ {1, . . . , T} (6.2)
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In our deterministic model presented in Section 3.4, the two constraints concerned with

the uncertainties are constraints (3.4) and (3.14) as follows:

• Constraints (3.4) control the workload of surgeries for each interval of the day and each

room.
O∑

i=1

γ∑
b=β

γ∑
f=b

pi · xbf
itr +

O∑
i=1

β−1∑
b=1

J∑
f=γ+1

dβγ
rt · x

bf
itr ≤ dβγ

rt · Ltr + uγ · εtr ,

∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(3.4)

• Constraints (3.14) ensure that all ambulatory surgeries finish before Amax.

O∑
i=1

2∑
b=β

2∑
f=b

pi · xbf
itr +

O∑
i=1

3∑
b=β

ai · pi · xb3
itr ≤ Amax −

β−1∑
j=1

dj
rt ,

∀β ∈ {1, . . . , 3},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(3.14)

As explained before, we will force the feasibility in any solution given that at most Γ
surgeries take their maximum duration each full day in each room by replacing these constraints

respectively by:

O∑
i=1

γ∑
b=β

γ∑
f=b

p̄i · xbf
itr + p̂βγ

tr +
O∑

i=1

β−1∑
b=1

J∑
f=γ+1

dβγ
rt · x

bf
itr ≤ dβγ

rt · Ltr + uγ · εtr ,

∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(6.3)

and:
O∑

i=1

2∑
b=β

2∑
f=b

p̄i · xbf
itr + p̂β2

tr +
O∑

i=1

3∑
b=β

ai · p̄i · xb3
itr + p̂β3

tr ≤ Amax −
β−1∑
j=1

dj
rt ,

∀β ∈ {1, . . . , 3},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(6.4)

where for each day t, each room r, each starting period β and finishing period γ, p̂βγ
tr is

the optimal value of the following linear program (Ωβγ
tr ):

(Ωβγ
tr ) = maximise

O∑
i=1

 γ∑
b=β

γ∑
f=b

p̂i · xbf
itr

 · zi (6.5)

O∑
i=1

zi ≤ Γβγ (6.6)

0 ≤ zi ≤ 1 , ∀i ∈ {1, . . . , O} (6.7)

We then consider the dual of problem (Ωβγ
tr ):

Minimize

O∑
i=1

ηβγ
itr + Γβγzβγ

tr (6.8)

Subject to: ηβγ
itr + zβγ

tr ≥
γ∑

b=β

γ∑
f=b

p̂i · xbf
itr , ∀i ∈ {1, . . . , O} (6.9)

ηβγ
itr ≥ 0 , ∀i ∈ {1, . . . , O} (6.10)
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zβγ
tr ≥ 0 (6.11)

Since problem (Ωβγ
tr ) is feasible and bounded for all Γβγ ∈ [0, |O|], then by strong duality,

the dual problem in (6.8) is also feasible and bounded, and their objective values coincide.

From this, the complete robust model formulation is obtained from the deterministic model (in

Section 3.4) by replacing constraint (3.4) by:

O∑
i=1

γ∑
b=β

γ∑
f=b

p̄i · xbf
itr +

O∑
i=1

ηβγ
itr + Γβγzβγ

tr +
O∑

i=1

β−1∑
b=1

J∑
f=γ+1

dβγ
rt · x

bf
itr ≤ dβγ

rt · Ltr + uγ · εtr ,

∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(6.12)

constraint (3.14) by:

O∑
i=1

2∑
b=β

2∑
f=b

p̄i · xbf
itr +

O∑
i=1

ηβ2
itr + Γβ2zβ2

tr +
O∑

i=1

3∑
b=β

ai · p̄i · xb3
itr +

O∑
i=1

ai.η
β3
itr + Γβ3zβ3

tr

≤ Amax −
β−1∑
j=1

dj
rt , ∀β ∈ {1, . . . , 3},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(6.13)

and by adding the following three constraints:

ηβγ
itr + zβγ

tr ≥
γ∑

b=β

γ∑
f=b

p̂i · xbf
itr ,

∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R},∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J}

(6.14)

ηβγ
itr ≥ 0 ,

∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R},∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J}
(6.15)

zβγ
tr ≥ 0 ,

∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R},∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J}
(6.16)

where:

• Γ is the robust measure, representing the number of surgeries that can reach their max-
imum duration in each room r and each day t over a full length day (8h45).

• p̄i is the duration of surgery i representing the central value of the normal distribution

function F (p̃i) applied for all the surgeries from the same type as surgery i.

• p̂i is the maximum duration that surgery i can be increased by, representing the standard

deviation parameter of the normal distribution function F (p̃i) applied for all the surgeries
from the same type as surgery i.
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6.4 Second formulation

In our second robust approach, we will implement a redundancy-based technique based on

the one presented in [Hans et al., 2008]. The main idea behind this approach is to introduce

sufficient planned time slack into the schedule in order to minimize the risk of overtime and

urgent and priority kits.

Unlike our first formulation which protects against Γ number of surgeries that will have
the worst impact on the total duration of surgeries in room r at day t, this approach inserts

planned slack for each scheduled surgery in each room r on each day t. The size of the slack

is calculated based on the standard deviation of the surgery’s duration.

Let ztrbf represents the amount of slack given for day t at room r for surgeries that start

at period b and end at period f. The value of ztrbf is calculated as follows:

ztrbf ≥ B .

O∑
i=1

(
p̂i . xbf

itr

)
∀t ∈ {1, . . . , T}, ∀r ∈ {1, . . . , R}, ∀b ∈ {1, . . . , J}, ∀f ∈ {b, . . . , J}

(6.17)

where:

• B(≥ 0) is a parameter to control the probability that a surgery will finish on time.

• p̂i is the standard deviation of surgery i.

Similar to our first robust approach, the two constraints concerned with the uncertainties

in our deterministic model (from Section 3.4) are constraints (3.4) and (3.14) as follows:

• Constraints (3.4) control the workload of surgeries for each interval of the day and each

room.
O∑

i=1

γ∑
b=β

γ∑
f=b

pi · xbf
itr +

O∑
i=1

β−1∑
b=1

J∑
f=γ+1

dβγ
rt · x

bf
itr ≤ dβγ

rt · Ltr + uγ · εtr ,

∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(3.4)

• Constraints (3.14) ensure that all ambulatory surgeries finish before Amax.

O∑
i=1

2∑
b=β

2∑
f=b

pi · xbf
itr +

O∑
i=1

3∑
b=β

ai · pi · xb3
itr ≤ Amax −

β−1∑
j=1

dj
rt ,

∀β ∈ {1, . . . , 3},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(3.14)

Thus, we will add the required slack represented by the value of ztrbf to each of the

concerned constraints. Finally, we obtain the full robust model from the deterministic MILP

(presented in Section 3.4) by adding constraints (6.17) and replacing constraints (3.4) by:

O∑
i=1

γ∑
b=β

γ∑
f=b

pi · xbf
itr +

γ∑
b=β

γ∑
f=b

ztrbf +
O∑

i=1

β−1∑
b=1

J∑
f=γ+1

dβγ
rt · x

bf
itr ≤ dβγ

rt · Ltr + uγ · εtr

∀β ∈ {1, . . . , J}, γ ∈ {β, . . . , J}, t ∈ {1, . . . , T}, r ∈ {1, . . . , R}

(6.18)

and constraints (3.14) by:
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O∑
i=1

2∑
b=β

2∑
f=b

pi · xbf
itr +

2∑
b=β

2∑
f=b

ztrbf +
O∑

i=1

3∑
b=β

ai · pi · xb3
itr +

3∑
b=β

ztrb3 ≤ Amax −
β−1∑
j=1

dj
rt

∀β ∈ {1, . . . , 3}, t ∈ {1, . . . , T}, r ∈ {1, . . . , R}

(6.19)

6.5 Experimental results

In order to test the two proposed NDSSCS models, we ran the experiments on the 10 instances

described in Table 1.3. For the first model, we studied the data from the OSU to determine

the value of Γ and found that on average approximately 1 surgery takes the worst duration
scenario (p̄i + p̃i) in each room during a full day. We therefore ran our experiments using the

value Γ = 1. For the second model, we tried different values for B (B ∈ {0.25, 0.5, 0.75, 1}) and
found that the best value that provides robustness to the results without being too conservative

is 0.5. We therefore ran our experiments using the value B = 0.5.

The time limits for these experiments were set to 3 hours per objective (9 hours per

instance) for the first model and 1 hour per objective (3 hours per instance) for the second

model. These different time limits were chosen based on the results of our experiments, where

we found that the first model needs more time (around 3 hours per objective) to find good

results and the second model needs around 1 hour. An example is given in Figure 6.1, where

we compare the distance between the reported best solution obtained and the lower bound for

each model while solving the first objective for the second instance. By analysing the example,

it is clear that the second model obtains good solutions (close to the LB) way faster than the

first model. The same behaviour continued over all the instances for all the objectives, and

hence the different set time limits.
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Figure 6.1: Comparison between time needed for both models to solve an objective (first
objective for second instance)
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6.5.1 Comparison of planned schedules

Following the work process of the OSU, we start our comparison with the planned schedules.

Tables 6.1, 6.2 and 6.3 compare the objective functions obtained with the two robust models

with our deterministic results (Section 3.6.2) and the planned schedule of the OSU (Section

1.8.1).

Table 6.1 compares the total overtime between the three schedules. In the case of both

robust planned schedules, the ’ MILP value’ column represents the overtime reported by the

solver which includes the added time that the MILP uses to ensure the robustness of the solution

and the ’overtime’ column represents the actual overtime without the added time by the solver.

The average overtime in the first robust planned schedules is 286.3 minutes (4 hours and 46

minutes) per month. The average difference between the first robust schedules and those of

the OSU is 8 hours 37 minutes per month, representing a decrease of approximately 64.4%,

which is less than the deterministic model (9 hours and 48 minutes). On the other hand,

the average overtime obtained using the second robust model is 294.2 minutes (4 hours and

54 minutes) per month, representing an increase of 2.6% from the first robust model (+8

minutes).

In addition, the ‘max’ column shows the maximum overtime in minutes found in a day

during the month considered. In 8 instances, the first robust solutions provided lower values

than the OSU’s solution, while the second robust solutions provided lower values than the OSU

in 7 instances, and the deterministic solutions provided lower values than the OSU’s solution

in 6 instances. The ‘LB’ column shows the lower bound found by the MILP. We see that the

first robust approach did not find any optimal solutions. This is due to the added complexity of

the robust MILP which also affects the lower bound calculations as the model needs way more

time to report more accurate bounds. On the other hand, the second robust MILP provided a

close performance to the deterministic model with 4 optimal solutions (compared to 6 optimal

solutions obtained with the deterministic MILP). Finally, the ‘CPU’ column represents the exe-

cution time for the models. The first robust model takes more time than both the deterministic

and second robust models to find good solutions. In conclusion for the first objective, the first

robust model provides the best results but uses more time than the second model.

Moving to the second objective, table 6.2 shows the number of ORs opened with the

deterministic and both robust methods and in the original data, and also compares the room

occupancy rates in the four schedules. The conservative nature of both robust models can

be seen in the lower number of rooms closed on average each month (1.6 and 1.1 rooms

respectively) compared to the deterministic model (1.9 closed rooms on average per month).

The ‘LB’ column shows the lower bound found by the solver concerning the rooms opened. In

all instances, the first robust model could not prove optimality for any of the instances, while

the second model proved optimality for 3 instances. Again we see that the execution times for

the first model are way more than the ones in the second model.

When comparing the occupancy rates, we observe an average occupancy rate of approx-

imately 82.9% in the first robust solutions, 82.1% in the second robust solutions, 84.4% in

the deterministic solutions, and 80.9% for the OSU. In addition, the ‘Min Occ. rate’ column

represents the minimum occupancy rate found in each schedule. In the first robust schedules,

7 instances had a minimum occupancy rate greater than 50%, compared with 5 instances in

the second robust schedules, 6 instances in the deterministic schedules, and only 1 instance in

the OSU’s schedules. Moreover, only 1 instance in both the first and second robust schedules
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had a minimum occupancy rate below 20%, compared to 4 instances for the OSU and 0 in the

deterministic schedules. These values show that both robust solutions have better room load

distribution than those of the OSU, but lack behind the deterministic solutions. Therefore, both

models provide similar results for the second objective, but the first model takes more time

than the second one.

Finally, Table 6.3 compares the total number of obtained urgent and priority kits. In the

case of the first robust solution, the average number of urgent kits is 1.1 per month and the

average number of priority kits is 5.8 (decrease of 90.03% from the OSU’s solution in the total

problem kits number), compared to an average of 0.6 urgent kits and 4.5 priority kits per month

obtained using the second robust model (decrease of 92.6% over the OSU), and a decrease

of 94.65% obtained with the deterministic model. The ’CPU’ column represents the execution

times for the three models concerning only the urgent and priority kits objective. Following

the same behaviour as in the previous objectives, the first robust model takes more time

than the deterministic model to find good solutions, while the second robust model performed

somewhat similar to the deterministic model and was able to find the optimal solution in 2

instances (compared to 0 optimal solutions using the first robust method and 3 using the

deterministic model).

This comparison between the planned schedules shows globally that the results obtained

using the first robust model are better in terms of the overtime and number of opened ORs

and competitive in terms of the problem kits numbers, but use at least 3 times more execution

time than the second robust model.
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Instance

planned schedule

OSU Deterministic MILP First robust MILP (Γ = 1) Second robust MILP (B = 0.5)

overtime
max LB

overtime
max CPU (s) LB

MILP overtime
max CPU (s) LB

MILP overtime
max CPU (s)

(in min) (in min) value (in min) value (in min)

1 590 131 0 0* 0 16 0 153 87 17 10800 211 211* 141 64 321

2 714 176 368 384 90 3600 369 517 313 131 10800 575 589 416 131 3600

3 502 81 89 89* 23 1089 0 412 297 16 10800 291 295 154 56 3600

4 656 77 314 318 94 3600 0 913 655 151 10800 490 502 402 101 3600

5 1159 120 312 312* 123 58 98.9 1084 701 109 10800 522 522* 375 122 217

6 1278 183 347 350 84 3600 0 491 232 53 10800 605 613 409 113 3600

7 641 109 225 232 130 3600 0 430 199 48 10800 554 562 398 117 3600

8 561 65 334 334* 106 1619 57.3 455 317 67 10800 499 501 458 45 3600

9 870 105 136 136* 37 1031 0 157 62 19 10800 347 347* 189 51 2196

10 1070 266 0 0* 0 781 0 19 0 0 10800 0 0* 0 0 934

Average 804.1 215.5 286.3 294.2

Table 6.1: Overtime comparison (planned schedules)

Instance

planned schedule

OSU Deterministic MILP First robust MILP (Γ = 1) Second robust MILP (B = 0.5)

# opened

rooms

Min

Occ.

rate

Avg.

Occ.

rate

LB
# opened

rooms
CPU (s)

Min

Occ.

rate

Avg.

Occ.

rate

LB
# opened

rooms
CPU (s)

Min

Occ.

rate

Avg.

Occ.

rate

LB
# opened

rooms
CPU (s)

Min

Occ.

rate

Avg.

Occ.

rate

1 59 27.6% 80.2% 55.1 58 3600 48.6% 81.7% 48.8 58 10800 64.6% 81.3% 56.2 58 3600 54.2% 80.7%

2 59 13.8% 77.5% 52.3 55 3600 51.6% 82.4% 46.3 56 10800 19% 79.2% 53.4 56 3600 23.4% 80.1%

3 48 18.3% 80.7% 44.6 46 3600 55.2% 85.4% 39.6 46 10800 43.7% 83.7% 44.5 46 3600 49% 84%

4 48 42.4% 86.5% 46.8 48 3600 40.7% 87.4% 42.3 48 10800 75.6% 86.7% 45.9 48 3600 42.4% 85.8%

5 59 28.8% 85.1% 55.2 58 3600 59.8% 83.9% 49.4 58 10800 71.9% 86% 56.7 59 3600 50.8% 84.3%

6 52 51.2% 83.3% 52 52* 23 51.6% 83.2% 44.5 52 10800 55.2% 82.9% 52 52* 194 32.2% 82.5%

7 59 34.3% 81.5% 55.3 59 3600 47.9% 84.1% 48.8 59 10800 39.6% 81.6% 54.9 59 3600 52.7% 81.9%

8 49 26.1% 82.9% 48 48* 13 63.7% 85.5% 41.6 48 10800 70.4% 83.7% 48 48* 540 51.1% 83.6%

9 46 11.6% 79.4% 43 43* 14 58.2% 86% 37.6 44 10800 64.1% 82.6% 44 44* 322 65.1% 83.1%

10 60 9.5% 72.3% 50.1 53 3600 49.3% 84.5% 45.6 54 10800 55.4% 81.5% 52.7 58 3600 11.6% 75.2%

Average 53.9 80.9% 52 84.4% 52.3 82.9% 52.8 82.1%

Table 6.2: Opened rooms comparison (planned schedules)

1
1
5



Instance

planned schedule

OSU Deterministic MILP First robust MILP (Γ = 1) Second robust MILP (B = 0.5)

# urgent # priorities # urgent # priorities CPU (s) # urgent # priorities CPU (s) # urgent # priorities CPU (s)

1 2 51 0* 0* 1199 1 7 10800 0 6 3600

2 2 56 0 2 3600 0 5 10800 0 4 3600

3 8 68 0 7 3600 3 8 10800 0 1 3600

4 13 82 0 5 3600 1 6 10800 1 8 3600

5 6 68 0 9 3600 4 2 10800 0 10 3600

6 2 59 0 11 3600 1 4 10800 0 5 3600

7 28 98 0* 0* 1165 0 11 10800 1* 4* 2833

8 0 56 0* 0* 497 0 2 10800 0* 3* 1988

9 2 53 0 1 3600 0 12 10800 2 3 3600

10 3 35 0 2 3600 1 1 10800 2 1 3600

Average 6.6 62.6 0 3.7 1.1 5.8 0.6 4.5

Table 6.3: Urgent and priority kits comparison (planned schedules)

6.5.2 Comparison of achieved schedules

We applied our simulation method presented in Section 5.2 (Algorithm 2) to obtain the achieved

schedule for both robust models. Table 6.4 presents the achieved schedules obtained using

the two robust models in addition to the deterministic method and OSU’s achieved schedules.

By comparing these results we see that the first robust model decreased the number of late

ambulatories by approximately 35.3% compared with the second robust model, 45% com-

pared with the deterministic model and by approximately 78.22% compared with the OSU’s

solution. Likewise, it managed to decrease the total overtime by approximately 38.3% com-

pared with the second robust model, 45.95% compared with the deterministic model and by

approximately 61.26% compared with the OSU’s used overtime (savings of approximately 17

hours 32 minutes overtime compared with the 10 hours 39 minutes savings obtained by the

second robust model and 8 hours 6 minutes savings obtained by the deterministic model). In

addition, the ’max’ column shows the maximum overtime found in a day during the month

considered. In 5 instances, the first robust model managed to provide lower values than the

second robust model. Moreover, in 7 instances, the first robust model managed to provide

lower values than the deterministic model and the OSU’s solution.

Next, the number of rooms opened does not change since our simulation method only

uses rooms opened in the planned solution. Thus, both robust schedules still save the same

numbers of ORs (1.6 ORs on average each month by the first robust model, 1.1 ORs by the

second robust model, and 1.9 ORs by the deterministic model). Next, the first robust model

managed to achieve an average occupancy rate for the rooms opened of approximately 88.4%

which is less than the average in the deterministic solution (89.3%) since the deterministic

solution uses fewer rooms and the rooms are more packed, but it achieved a better average

occupancy rates than the second robust model (86.9%) and than the OSU (78.8%). Similarly,

the minimum occupancy rate found in the first robust model schedules in 7 instances is greater

than 50% (compared with 4 for the second robust model, 8 for the deterministic model, and

1 for the OSU). Thus, the first robust model managed to provide schedules with better ORs

utilization than the second robust model.

Concerning the last criterion, the first robust model used approximately 0.7 urgent and

5 priority kits per month (5.7 problem kits per month), while the second robust model used

approximately 0.4 urgent and 8.4 priority kits per month (8.8 problem kits per month). When
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comparing these numbers with the achieved schedules of the deterministic model and OSU,

we see that the first robust model managed to obtain the best values with a decrease of 90.1%

over the problem kits of the OSU (57.3 problem kits per month), a decrease of 70.8% over the

problem kits of the deterministic model (19.5 kits per month), and a decrease of 35.2% over

the problem kits of the second robust model (8.8 kits per month). Hence, both robust models

provided lower numbers of problem kits than the deterministic and OSU’s solutions, with the

first model outperforming the second one.
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Instance
Violated constraints Overtime ORs Kits

#late ambs #violated kits total max #opened Min Occ. rate Avg. Occ. rate #urgent #priorities

O
S
U

1 14 5 1382 190 59 29.9% 79.2% 3 39

2 14 5 1692 227 59 12.9% 76% 3 44

3 6 10 1322 113 48 19% 79.3% 8 49

4 10 8 1800 98 48 44% 82.9% 14 64

5 14 5 2370 130 59 29.7% 81.9% 6 58

6 8 4 2140 201 52 50.8% 79% 1 53

7 6 13 1454 170 59 33.1% 80.6% 28 72

8 9 2 1584 100 49 23.7% 81.5% 4 46

9 10 7 1500 126 46 12.3% 77.3% 8 42

10 10 3 1930 326 60 9.9% 70.7% 4 27

Average 10.1 6.2 1717.4 53.9 78.8% 7.9 49.4

D
e
te
r
m
in
is
ti
c
M
I
L
P

1 4 0 979 135 58 65.1% 87.8% 0 11

2 4 0 1268 189 55 31.4% 89.7% 0 24

3 3 0 1305 156 46 55.0% 89.8% 0 14

4 9 0 1745 130 48 53.9% 90.7% 1 17

5 5 0 1990 200 58 68.3% 89.1% 0 44

6 3 0 1034 206 52 71.4% 89.4% 0 34

7 1 0 965 125 59 48.1% 89.5% 5 31

8 3 0 1014 103 48 66.3% 91.4% 0 1

9 6 0 950 137 43 75.7% 88.8% 0 7

10 2 0 1060 240 53 54.3% 87.0% 0 6

Average 4 0 1231 52 89.3% 0.6 18.9

F
ir
s
t
r
o
b
u
s
t
M
I
L
P
(
Γ

=
1)

1 1 0 418 59 58 58.3% 88.0% 1 5

2 1 0 690 189 56 15.4% 86.2% 1 2

3 3 0 777 75 46 54.9% 89.9% 2 9

4 2 0 1041 133 48 64.3% 90.9% 0 4

5 7 0 1265 137 58 40.8% 88.8% 3 3

6 1 0 523 86 52 59.7% 89.4% 0 5

7 0 0 546 98 59 57.2% 89.7% 0 8

8 3 0 671 143 48 66.1% 90.5% 0 3

9 3 0 494 98 44 58.2% 87.0% 0 9

10 1 0 228 62 54 38.5% 83.1% 0 2

Average 2.2 0 665.3 52.3 88.4% 0.7 5

S
e
c
o
n
d
r
o
b
u
s
t
M
I
L
P
(
B

=
0.

5)

1 4 0 1407 112 58 49% 88.1% 0 12

2 1 0 1015 189 56 32.7% 87.8% 0 12

3 3 0 1787 141 46 57.1% 88.6% 0 11

4 5 0 1301 213 48 46.1% 89.8% 0 8

5 5 0 1509 155 59 32.0% 86.7% 0 15

6 2 0 637 70 52 44.2% 88.5% 2 6

7 4 0 954 103 59 54.3% 87.9% 0 4

8 4 0 839 120 48 55.2% 91.1% 1 4

9 4 0 1026 85 44 70.4% 88.3% 1 5

10 2 0 307 45 58 10.6% 72.4% 0 7

Average 3.4 0 1078.2 52.8 86.9% 0.4 8.4

Table 6.4: Achieved schedules comparison

6.5.3 Results degradation

In order to analyse the performance of both robust models, we will analyse the degradation that

is found in the achieved schedules. Table 6.5 compares the different objectives degradation
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between both robust models, the deterministic one, and the OSU’s solution.

By analysing these results, we can see that both robust models provide more robust solu-

tions with less degradation in all of the objective values when compared with the deterministic

model. In addition, the solutions obtained using the first robust model had less degradation

than the ones obtained with the second robust model in all criteria.

The degradation values in terms of overtime for both robust models are more than the

ones found in the solution of the OSU, but the obtained overtime using the two models stays

significantly better than the ones of the OSU. The same can also be said about the degradation

values in terms of problem kits.

schedule #late ambs #not allowed kits overtime
#problem kits

(urgent + priorities)

OSU

Planned 7.6 10.2 804.1 69.2

Achieved 10.1 6.2 1717.4 57.3

Degradation +32.9% -39.2% +113.6% -17.2%

NDSSCS (first model)

Planned 0 0 286.3 6.9

Achieved 2.2 0 665.3 5.7

Degradation NA - +132.4% -17.4%

NDSSCS (second model)

Planned 0 0 294.2 5.1

Achieved 3.4 0 1078.2 8.8

Degradation NA - +266.5% +72.5%

DSSCS

Planned 0 0 215.5 3.7

Achieved 4 0 1231 19.5

Degradation NA - +471.2% +427%

Table 6.5: NDSSCS degradation analysis
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6.6 Conclusion

In this chapter, we tackled the non-deterministic version of the static SCS problem of the CHU.

We started by providing a technical review for the non-deterministic optimization field. Then,

we proposed two mathematical models to solve the problem. Finally, we showed the numerical

experiments for both models and compared the results with our deterministic approach and

the original schedules of the OSU.

In our experiments, we showed that the first robust formulation provides results that

are better in every aspect than the second model and the deterministic one, and shows more

robustness against the uncertainties, in exchange for more computational time. But the sec-

ond robust model, which needs way less time to find good solutions, may be attractive when

computational time is critical and sought.

In the next chapter, we will tackle the non-deterministic dynamic version of the SCS

problem.
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CЂϻЊЎϿЌ 7

NЉЈ-DϿЎϿЌЇЃЈЃЍЎЃϽ DГЈϻЇЃϽ

SЏЌЁЃϽϻІ CϻЍϿ SϽЂϿϾЏІЃЈЁ

ЊЌЉϼІϿЇ

7.1 Introduction

In Chapter 4, we solved the dynamic version of the deterministic SCS problem to overcome the

uncertainty in patients arrivals. We proposed a new work flow that replaces the one currently

implemented at the OSU by indicating only the due date of the surgery at the consultation step

instead of the actual date of the surgery. We then implemented a rolling horizon approach to

solve the dynamic scheduling problem, rendering our method applicable for the OSU. Despite

the good results that were obtained using this method, there was a big degradation in the

solutions qualities when applying surgeries real durations due to the big differences between

surgeries estimated and real durations. To overcome this, we will tackle in this chapter the

Non-Deterministic Dynamic Surgical Case Scheduling problem (NDDSCS) by adapting our two

robust formulations presented in Chapter 6 to our dynamic method presented in Chapter 4.

In this chapter, we start by providing a brief technical review on the methods used to

solve the non-deterministic dynamic scheduling problems in the literature. Next, we present

our two robust models used in a rolling horizon scheme and compare the numerical results

of both models with the deterministic model and the original data. Finally, we analyse the

difference between the two models and conclude with this analysis.

121



7.2 Technical review

In the literature, the non-deterministic dynamic scheduling problem is solved using an approach

composed of two phases: in a first phase a base-line predictive schedule that takes into account

the uncertain aspects of some of the data is built using a static (off-line) algorithm; then at the

second phase, this schedule is adapted at the execution moment to fit the state of the system

using dynamic (on-line) algorithm. Depending on the generated base-line schedule and/or the

method used to adapt the schedule to the random events, three main approached can be found

in the literature.

In the first method, a set of static schedules are generated instead of a complete base-

line schedule, where it is easy to switch from one to another in response to random events that

occur. This can be achieved by dividing tasks (jobs) into permutable groups for each one of

the resources. In other words, all of the tasks from the same group are completely permutable

without negatively affecting the desired performance. Thus, the result of this approach is a set

of schedules obtained by enumerating all possible permutations within each group of tasks,

among which the decision-maker can choose in real time the one he wishes to set up according

to his preferences or in response to randomly occurring events. This method was used by [Wu

et al., 1999] to minimize the weighted sum of delays in a Job-Shop problem. The authors

present a Branch-and-Bound method for calculating a sort of ”crucial subset” of scheduling

decisions that gives a global view of the system. This subset is then completed at the moment

of execution by decisions taken dynamically according to the disturbances that may occur. A

similar problem was studied in [Artigues et al., 2005], where the authors propose a polynomial

time dynamic programming algorithm for minimizing the number of groups and for maximizing

the number of characterized sequences in order to maximise the solution flexibility. Next, the

authors show the impact of grouping operations on the solution makespan value by showing

computational results on Job-Shop benchmarks.

In the second method, a complete robust base-line schedule is generated at the first

phase, and a ”schedule repair” strategy is used to react to the random events. An example of

this method is found in [Artigues et al., 2003], where the authors proposed a polynomial algo-

rithm that inserts a new activity inside an existing solution represented by an activity-on-node

(AON)-flow network. This algorithm extends to the RCPSP the concept of dominant insertion

positions. The principle of their approach is that resources are considered as flows and that

any resource unit used during the realization of an activity is transferred to another activity.

Given a graph representing a set of schedules and an activity to be included in this graph

according to the project pre-defined succession constraints and resources usage, the polyno-

mial algorithm searches for an insertion position for this activity in the graph by minimizing

the total duration of the project without modifying existing flows. In order to not disturb the

pre-calculated solution too much, the authors require their algorithm to maintain the present

activities sequence and try to insert the new activity while minimizing the total duration of the

project. Finally, their algorithm applies a serial method to make the obtained schedule the

active one. In their experiments, the authors showed that their algorithm in general produces

more robust solutions than using rescheduling.

Finally in the last method, a complete robust base-line schedule is generated at the first

phase, but a ”complete rescheduling” strategy is used instead to react to the random events.

An example of this method is found in [Addis et al., 2016], where the authors developed an ILP
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to generate a robust base-line schedule and integrated their model in a rolling horizon method

to perform the rescheduling. This rescheduling happens because of the semi-elective surgeries

and cancelled surgeries (no time to perform).

In our problem, the first method is not suitable as it is impossible to guarantee that

among the generated sequences from the first phase, a suitable solution will be found that is

coherent with the disturbances that will be present in the second phase. Moreover, the CHU is

only interested in having a fixed schedule for 1 month in advance, where this fixed schedule can

not be modified. Given this requirement, the second method is unsuitable for our problem, as

a schedule repair strategy means modifying the already fixed schedule. Hence, we propose to

use the third method for our problem. To achieve this, we will implement an approach similar

to the one used to solve the deterministic dynamic version of the problem (Chapter 4), except

that at each iteration, we will solve a robust counterpart of the deterministic mathematical

model (from Section 4.4). We present two robust formulations using the same methods in

Chapter 6.

7.3 First formulation

The first robust formulation follows the one of Bertsimas and Sim ([Bertsimas and Sim, 2004]).

We obtain the complete model from the one in Section 4.4 by introducing the following param-

eters:

Γ the robust measure, representing the number of surgeries that can reach their maxi-

mum duration in each room r and each day t over a full length day (8h45).

p̄i the duration of surgery i representing the central value of the normal distribution func-

tion F (p̃i) applied for all the surgeries from the same type as surgery i

p̂i the maximum duration that surgery i can be increased by, representing the standard

deviation parameter of the normal distribution function F (p̃i) applied for all the surgeries
from the same type as surgery i

and by replacing constraint (4.4) by:

O∑
i=1

γ∑
b=β

γ∑
f=b

p̄i · xbf
itr +

O∑
i=1

ηβγ
itr + Γβγzβγ

tr +
O∑

i=1

β−1∑
b=1

J∑
f=γ+1

dβγ
rt · x

bf
itr ≤ dβγ

rt + uγ · εtr ,

∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(7.1)

constraint (4.13) by:

O∑
i=1

2∑
b=β

2∑
f=b

p̄i · xbf
itr +

O∑
i=1

ηβ2
itr + Γβ2zβ2

tr +
O∑

i=1

3∑
b=β

ai · p̄i · xb3
itr +

O∑
i=1

ai.η
β3
itr + Γβ3zβ3

tr

≤ Amax −
β−1∑
j=1

dj
rt , ∀β ∈ {1, . . . , 3},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R}

(7.2)

and by adding the following three constraints:
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ηβγ
itr + zβγ

tr ≥
γ∑

b=β

γ∑
f=b

p̂i · xbf
itr ,

∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R},∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J}

(7.3)

ηβγ
itr ≥ 0 ,

∀i ∈ {1, . . . , O},∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R},∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J}
(7.4)

zβγ
tr ≥ 0 ,

∀t ∈ {1, . . . , T},∀r ∈ {1, . . . , R},∀β ∈ {1, . . . , J},∀γ ∈ {β, . . . , J}
(7.5)

where:

Γbf = (dbf /d1J).Γ (7.6)

dbf = max(dbf
rt ), ∀r ∈ {1, . . . , R},∀t ∈ {1, . . . , T} (7.7)

7.4 Second formulation

The second robust formulation follows the one presented in [Hans et al., 2008]. We obtain the

complete model from the one in Section 4.4 by introducing the following parameters:

B a parameter to control the probability that a surgery will finish on time (B ≥ 0).

p̂i the standard deviation of surgery i

and the following decision variables:

ztrbf non-integer variable representing the amount of slack given for day t at room r for

surgeries that start at period b and end at period f.

and by replacing constraints (4.4) by:

O∑
i=1

γ∑
b=β

γ∑
f=b

pi · xbf
itr +

γ∑
b=β

γ∑
f=b

ztrbf +
O∑

i=1

β−1∑
b=1

J∑
f=γ+1

dβγ
rt · x

bf
itr ≤ dβγ

rt + uγ · εtr

∀β ∈ {1, . . . , J}, γ ∈ {β, . . . , J}, t ∈ {1, . . . , T}, r ∈ {1, . . . , R}

(7.8)

and constraints (4.13) by:

O∑
i=1

2∑
b=β

2∑
f=b

pi · xbf
itr +

2∑
b=β

2∑
f=b

ztrbf +
O∑

i=1

3∑
b=β

ai · pi · xb3
itr +

3∑
b=β

ztrb3 ≤ Amax −
β−1∑
j=1

dj
rt

∀β ∈ {1, . . . , 3}, t ∈ {1, . . . , T}, r ∈ {1, . . . , R}

(7.9)

and finally by adding the following constraints to calculate the value of ztrbf:

B .

O∑
i=1

(
p̂i . xbf

itr

)
≥ ztrbf

∀t ∈ {1, . . . , T}, ∀r ∈ {1, . . . , R}, ∀b ∈ {1, . . . , J}, ∀f ∈ {b, . . . , J}

(7.10)
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7.5 Experimental results

In order to test the two proposed NDDSCS models, we applied each model in the rolling horizon

scheme presented in Section 4.3. We then ran the experiments on the data described in Section

1.8 as a single instance representing all the surgeries performed at the OSU between 1/9/2014

and 30/6/2015, while considering surgeries due dates to be their actual dates.

7.5.1 First robust model results

We performed 3 experiments on the first robust model using different numbers of extra shifts

opened for each surgeon (hs ∈ {4, 6, 8}). The time limit was set to 12 hours per iteration (3
hours per objective). In addition, we set the maximum allowed over time in each room each

day to the 3 hours allowed by the CHU (εmax = 180) and the robustness measure Γ = 1.
During our experiments, we noticed that this model needs too much time to find a start-

ing solution. After 6 iterations (construction of the schedule over 6 weeks), it was clear that

the quality of the acquired solutions at the end of the time limit is worse than the ones obtained

using the deterministic formulation. In particular, the total number of scheduled surgeries is

around 75% of the ones obtained using the deterministic method. Table 7.1 compares the

results obtained after 6 iterations from this method with the ones obtained using the deter-

ministic model (from Table 4.1). Note that we consider only the runs with εmax = 180 from
the deterministic results. From these results, it is clear that the first robust model does not

perform even closely to the deterministic one due to the high complexity.

Method hs # Scheduled

NDDSCS 4 192

NDDSCS 6 201

NDDSCS 8 211

DDSCS 2 263

DDSCS 4 271

Table 7.1: NDDSCS first model planned schedule comparison (6 iterations)

In addition to these tests, we performed more experiments using different parameters

combinations (hs ∈ {2, 4, 6, 8} and Γ ∈ {0.25, 0.5, 1}), but the results always suffered from the

same low number of scheduled surgeries problem in comparison with the solutions of the OSU

and deterministic method. Thus, it becomes evident that this model is not suitable as the main

criteria for the CHU management is to reduce the costs while keeping the same level of quality

of service represented by the total number of operated patients. Increasing the time limit could

improve the solutions qualities, but this can not be done as 12 hours is the maximum allowed

time by the CHU management.

7.5.2 Second robust model results

We performed 4 experiments on the second robust model using the following parameters:

• Run 1: B = 0.5 , hs = 2

• Run 2: B = 0.5 , hs = 4
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• Run 3: B = 0.25 , hs = 2

• Run 4: B = 0.25 , hs = 4

Where B is a parameter to control the size of the added slack, and hs represents the number

of the extra shifts opened for each surgeon.

In addition, we set the time limit for the model to be 4 hours per iteration (1 hour per

objective), and the maximum allowed over time in each room each day to the 3 hours allowed

by the CHU (εmax = 180).
The choice of the parameter values came after multiple experiments with different com-

binations (B ∈ {0.25, 0.5, 0.75, 1} and hs ∈ {0, 2, 4, 6, 8}), as choosing a value of B greater than

0.5 makes the model too conservative and yields worse results. Similarly, choosing 0 as a value

for hs gives the model too little room for improvements and less surgeries are scheduled, and

choosing a value greater than 4 makes surgeries scattered in the horizon with less surgeries

fixed at each iteration, since our rolling horizon method only fixes surgeries that are scheduled

in the first week of the horizon. Similarly, we found that the model performs well in the given

time limit and increasing it yields little to no improvements.

Comparison of planned schedules

Following the work process of the OSU, we start our comparison with the planned schedules,

where Table 7.2 compares the obtained planned schedules with the ones of the OSU (Section

1.8.1) and the ones from the deterministic method (Section 4.5).

Starting with the first objective, our robust method managed to schedule around 97.4%

of the total 2000 surgeries among the 4 runs with run 4 managing to schedule the most with

1962 scheduled surgeries (98.1%). These values lack behind the deterministic method but is

expected due to the conservative nature of the robust method.

Moving forward, column ’Overtime’ represents the total overtime found in each schedule.

All of the 4 robust runs managed to use lower overtime than the OSU, but lacked behind the

deterministic method. In addition, using a lower value for B as in run 3 and 4 yields the

lowest overtime used in all of the robust schedules with run 4 decreasing the used overtime by

approximately 40.2% over the OSU. Similarly, as shown in column ’Max. overtime’ all of our

runs has less maximum overtime than the OSU since it is a hard constraint.

Regarding the total number of opened ORs, our robust results show less total number

of opened ORs than the OSU with an average of approximately 10 ORs closed per run over

the OSU. It is important to note that the solver was not able to use these ORs to schedule

more surgeries due to other contradicting constraints (ambulatory and kits constraints) and

the 3 minimum week delay between the consultation and surgery date that we are posing in

our method. The similar behaviour between the deterministic and non-deterministic methods

continues as we can clearly see that increasing the flexibility margin given to the solver rep-

resented by the value of hs improves other criteria, but increases the number of opened ORs,

as run 2 has more opened ORs than run 1 and run 4 has also more ORs than run 3. More-

over, column ’Min. Occ. rate’ shows the minimum occupancy rate found for a room in each

schedule. By comparing these results, we can clearly see that using a value of hs = 4 for each
B configuration yields the best minimum occupancy rates as runs 2 and 4 has the highest.

The same also can be said about the average occupancy rates shown in column ’Avg. Occ.

rate’ with runs 2 and 4 having the highest among the rest of the robust planned results. By
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contrast, using B = 0.5 resulted in lower average occupancy rates than the ones of the OSU
and the deterministic method, due to the higher conservation level.

Next, column ’# Urgent’ shows the total number of urgent kits and column ’# Priorities’

shows the total number of priority kits found in each schedule. Similar to previous criteria,

using a value of hs = 4 yields the best results as run 4 managed a decrease of 92.1% for the

total number of problem kits (urgent + priorities) over the schedule of the OSU, while run

2 managed the best results among the other robust results with a decrease of 95.4% over

the OSU. Despite that run 2 has higher B value (B = 0.5) and thus higher conservation level,
this decrease is due to the lower total number of scheduled surgeries compared to run 4 with

B = 0.25. The same can also be said when comparing the deterministic and robust results as
the robust model was able to get similar results despite the conversation nature due to the

lower number of scheduled surgeries compared to the deterministic method.

Finally, we compare the tardiness of surgeries from their due dates. Again we can see

that runs 2 and 4 have the best robust results when comparing the total tardiness, maximum

tardiness (column ’ Max Ti ’) and average tardiness (column ’ Avg Ti ’), with run 4 having the

lowest values for the three criteria over all of our runs. One can note that the robust model

performed worse than the deterministic one in all three tardiness criteria, which is again due

to the conservative nature of the robust model.
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Schedule

Method εmax hs # Scheduled Overtime Max. overtime # opened ORs Min. Occ. rate Avg. Occ. rate # Urgent # Priorities
∑

Ti Max Ti Avg Ti

NDDSCS Run 1 (B = 0.5) 180 2 1933 6378 161 529 19.8% 79.9% 9 98 12524 105 11

NDDSCS Run 2 (B = 0.5) 180 4 1937 6156 157 531 21.6% 80.2% 3 29 9243 89 8

NDDSCS Run 3 (B = 0.25) 180 2 1961 5274 173 528 23.4% 81.1% 8 117 11946 145 12

NDDSCS Run 4 (B = 0.25) 180 4 1962 4810 173 529 28% 81.9% 3 52 8124 77 10

DDSCS 180 2 1973 5829 180 527 29.7% 81.5% 10 126 13221 121 12

DDSCS 180 4 1981 3181 177 530 32% 82.5% 2 34 7279 77 9

DDSCS 90 2 1966 2322 90 528 22.8% 81.6% 9 108 10874 145 11

DDSCS 90 4 1974 1547 90 530 43.5% 82.2% 0 30 7516 121 9

OSU 2000 8041 266 539 9.5% 80.9% 66 626

Table 7.2: NDDSCS planned schedules comparison

1
2
8



Comparison of achieved schedules

Moving forward, we applied our simulation method presented in Section 5.2 (Algorithm 2) to

obtain the achieved schedule for the second robust model. Table 7.3 presents the achieved

schedules obtained using the second robust model in addition to the deterministic method and

OSU’s achieved schedules.

We start by comparing the numbers of late ambulatory surgeries shown in column ’# late

ambs’, where all 4 robust runs had better results than the ones of the OSU and deterministic

method, with an average of 7 late ambulatory surgeries among all robust runs and an average

decrease of around 93.1% over the OSU and 41.7% over the deterministic method (average

of 12 late ambulatory surgeries).

Next, the number of scheduled surgeries doesn’t change here from the planned schedules

since our simulation method doesn’t add or remove surgeries from the planned schedule. Thus,

run 4 still provides the best results with 1962 scheduled surgeries (around 98.1% of the total

2000 surgeries).

Regarding the overtime, we can clearly see the advantage of using the robust method

in the 163 hours and 42 minutes saved over the OSU’s solution (decrease of 57.2%), in com-

parison to the 128 hours and 51 minutes saved on average from the OSU’s solution using the

deterministic method (decrease of approximately 45%). Even limiting the maximum overtime

εmax per room per day to a lower value (90 minutes instead of 180) in the deterministic method

gave worse results than those obtained with the robust method. In addition, we can see that

providing the solver with a larger flexibility margin represented by hs gives better overtime

when fixing B, as shown with run 2 having better results than run 1 and run 4 having better

results than run 3. Moreover, the maximum overtime found in any room any day (column ’Max.

overtime’) is lower in all the robust schedules than both the deterministic and OSU’s schedules,

with run 2 having the best value of 198 minutes.

Next, column ’Min. Occ. rate’ shows the minimum occupancy rate found in a room in

each schedule. Similar to the planned schedules comparison, using a value of hs = 4 yields
the best minimum occupancy rates as runs 2 and 4 has the highest values, as well as a better

average occupancy rates as shown in column ’Avg. Occ. rate’. In addition, all of our robust

schedules provided an average occupancy rate greater than the 80% goal fixed by the CHU,

which is not the case for the schedule of the OSU. On the contrary, all of our robust schedules

provided lower values than the ones obtained using the deterministic method, which is due to

the lower number of scheduled surgeries found in the robust schedules over the deterministic

ones.

Finally, column ’# Urgent’ shows the total number of urgent kits and column ’# Priori-

ties’ shows the total number of priority kits found in each schedule. Another advantage for

using the robust method can be found here, as the robust schedules decreased the number of

problem kits (urgent + priorities) on average by 498 kits over the OSU’s solutions (decrease

of approximately 86.9%), compared to an average savings of 370 kits obtained using the de-

terministic method over the OSU’s solution(decrease of approximately 64.6%). Moreover, the

same behaviour continues as using a higher value of hs = 4 yields the best results as run 2 had
the best result with a total number of problem kits of 51 kits with a decrease of approximately

91.1% over the 573 kits obtained by the schedule of the OSU.

This comparison between the achieved schedules shows globally that the results obtained

using the second robust model are better in terms of the overtime and number of problem kits
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than the ones obtained using the non-deterministic formulation and the ones of the OSU, with

the only downside to the conservative nature of the robust model is the slight decrease in the

total number of scheduled surgeries. In addition, we found that using increasing the flexibility

margin (hs = 4) for the solver yields better results.
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Schedule

Method εmax hs # Late ambs # Scheduled Overtime Max. overtime # opened ORs Min. Occ. rate Avg. Occ. rate # Urgent # Priorities

NDDSCS Run 1 (B = 0.5) 180 2 6 1933 6992 211 529 25.9% 82.7% 6 57

NDDSCS Run 2 (B = 0.5) 180 4 4 1937 6501 198 531 34.2% 83.8% 3 48

NDDSCS Run 3 (B = 0.25) 180 2 9 1961 8024 246 528 28.5% 85.1% 8 94

NDDSCS Run 4 (B = 0.25) 180 4 8 1962 7893 238 529 38.7% 86.4% 4 79

DDSCS 180 2 13 1973 13304 371 527 28.7% 86.5% 17 213

DDSCS 180 4 12 1981 11346 408 530 39.3% 88.5% 2 181

DDSCS 90 2 11 1966 10822 257 528 32.8% 85.9% 3 236

DDSCS 90 4 12 1974 9443 258 530 45.4% 87.8% 7 152

OSU 101 2000 17174 326 539 9.9% 78.8% 79 494

Table 7.3: NDDSCS achieved schedules comparison

1
3
1



7.6 Models performance analysis

In the previous sections, we adapted both robust models presented in Chapter 6 to our dynamic

method presented in Chapter 4. Despite that the first robust formulation performed better than

the second one in the static version of the SCS problem, the same couldn’t be replicated in the

dynamic version. The first robust model was not able to provide good solutions at the end of

the 12 hours time limit, and increasing this time limit is not an option as discussed before due

to the restrictions of the CHU’s management. We tried different parameters combinations, but

the same behaviour continued as this model needs too much time to find a starting solution

and more to find improvements. Although this model was able to perform well in the described

time limit frame in the static version, the same couldn’t be said in the dynamic problem due to

the higher number of surgeries considered at each iteration (an average of 400 instead of 200

for the static version) and the increased number of variables representing the horizon days

(around 150 days considered at each iteration instead of an average of 26 days in the static

version).

On the other hand, the second robust model performed better than the deterministic

one and the OSU, despite the drop of 1.3% on average in total number scheduled surgeries

compared to the deterministic model (1948 surgeries were scheduled on average among the 4

runs, compared to an average of 1973 surgeries among all 4 deterministic runs). For the rest

of the criteria, the second robust model provided substantial gains.

Regarding the ”robustness” of the second model, Table 7.4 compares the degradation

in solution qualities between the planned and achieved schedules between the 4 runs of the

second robust model, the 4 runs of the deterministic model, and the OSU schedules.

Starting with the overtime, we can see that all 4 runs had more robust solutions compared

to the deterministic and OSU’s solutions. Moreover, we can see that using a higher value of

B increases the robustness of the model as both run 1 and 2 had less degradation than run 3

and 4, and using a higher value of hs yields better results. Hence, run 2 had the most robust

solution.

Similarly, all 4 runs showmore robustness than both the deterministic and OSU’s solutions

when comparing the total number of urgent and priority kits. On the contrary to the behaviour

pattern that we were seeing before (hs = 2 provides worst results than hs = 4), run 3 shows
more robustness than run 2 represented by a decrease in the problem kits degradation values.

This difference in behaviour can be justified as run 3 has double the number of problem kits of

run 2 in the achieved schedule.

Finally, it is clear that increasing the value of B increases the robustness of the method

and decreases the degradation, but at the cost of less number of scheduled surgeries. In

addition, increasing the value of hs gives the model more flexibility and thus yields better

results as shown in both runs 2 and 4.
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schedule #late ambs #not allowed kits overtime
#problem kits

(urgent + priorities)

OSU

Planned 76 102 8041 692

Achieved 101 62 17174 573

Degradation +32.9% -39.2% +113.6% -17.2%

NDDSCS Run 1

(εmax = 180, hs = 2, B = 0.5)

Planned 0 0 6378 107

Achieved 6 0 6992 63

Degradation NA - +9.6% -41.1%

NDDSCS Run 2

(εmax = 180, hs = 4, B = 0.5)

Planned 0 0 6156 32

Achieved 4 0 6501 51

Degradation NA - +5.6% +59.4%

NDDSCS Run 3

(εmax = 180, hs = 2, B = 0.25)

Planned 0 0 5274 125

Achieved 9 0 8024 102

Degradation NA - +52.1% -18.4%

NDDSCS Run 4

(εmax = 180, hs = 4, B = 0.25)

Planned 0 0 4810 55

Achieved 8 0 7893 83

Degradation NA - +64.1% +50.9%

DDSCS

(εmax = 180, hs = 2)

Planned 0 0 5829 136

Achieved 13 0 13304 230

Degradation NA - +128.2% +69.1%

DDSCS

(εmax = 180, hs = 4)

Planned 0 0 3181 36

Achieved 12 0 11346 183

Degradation NA - +256.7% +408.3%

DDSCS

(εmax = 90, hs = 2)

Planned 0 0 2322 117

Achieved 11 0 10822 239

Degradation NA - +366.1% +104.3%

DDSCS

(εmax = 90, hs = 4)

Planned 0 0 1547 30

Achieved 12 0 9443 159

Degradation NA - +510.4% +430%

Table 7.4: NDDSCS second robust model degradation analysis

133



7.7 Conclusion

In this chapter, we solved the non-deterministic version of the dynamic surgical case schedul-

ing problem of the CHU. We integrated our two robust formulations presented in Chapter 6

in a rolling horizon approach. We used our testing methodology used in Chapter 4 and ran

the numerical experiments on both models. Starting with the first robust model, we showed

that this model was not able to perform well in the fixed time limit that was set by the CHU

management. We showed both the planned and achieved schedules for this model after 6

iterations, which showed that the results lacked behind the deterministic ones in terms of the

total number of scheduled surgeries, as it was only able to schedule around 75% of the total

surgeries. This made the first model an unattractive option for the CHU, as their objective is to

decrease the operational costs while maintaining the same level of service quality represented

by the total number of operated patients.

Next, we presented our numerical experiments for the second robust model. Again, we

used the same testing method as in the first robust model. We then compared both the planned

and achieved schedules of this model with the ones obtained using the deterministic model and

the ones of the OSU. In the results, we showed that this method provided substantial gains

represented by a decrease of over 62.1% in the total overtime and 91% in the total number of

urgent and priority kits. In addition, we showed that the second robust model outperformed

the deterministic and OSU schedules in all criteria, with the only downside for its somehow

conservative nature being the 1.3% drop in total number of scheduled surgeries compared to

the deterministic method.

Finally, we showed that the solutions obtained using the second robust model provided

more robustness as we compared the degradation between these schedules and the ones of

the deterministic method and OSU.
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GϿЈϿЌϻІ ϽЉЈϽІЏЍЃЉЈ ϻЈϾ

ЊϿЌЍЊϿϽЎЃАϿЍ

This research has explored the surgical case scheduling problem with sterilising activities con-

straints of the Centre Hospitalier Universitaire d’Angers (CHU).

We started by explaining the SCS problem of the CHU and the main concerned elements,

namely the OSU, the SU and the surgical kits. We then moved to describe the work process

currently implemented at the OSU. From this description, we analysed the main problems

imposed by using such a work flow and found that such problems are mainly a result of the

lack of global planning. Next, we analysed the real data that we received from the CHU.

This was achieved by exploring the planned schedules, which are the schedules generated

using surgeries estimated durations, and the achieved schedules that use the real durations of

surgeries and represent what actually happened at the OSU after performing the surgeries. By

comparing these schedules, we showed that there is quite a big degradation in solution qualities

when applying surgeries real durations in place of the estimated ones. Such degradation is a

result of the stochastic nature of surgeries durations, which is showed in details in the last

section by comparing surgeries estimated and real durations.

Second, we reviewed the literature on the operating rooms planning and scheduling prob-

lem. In the review, we observed that this problem is usually viewed as being made up of three

phases corresponding to three decision levels. Thus, we visited the 3 decision levels while

focusing on the operational level as it is where the SCS problem resides. Moreover, we found

that researchers usually separate the SCS problem into two sub-problems, namely the AdvSP

and AllocSP. We explored the literature on both sub-problems while classifying the literature

on each sub-problem into four categories based on the availability of data (static or dynamic)

and the quality of data (deterministic or non-deterministic). We then explained that decom-

posing the problem and solving each sub-problem individually negatively affects the quality

of obtained solutions. For this, we explored the literature for the approaches that solve both

sub-problems in a single step (AASP) following the same four categories classification we used

before. During our review, we found that the SCS problem varies heavily in terms of the con-

sidered resources constraints and the solved objectives due to the different requirements of

hospitals management. In addition, we noticed a lack of researches that take into account the

medical instruments sterilisation step, despite its importance. Finally, we presented a sum-

mary and synthesis for the presented literature, where we showed that there are no existing

researches in the literature that cover the needs of the CHU, while considering the medical in-

struments sterilisation step. Two of the main contributions of this thesis are the consideration

of the sterilisation activities constraints while solving the SCS problem and the introduction of

urgent and priority kits as performance measures for the problem.

Next, we proposed to solve the 4 versions of the SCS problem. Starting with the non-

deterministic static version, we presented a formulation of the problem and proved that this

problem is NP-hard. Next, we proposed a mixed integer linear programming formulation which
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is solved in a lexicographic fashion. In addition, we proposed a constructive heuristic method

that uses the presented MILP to solve the problem. According to the CHU, the objective we

considered in this stage were the minimisation of the overtime, the number of opened ORs and

the number of medical instruments treated as urgent or priority at the SU. To test our methods,

we solved the problem with both the proposed MILP and heuristic method in order to create the

planned schedules using surgeries estimated durations. Both our results significantly improve

those of the CHU in terms of overtime and urgent kits at the SU. Moreover, the MILP provides

better results than the heuristic, but needs much longer execution times.

Moving forward, we tackled the deterministic dynamic SCS problem. We started by pro-

viding a technical background for the dynamic scheduling problem and rolling horizon method.

Next, we presented a formal description of the problem, during which we explained the dy-

namic nature of the scheduling problem at the OSU and proposed a new work flow for the

OSU. In this new work flow, the surgeon only indicates the due date for the surgeries at the

consultation instead of the actual surgery date. Then, the consulted surgeries are added to

a waiting list to be scheduled later. Then, we presented a MILP formulation for the problem,

where the objectives are first to maximise the number of scheduled patients, then minimise

the total overtime at the OSU, then minimise the total cost of urgent and priority kits processed

at the sterilizing unit, and finally minimise the total tardiness of surgeries from their due dates.

Finally, we presented the experimental results following the same test methodology we used

before. The results showed that our proposed method managed to schedule around 99% of

the total number of surgeries and provide better results than the current method applied at the

OSU in terms of overtime, numbers of opened ORs, occupancy rates at the ORs and numbers

of urgent and priority kits.

Indeed, both deterministic static and dynamic solutions presented before were using

surgeries estimated durations. For this, we developed an algorithm that simulates the process

at the OSU and generates the corresponding achieved schedule for each planned one. When

we compared the generated achieved schedules with the ones of the OSU, we found that our

results in both problems outperformed the ones of the OSU in every criteria. Despite such

big lead over the OSU, we noticed a certain amount of degradation in solution qualities when

comparing each of our planned schedules to its corresponding achieved schedule due to the

big differences between surgeries estimated and real durations.

To deal with such degradation, we tackled next the non-deterministic versions of the

problem. Starting with the non-deterministic static SCS problem, we provided a technical re-

view for the non-deterministic optimization field. Then, we proposed two robust mathematical

models to solve the problem. During our experiments, we showed that both robust models

provided better results than OSU and the deterministic method. In addition, the first robust

model yields the best results and the least degradation, but uses way more time than the

second robust model which needs less time to find good solutions.

Lastly, we solved the non-deterministic dynamic SCS problem. To achieve this, we used a

similar approach to the one used for the deterministic dynamic problem and integrated our two

robust formulations in the rolling horizon approach. Following the same testing methodology,

we compared our results with the ones obtained using the deterministic method and the solu-

tions of the OSU. We found that the first robust model was not able to schedule more than 75%

of the surgeries achieved using the deterministic method in the fixed time limit that was set by

the CHU management. This made the first model an unattractive option for the CHU, as the
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main objective is to reduce the operational costs while maintaining the same level of service

quality represented by the total number of operated patients. For the second robust model, we

found that this method provided substantial gains represented by a decrease of over 62.1%

in the total overtime and 91% in the total number of urgent and priority kits. In addition,

we found that the second robust model outperformed the deterministic and OSU schedules

in all criteria while also showing the most robustness against the data uncertainties, with the

only downside for its somehow conservative nature being the 1.3% drop in total number of

scheduled surgeries compared to the deterministic method.

The quality of the obtained results makes our non-deterministic dynamic method a very

suitable and attractive decision aid tool for the CHU as it covers all the requirements of the OSU

and provides significant savings compared to their actual implemented method, while requiring

little modifications to their current work process to be fully implemented.

We identify several perspectives to further extend this thesis work.

First, to consider the semi-elective surgeries that are performed at the OSU in the dynamic

version of the problem (surgeries with less than 3 weeks between the consultation and due

date), we could implement a rescheduling step that is performed whenever such surgery is

consulted. Indeed, this might lead to the disturbance of the fixed schedule, but we could deal

with this by studying the probability of the arrival of such surgeries and insert empty slacks

in the schedule to host such surgeries. In addition, we could also force the objective of such

rescheduling step to minimise the changes done to the fixed schedule.

Another interesting avenue for future research is to jointly address the MSS and SCS

problems. As we explained before, the CHU uses a block-scheduling strategy, where each

surgeon is assigned blocks of OR time to schedule his/her surgeries, and this MSS is predefined

6 months in advance. Having such a fixed long period schedule decreases the flexibility of the

method as in 6 months many things can change including the workload of each surgeon. Thus,

it would be interesting to decrease such period by allowing the model to create the best suitable

MSS for a shorter period (e.g. 1 month) in advance. Of course, this would require the addition

of surgeons’ preferences constraints in the model such as the working days, hours, consecutive

days, vacations ...etc.

Finally, we could extend the definition of the problem by including more stakeholders’

preferences. In the case of patients, such preferences could include but are not limited to: the

hour of the surgery as patients who live outside the city prefer to be operated at the middle of

the day to have enough time to come to the hospital and leave (if it is the case) at the same

day, the day of the surgery as patients normally have other obligations (e.g. work, school,

..etc). For the surgeons, one interesting preference to add is the choice of surgeries. This is

due to the fact that many surgeons have some specific type of surgeries that they do not prefer

to perform more than once a day (i.e. requires too much time, effort, ...etc).
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AЊЊϿЈϾЃВ A

NЉЎϻЎЃЉЈЍ

To help the reader, we summarize below the main notations used in Part II and Part III.

Time horizon

• T : total number of days in the horizon

• J: number of periods in each day

Surgery

• O: total number of surgeries

• pi: estimated duration of surgery i

• di: due date for surgery i

• p̄i: nominal duration of surgery i

• p̃i: stochastic duration of surgery i

• p̂i: standard deviation of the duration distribution function F (p̃i)

• ai:


1 if surgery i is ambulatory

0 otherwise

• Amax: latest time for ambulatory surgeries to be performed at

Operating rooms

• R: total number of operating rooms

• dj
rt:


duration of period j of day t for room r

0 if the room is closed at day t

• dbf
rt : duration from period b to period f (≥ b) of day t for room r

• εmax: maximum allowed overtime for any room on any given day

Surgeons

• S: total number of surgeons
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• J: number of periods in each day

• λs: set of surgeries for surgeon s

• δsrt:


1 if surgeon s can use room r on day t

0 otherwise

Kits

• K: total number of kit types

• qik: required quantity of kits of type k for operation i

• Qk: total quantity of kits of type k owned by the block

• cu: urgent kit penalty

• cp: priority kit penalty
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Titre :  Ordonnancement de blocs opératoires avec prise en compte des contraintes de stérilisation des 
instruments chirurgicaux. 

Mots clés :  Recherche opérationnelle, ordonnancement, gestion des blocs opératoires, programmation li-
néaire à variables mixtes, horizon roulant, optimisation robuste. 

Résumé :  Les blocs opératoires sont l’un des princi-
paux postes de dépenses du système hospitalier, 
rationaliser et optimiser leur gestion permet donc une 
réduction des coûts pour la structure. S’aidant de 
l’unité de chirurgie orthopédique du CHU d’Angers, 
nous proposons donc des outils d’aide à la planifica-
tion des interventions chirurgicales prenant aussi en 
compte les contraintes liées à la stérilisation 
d’instruments médicaux tels que les kits 
d’intervention. Le but de ces outils est de baisser les 
coûts de fonctionnement des blocs opératoires, opti-
miser le recours aux heures supplémentaires et les 
stérilisations de matériels en urgence, etc.  
Nous considérons premièrement que toutes les don-
nées sont connues et nous proposons un modèle de 
type MILP et une heuristique de construction de solu-
tions dont les résultats obtenus améliorent la 
 

planification du CHU. Nous adaptons ensuite une 
approche permettant d’assimiler l’arrivée dynamique 
des patients et montrons, résultats à l’appui, que 
cette technique permettrait d’améliorer le processus 
de prévision des opérations du bloc, si les durées 
opératoires sont connues.  
Cette dernière hypothèse ne tenant pas dans le cas 
réel, nous suggérons de la lever en proposant de 
robustifier tout d’abord notre approche statique de 
deux façons que nous adaptons au cas dynamique. 
A l’issue de ces travaux, une amélioration de 54% 
est constatée du processus de planification en 
termes d’heures supplémentaires tout comme une 
réduction du nombre de stérilisations à effectuer 
dans l’urgence (90%) et d’une hausse significative 
du taux d’occupation des blocs opératoires (5.7%). 

 

Title :  Surgical case scheduling with medical instruments sterilizing activities constraints. 

Keywords : Operations research, scheduling, operating room management, mixed integer linear program-
ming, rolling horizon, robust optimization. 

Abstract : The operating theater is considered as the 
most expensive and important resource in hospitals 
as it counts as the main source of income and ex-
penses. This critical rule and the increase in costs 
urge hospitals to organize their processes more effi-
ciently and effectively. 
In this thesis, we will be working with the Centre Hos-
pitalier Universitaire d’Angers (CHU) of Angers in 
France. We focus on the surgery scheduling problem 
at the orthopedic surgery unit. The main contribution 
of this work is the consideration of the activities of the 
sterilizing unit as a hard constraint and a performance 
measure for the problem. 
In the first part of this work, we present a multidimen-
sional classification of the current literature on the 
surgical case scheduling problem.  
In the second part, we solve the deterministic version 
of the problem. Starting with the static problem, we 

propose a MILP and a constructive heuristic and 
show that the obtained results significantly improve 
over the ones of the CHU. 
Next, we solved the deterministic dynamic version by 
implementing our MILP in a rolling horizon approach. 
Again, the results were superior to the CHU ones. 
We then showed that a non-deterministic approach 
is a must due to the big degradations caused by sur-
geries duration uncertainties. 
In the third part, we tackled the non-deterministic 
version of the problem. Similarly, we started with the 
static problem and proposed two robust models.  
Finally, we implement both robust models in a rolling 
horizon method to solve the dynamic scheduling 
problem.  The results of the both non-deterministic 
versions show much more robustness compared to 
the deterministic ones and better values overall. 
 
 
 

 


